Skip to main content
Book cover

Mitochondria pp 185–196Cite as

Formation of Reactive Oxygen Species in Mitochondria

  • Chapter

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

Abstract

Living organisms obtain energy from the oxidation of various biomolecules, including carbohydrates, lipids and the carbon skeletons of amino acids. Under aerobic conditions, the reducing coenzymes produced during these reactions are re-oxidized in the electron transport chain, transferring electrons to molecular oxygen (E°= +800 mV) through a series of electron carriers in the respiratory chain. This electrochemical energy is converted into a proton gradient which, in turn, operates a rotor-type enzymatic complex (ATP synthase or Complex V), inducing conformational changes which cause ADP and inorganic phosphate to bind to the active site and ATP to be released (Noji and Yoshida 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banmeyer I, Marchand C, Clippe A, Knoops B (2005) Humanmitochondrial peroxiredoxin 5 protects from mitochondrial DNAdamages induced by hydrogen peroxide. FEBS Lett 579: 2327–2333

    Article  CAS  PubMed  Google Scholar 

  • Beyer RE (1994) The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q. J Bioenerg Biomembr 26: 349–358

    Article  CAS  Google Scholar 

  • Cadenas E, Boveris A, Ragan CI, Stoppani AOM (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heartmitochondria. Arch Biochem. Biophys 180: 248–257

    CAS  Google Scholar 

  • Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG (2004) Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem 279: 41975–41984

    Article  CAS  PubMed  Google Scholar 

  • Clerch LB, Massaro D, Berkovich A (1998) Molecular mechanisms of antioxidant enzyme expression in lung during exposure to and recovery from hyperoxia. Am J Physiol Lung Cell Mol Physiol 274: L313–L319

    CAS  Google Scholar 

  • Cohen,G., Farooqui,R.,, Kesler,N. (1997) Parkinson disease: A newlink between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci USA 94: 4890–4894

    Article  CAS  PubMed  Google Scholar 

  • Cooper JM, Schapira AH (2003) Friedreich’s Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18: 163–171

    Article  CAS  PubMed  Google Scholar 

  • Crapo JD, Freeman BA, Barry BE, Turrens JF, Young SL (1983) Mechanisms of hyperoxic injury to the pulmonary micro circulation. Physiologist, 26: 170–176

    CAS  PubMed  Google Scholar 

  • Das KC, Lewis-Molock Y, White CW (1995) Thiol modulation of TNFa andIL-1 induced MnSOD gene expression and activation of NF-kappaB. MolCell Biochem 148: 45–57

    Article  CAS  Google Scholar 

  • Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S (2005) Role of mitochondria in toxic oxidative stress. Mol Interv 5: 94–111

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Kennedy J (1976) Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch Biochem Biophys 173: 219–224

    Article  CAS  PubMed  Google Scholar 

  • Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, ParentiCG, Lenaz, G (2001) The site of production of superoxide radical inmitochondrial Complex I is not a bound ubisemiquinone but presumablyiron-sulfur cluster N2. FEBS Lett 505: 364–368

    Article  CAS  PubMed  Google Scholar 

  • Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO (1954) Oxygen poisioning and X-irradiation: a mechanism in common. Science 119: 623–626

    Article  CAS  PubMed  Google Scholar 

  • Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273: 11038–11043

    Article  CAS  PubMed  Google Scholar 

  • Granger DN, Hollwarth ME, Parks DA (1986) Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand 126(Suppl. 548):47–63

    Google Scholar 

  • Hinchliffe P, Sazanov LA (2005) Organization of iron-sulfur clustersin respiratory Complex I. Science 309: 771–774

    Article  CAS  PubMed  Google Scholar 

  • Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Rad Biol Med 34: 145–169

    Article  CAS  PubMed  Google Scholar 

  • Kokoszca JE, Coskun P, Esposito LA, Wallace DC (2001) Increased mitochondrial oxidative stress in the Sod2 (+/−) mouse results inthe age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 98: 2278–2283

    Article  Google Scholar 

  • Kotamraju S, Kalivendi SV, Konorev E, Chitambar CR, Joseph J,Kalyanaraman B (2004) Oxidant-induced iron signaling in Doxorubicin-mediated apoptosis. Methods Enzymol 378: 362–382

    Article  CAS  PubMed  Google Scholar 

  • Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human sustantia nigra neurons. Nature, in press

    Google Scholar 

  • Kushnareva Y, Murphy A.N, Andreyev A. (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368, 545–553

    Article  CAS  Google Scholar 

  • Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52: 159–164

    Article  CAS  PubMed  Google Scholar 

  • Lucey JF, Dangman B (1984) A reexamination of the role of oxygen inretrolental fibroplasia. Pediatrics 73: 82–96

    CAS  PubMed  Google Scholar 

  • Maassen JA, Janssen GM, Hart LM (2005) Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med 37: 213–221

    Article  CAS  PubMed  Google Scholar 

  • MacMillan-Crow LA, Cruthirds DL (2001) Invited review – Manganese superoxide dismutase in disease. Free Radic Res 34: 325–336

    Article  CAS  PubMed  Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279: 49064–49073

    Article  CAS  PubMed  Google Scholar 

  • Noji H, Yoshida M (2001) The rotary machine in the cell, ATP synthase. J Biol Chem 276: 1665–1668

    Article  CAS  PubMed  Google Scholar 

  • Nulton-Persson, A.C., Szweda LI (2003) Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 42: 4235–4242

    Article  CAS  PubMed  Google Scholar 

  • Oberley LW, St.Clair DK, Autor AP, Oberley TD (1987) Increase inmanganese superoxide dismutase activity in the mouse heart after X-irradiation. Arch Biochem Biophys 254: 69–80

    Article  CAS  PubMed  Google Scholar 

  • Okado-Matsumoto A, Fridovich, I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276: 38388–38393

    Article  CAS  PubMed  Google Scholar 

  • Pagano A, Barazzone-Argiroffo C (2003) Alveolar cell death in hyperoxia-induced lung injury. Ann NY Acad Sci 1010: 405–416

    Article  CAS  PubMed  Google Scholar 

  • Phung CD, Ezieme JA, Turrens JF (1994) Hydrogen peroxide metabolismin skeletal muscle mitochondria. Arch Biochem Biophys 315: 479–482

    Article  CAS  PubMed  Google Scholar 

  • Poderoso JJ, Lisdero C, Schöpfer F, Riobó N, Carreras MC,Cadenas E, Boveris A (1999) The regulation of mitochondrial oxygenup take by redox reactions involving nitric oxide and ubiquinol. J Biol Chem 274: 37709–37716

    Article  CAS  PubMed  Google Scholar 

  • Privalle CT, Beyer WF Jr, Fridovich I (1989) Anaerobic induction of proMn-superoxide dismutase in Escherichia coli. J Biol Chem 264: 2758–2763

    CAS  PubMed  Google Scholar 

  • Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266: 22028–22034

    CAS  PubMed  Google Scholar 

  • Rhee SG, Kang SW, Chang TS, Jeong W, Kim K (2001) Peroxiredoxin, an ovel family of peroxidases. IUBMB Life 52: 35–41

    Article  CAS  PubMed  Google Scholar 

  • Richter C, Park JW, Ames BN (1988) Normal oxidative damage tomitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA85: 6465–6467

    Article  CAS  PubMed  Google Scholar 

  • Richter C, Schweizer ,M, Ghafourifar P (1999) Mitochondria, nitricoxide, and peroxynitrite. Methods Enzymol 301: 381–393

    Article  CAS  PubMed  Google Scholar 

  • Sastre J, Borras C, Gracia-Sala B, Lloret A, Pallardo FV, Viña J (2002) Mitochondrial damage in aging and apoptosis. Ann NY Acad Sci 959: 448–451

    Article  CAS  Google Scholar 

  • Schapira AH (2002) Primary and secondary defects of the mitochondrial respiratory chain. J Inherit Metab Dis 25: 207–214

    Article  CAS  PubMed  Google Scholar 

  • Schapira AHV, Hartley A, Cleeter MWJ, Cooper JM (1993) Free radicals and mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Trans 21: 367–370

    CAS  PubMed  Google Scholar 

  • Schriner SF, Linford NJ, Martin GM, Treuting P, Ogburn CF, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308: 1909–1911

    Article  CAS  PubMed  Google Scholar 

  • Schumacker PT (2002) Hypoxia, anoxia, and O2 sensing: the search. Am J Physiol Cell Mol Physiol 283: L918–L921

    CAS  Google Scholar 

  • Semenza G (2001) HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107: 1–3

    Article  CAS  PubMed  Google Scholar 

  • Sherer TB; Kim JH; Betarbet R; Greenamyre JT (2003) Subcutaneousroten one exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179: 9–16

    Article  CAS  PubMed  Google Scholar 

  • Skinner Skinner KA, Crow JP, Skinner HB, Chandler RT, Thompson JA, Parks DA (1997) Free and protein-associated nitrotyrosine formation following rat liver preservation and transplantation. Arch Biochem Biophys 342: 282–288

    Article  Google Scholar 

  • Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochemical Pharmacology 5-6: 993–998

    Article  Google Scholar 

  • Sjostrom K, Crapo JD (1981) Adaptation to oxygen by preexposure to hypoxia: enhanced activity of mangani superoxide dismutase. Bull Europ Physiopath Resp 17(suppl.): 111–116

    CAS  Google Scholar 

  • Sohal RS, Sohal BH (1991) Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dev 57: 187–202

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24: 7788

    Article  CAS  Google Scholar 

  • Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of a-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20: 8972–8979

    CAS  PubMed  Google Scholar 

  • Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24: 7771–7778

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski JQ (2003) Rotenone neurotoxicity: a new window on environmental causes of Parkinson’s disease and related brain amyloidoses. Exp Neurol 179: 6–8

    Article  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol (London) 552: 335–344.

    Article  CAS  Google Scholar 

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237: 408–414

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191: 421–427

    CAS  PubMed  Google Scholar 

  • Turrens JF, Freeman BA, Crapo JD (1982a) Hyperoxia increaseshydrogen peroxide formation by lung mitochondria and microsomes. Arch Biochem Biophys 217: 411–419

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF, Freeman BA, Levitt JG, Crapo JD (1982b) The effect ofhyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys 217: 401–410.

    Article  CAS  PubMed  Google Scholar 

  • Ursini F, Maiorino M, Brigelius-Flohé R, Aumann KD, Roveri A,Schomburg D, Flohé,L (1995) Diversity of glutathioneperoxidases. Methods Enzymol 252: 38–53

    Article  CAS  PubMed  Google Scholar 

  • Viña J, Borras C, Gambini J, Sastre J, Pallardo FV (2005) Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett 579: 2741–2745

    Article  CAS  Google Scholar 

  • Vinogradov AD, Grivennikova VG (2005) Generation of superoxide-radical by the NADH: ubiquinone oxidoreductase of heartmitochondria. Biochemistry (Moscow) 70: 120–7

    Article  CAS  Google Scholar 

  • Xu JX (2004) Radical metabolism is partner to energy metabolism inmitochondria. Ann NY Acad Sci 1011: 57–60

    Article  CAS  PubMed  Google Scholar 

  • Ye G, Metreveli MS, Donthi RV, Xia S, Xu M, Carlson EM, Epstein PN (2004) Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53: 1336–1343.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Turrens, J.F. (2007). Formation of Reactive Oxygen Species in Mitochondria. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_8

Download citation

Publish with us

Policies and ethics