Skip to main content

Micro- and Nanoparticle-Based Vaccines for Hepatitis B

  • Conference paper
Immune-Mediated Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 601))

Abstract

The incredible success of vaccinations in contributing to public health is undeniable.In fact, vaccines are the most cost-effective public health tool for disease preventionbecause their cost is less than the combined costs of treatment, hospitalization, and time lossfrom work. However, despite the availability of vaccines, cost per dose is a factor limiting thesuccess of global vaccination campaigns, as are the limitations imposed by the need of deliveringmultiple vaccine doses. A number of approaches are being tested particularly for the deliveryof subunit vaccines, and in recent years, a number of groups have devoted their efforts todevelop nano/microparticles prepared from biodegradable and biocompatible polymers asvaccine delivery systems with the goal of inducing both humoral and cellular immune responses.Some important properties of biodegradable polymers are their documented safetyhistory, biocompatibility, and an ability to provide controlled time/rate of antigen release andpolymer degradation. The most extensively studied polymer used for encapsulating vaccineantigens is poly (lactide-co-glycolide acid) (PLGA). This chapter deals in brief with effortstargeting the use of PLGA micro-and nanoparticles for the delivery of hepatitis B surfaceantigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cleland, J.L., Lim, A., Barron, L., Duenas, E.T. and Powell, M.F. (1997) Development of a single-shot subunit vaccine for HIV-1: Part 4. Optimizing microencapsulation and pulsatile release of MN rgp120 from biodegradable microspheres. J. Control Release 47, 135–150.

    Article  CAS  Google Scholar 

  • Clements, C.J. and Griffiths, E. (2002) The global impact of vaccines containing aluminium adjuvants. Vaccine 20, S24–S33.

    Article  PubMed  Google Scholar 

  • Davis, J.P. (2005) Experience with hepatitis A and B vaccines. Am. J. Med. 118, 7S–15S.

    Article  PubMed  CAS  Google Scholar 

  • Davis, H.L., McCluskie, M.J., Gerin, J.L. and Purcell, R.H. (1996) DNA vaccine for hepatitis B: evidence for immunogenicity in chimpanzees and comparison with other vaccines. Proc. Natl. Acad. Sci. USA 93, 7213–7218.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, J.D., Gilley, R.M., Schafer, D.P., Moldoveanu Z. and Mestecky J.F. (1996) Poly(lactide-co-glycolide) microencapsulation of vaccines for mucosal immunization. In: H. Kiyono, P.L. Ogra and J.R. McGhee (Eds.), Mucosal Vaccines, Academic Press, San Diego, pp. 159–174.

    Chapter  Google Scholar 

  • Eldridge, J., Gilley, R., Staas, R., Moldoveanu, Z., Muelbroek, J. and Tice T. (1989) Biodegradable microspheres: vaccine delivery system for oral immunization. Curr. Top. Microbiol. Immunol. 146, 59–66.

    PubMed  CAS  Google Scholar 

  • Eldridge, J.H., Staas, J.K., Tice, T.R. and Gilley, R.M. (1992) Biodegradable poly(lactide-co-glycolide) microspheres. Res. Immunol. 143, 557–563.

    Article  PubMed  CAS  Google Scholar 

  • Fong, F.W. (1979) Microsphere production from particle dispersion in polymer solution by adding phase separation agent at low temperature. US Patent US 4, 166, 800.

    Google Scholar 

  • Gabor, F., Scwarzbauer, A. and Wirth, M. (2002) Lectin mediated drug delivery: binding and uptake of BSA-WGA conjugates using the caco-2 model. Int. J. Pharm. 237, 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R.K., Chang, A.C., Griffin, P., Rivera, R., Guo, Y.Y. and Siber G.R. (1997) Determination of protein loading in biodegradable polymer microspheres containing tetanus toxoid. Vaccine 15, 672–678.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, P.N., Mahor S., Rawat, A., Khatri, K., Goyal, A. and Vyas, S.P. (2006) Lectin anchored stabilized biodegradable nanoparticles for oral immunization 1. Development and in vitro evaluation. Int. J.Pharm. 318, 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R.K. and Siber G.R. (1995) Adjuvants for human vaccines-current status, problems and future prospects. Vaccine 13, 1263–1276.

    Article  PubMed  CAS  Google Scholar 

  • He, X., Wang, F., Jiang, L., Li, J., Liu, S., Xiao, Z., Jin, X., Zhang, Y., He, Y., Li, K., Guo, Y. and Sun, S. (2005) Induction of mucosal and systemic immune response by single-dose oral immunization with biodegradable microparticles containing DNA encoding HBsAg. J. Gen. Virol. 86, 601–661.

    Article  PubMed  CAS  Google Scholar 

  • Jaganathan, K.S. and Vyas, S.P. (2006) Strong systemic and mucosal immune responses to surface-modifies PLGA microspheres containing recombinant Hepatitis B antigen administered intranasally. Vaccine 24, 4201–4211.

    Article  PubMed  CAS  Google Scholar 

  • Jain, S., Singh, P., Mishra, V. and Vyas, S.P. (2005) Mannosylated niosomes as adjuvant–carrier system for oral genetic immunization against Hepatitis B. Immunol. Lett. 101, 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, W., Gupta, R.K., Deshpande, M.C. and Schwendeman, S.P. (2005) Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv. Drug Del. Rev. 57, 391–410.

    Article  CAS  Google Scholar 

  • Kavanagh, O.V., Early, B., Murray, M., Foster, C.J. and Adair, B.M. (2003)Antigenspecific IgA and IgG responses in calves inoculated intranasally with ovalbumin encapsulated in poly(dl-lactide-co-glycolide) microspheres. Vaccine 21, 4472–4480.

    Article  PubMed  CAS  Google Scholar 

  • Kersten, G. and Hirshberg, H. (2004) Antigen delivery systems. Expert Rev.Vaccines 3, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Kersten, G.F.A. and Kaufmann, G.B. (1996) Biodegradable microspheres as vehicles for antigens. In: W. deGruyter (Eds.) Concepts in Vaccine Development. New York, Springer Publ. Co., pp. 265–302.

    Google Scholar 

  • Lavelle, E.C., Grant, G., Pfuller, U. and O’Hagan, D.T. (2004) Immunological implication of the use of plant lectins for drug and vaccine targeting to the gastrointestinal tract. J. Drug Target. 12, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Lavelle, E.C., Grant, G., Pusztai, A., Fuller, U. and O’Hagan, D.T. (2001)Identification of plant lectin with mucosal adjuvant activity. Immunology 102, 77–86.

    Google Scholar 

  • Le Guerhier, F., Thermet, A., Guerret, S., Chevallier, M., Jamard, C., Gibbs, C.S., Trepo, C., Cova, L. and Zoulim, F. (2003) Antiviral effect of adefovir in combination with a DNA vaccine in the duck hepatitis B virus infection model. J. Hepatol. 38, 328–334.

    Article  PubMed  CAS  Google Scholar 

  • McNeela, E., O’Connor, D., Jabbal-Gill, I., Illum, L., Davis, S.S., Pizza, M., Peppoloni, S., Rappuoli, R. and Mills, K.H.G. (2000) A mucosally delivered vaccine against diphtheria: formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic and Th2 responses following nasal delivery. Vaccine 19, 1188–1198.

    Article  PubMed  CAS  Google Scholar 

  • McGee, J.P., Singh, M., Li, X.M., Qui, H. and O’Hagan, D.T. (1997) The encapsulation of a model protein in poly (lactide-co-glycolide) microparticles of various sizes; an evaluation of process reproducibility, J. Microencapsul. 14, 197–210.

    Article  PubMed  CAS  Google Scholar 

  • Nuwayser, E.S. and Nucefora, W.A. (1986) Controlled release mi-croparticles comprising core of active ingredient and polymer and coating of the same polymer. US Patent US4, 623, 588.

    Google Scholar 

  • O’Hagan, D.T., Jeffery H. and Davis S.S. (1993) The preparation and characterization of poly (lactide-co-glycolide) microparticles II. The entrapment of a model protein using a water-in-oil-inwater emulsion solvent evaporation technique. Pharm. Res. 10, 362–368.

    Article  PubMed  Google Scholar 

  • Oka, Y., Akbar, S.M., Horiike, N., Joko, K. and Onji, M. (2001) Mechanism and therapeutic potential of DNA-based immunization against the envelope proteins of hepatitis B virus in normal and transgenic mice. Immunology 103, 90–97.

    Google Scholar 

  • Park, K., Shalaby, W.S.W. and Park H. (1993) Biodegradable Hydrogels for Drug Delivery. Technomic Publishing Company, Inc., Pennsylvania.

    Google Scholar 

  • Rajkannan, R., Dhanaraju, M.D., Gopinath, D., Selvaraj, D. and Jayakumar, R. (2006) Development of hepatitis B oral vaccine using B cell epitope loaded PLG microparticles. Vaccine 24, 5149–5157.

    Article  PubMed  CAS  Google Scholar 

  • Shalaby, W.S.W. (1995) Development of oral vaccines to stimulate mucosal andsystemic immunity: barriers and novel strategies. Clin. Immunol. Immunopathol. 74, 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Singh, P., Prabhakaran, D., Jain, S., Mishra, V., Jaganathan, K.S. and Vyas, S.P. (2004) Cholera toxin B conjugated bile salt stabilized vesicles (bilosomes) for oral immunization Int. J. Pharm. 278, 379–390.

    CAS  Google Scholar 

  • Spiers, I.D., Eyles, J.E., Baillie, L.W.J., Williamson, E.D. and Oya Alpar, H. (2000) Biodegradable microparticles with different release profiles: effect on the immune response after a single administration via intranasal and intramuscular routes. J. Pharm. Pharmacol. 52, 1195–1201.

    Article  PubMed  CAS  Google Scholar 

  • Tambera, H., Johansena, P., Merklea, H.P. and Gander, B. (2005) Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv. Drug Del. Rev. 57, 357– 376.

    Article  CAS  Google Scholar 

  • Thoelen, S., Clercq, N.D. and Tornieporth, N.A. (2001) Prophylactic hepatitis B vaccine with a novel adjuvant system. Vaccine 19, 2400–2403.

    Article  PubMed  CAS  Google Scholar 

  • Vady, M. and O’Hagan, D.T. (1996) Microparticles for intranasal immunization, Adv. Drug Del. Rev. 21, 33–47.

    Article  Google Scholar 

  • Van der, L.I.M., Kersten, G., Fretz, M.M., Beuvery, C., Verhoef, J.C. and Junginger, H.E. (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 21, 1400–1408.

    Article  CAS  Google Scholar 

  • Wikingsson, L. and Sjoholm, I. (2002) Polyacryl starch microparticles as adjuvant in oral immunization, inducing mucosal and systemic immune responses in mice. Vaccine 20, 3353–3363.

    Article  Google Scholar 

  • Zhou, F.J., Hu, Z.L., Dai, J.X., Chen, R.W., Shi, K., Lin, Y. and Sun, S.H. (2003) Protection of tree shrews by pVAX-PS DNA vaccine against HBV infection. DNA Cell Biol. 22, 475–478.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin Thanavala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Bharali, D.J., Mousa, S.A., Thanavala, Y. (2007). Micro- and Nanoparticle-Based Vaccines for Hepatitis B. In: Shurin, M.R., Smolkin, Y.S. (eds) Immune-Mediated Diseases. Advances in Experimental Medicine and Biology, vol 601. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72005-0_44

Download citation

Publish with us

Policies and ethics