Skip to main content

Single–Walled Carbon Nanotubes for High Performance Thin Film Electronics

  • Chapter
  • First Online:
Carbon Nanotube Electronics

Part of the book series: Integrated Circuits and Systems ((ICIR))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Avouris, “Molecular Electronics with carbon nanotubes," Acc. Chem. Res., vol. 35, pp. 1026–1034, 2002.

    Google Scholar 

  2. P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, “Carbon nanotube electronics," Proc. IEEE, vol. 91, pp. 1772–1784, 2003.

    Google Scholar 

  3. P. Avouris, R. Martel, V. Derycke, and J. Appenzeller, “Carbon nanotube transistors and logic circuits," Physica B, vol. 323, pp. 6–14, 2002.

    Google Scholar 

  4. M. Ouyang, J.-L. Huang, and C. M. Lieber, “Fundamental electronic properties and applications of single-walled carbon nanotubes," Acc. Chem. Res., vol. 35, pp. 1018–1025, 2002.

    Google Scholar 

  5. V. N. Popov, “Carbon nanotubes: properties and application," Mater. Sci. Eng., R, vol. 43, pp. 61–102, 2004.

    Google Scholar 

  6. A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl, and E. Unger, “How do carbon nanotubes fit into the semiconductor roadmap?," Appl. Phys. A – Mater. Sci. Process., vol. 80, pp. 1141–1151, 2005.

    Google Scholar 

  7. E. S. Snow, J. P. Novak, M. D. Lay, E. H. Houser, F. K. Perkins, and P. M. Campbell, “Carbon nanotube networks: Nanomaterial for macroelectronic applications," J. Vac. Sci. Technol. B, vol. 22, pp. 1990–1994, 2004.

    Google Scholar 

  8. R. Seidel, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Steinhoegl, F. Kreupl, and W. Hoenlein, “High-current nanotube transistors," Nano. Lett., vol. 4, pp. 831–834, 2004.

    Google Scholar 

  9. Y. Zhou, A. Gaur, S.-H. Hur, C. Kocabas, M. A. Meitl, M. Shim, and J. A. Rogers, “p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks," Nano. Lett., vol. 4, pp. 2031–2035, 2004.

    Google Scholar 

  10. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks," Proc. Natl. Acad. Sci. U.S.A., vol. 98, pp. 4835–4840, 2001.

    Google Scholar 

  11. I. P. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. L. Shi, “A carbon nanotube strain sensor for structural health monitoring," Smart Mater. Struct., vol. 15, pp. 737–748, 2006.

    Google Scholar 

  12. R. H. Reuss, B. R. Chalamala, A. Moussessian, M. G. Kane, A. Kumar, D. C. Zhang, J. A. Rogers, M. Hatalis, D. Temple, G. Moddel, B. J. Eliasson, M. J. Estes, J. Kunze, E. S. Handy, E. S. Harmon, D. B. Salzman, J. M. Woodall, M. A. Alam, J. Y. Murthy, S. C. Jacobsen, M. Olivier, D. Markus, P. M. Campbell, and E. Snow, “Macroelectronics: Perspectives on technology and applications," Proc. IEEE, vol. 93, pp. 1239–1256, 2005.

    Google Scholar 

  13. R. H. Reuss, D. G. Hopper, and J. G. Park, “Macroelectronics," MRS Bull., vol. 31, pp. 447–450, 2006.

    Google Scholar 

  14. S. Lee, B. Koo, J. G. Park, H. Moon, J. Hahn, and J. M. Kim, “Development of high-performance organic thin-film transistors for large-area displays," MRS Bull., vol. 31, pp. 455–459, 2006.

    Google Scholar 

  15. P. van der Wilt, M. G. Kane, A. B. Limanov, A. H. Firester, L. Goodman, J. Lee, J. Abelson, A. M. Chitu, and J. S. Im, “Low-temperature polycrystalline silicon thin-film transistors and circuits on flexible substrates," MRS Bull., vol. 31, pp. 461–465, 2006.

    Google Scholar 

  16. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature, vol. 428, pp. 911–918, 2004.

    Google Scholar 

  17. G. Thomas, “Invisible circuits," Nature, vol. 389, pp. 907–908, 1997.

    Google Scholar 

  18. R. F. Service, “Materials science – Inorganic electronics begin to flex their muscle," Science, vol. 312, pp. 1593–1594, 2006.

    Google Scholar 

  19. T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes," Nano Lett., vol. 4, pp. 35–39, 2004.

    Google Scholar 

  20. X. J. Zhou, J. Y. Park, S. M. Huang, J. Liu, and P. L. McEuen, “Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors," Phys. Rev. Lett., vol. 95, p. 146805, 2005.

    Google Scholar 

  21. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. J. Dai, “High-field quasiballistic transport in short carbon nanotubes," Phys. Rev. Lett., vol. 92, 2004.

    Google Scholar 

  22. J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, “Bright infrared emission from electrically induced excitons in carbon nanotubes," Science, vol. 310, pp. 1171–1174, 2005.

    Google Scholar 

  23. J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET," Science, vol. 300, pp. 783–786, 2003.

    Google Scholar 

  24. R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators," Science, vol. 284, pp. 1340–1344, 1999.

    Google Scholar 

  25. M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, and R. Superfine, “Bending and buckling of carbon nanotubes under large strain," Nature, vol. 389, pp. 582–584, 1997.

    Google Scholar 

  26. D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park, and M. Tinkham, “Plastic deformations in mechanically strained single-walled carbon nanotubes," Phys. Rev. B, vol. 67, p. 033407, 2003.

    Google Scholar 

  27. S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus, and M. Tinkham, “Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes," Phys. Rev. Lett., vol. 93, p. 167401, 2004.

    Google Scholar 

  28. Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing," J. Am. Chem. Soc., vol. 124, pp. 7654–7655, 2002.

    Google Scholar 

  29. S.-H. Hur, C. Kocabas, A. Gaur, M. Shim, O. O. Park, and J. A. Rogers, “Printed thin film transistors and complementary logic gates that use polymer coated single-walled carbon nanotube networks," J. Apply. Phys., vol. 98, p. 114302, 2005.

    Google Scholar 

  30. B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe, and G. M. Whitesides, “Unconventional nanofabrication," Annu. Rev. Mater. Res., vol. 34, pp. 339–372, 2004.

    Google Scholar 

  31. P. Calvert, “Inkjet printing for materials and devices," Chem. Mater., vol. 13, pp. 3299–3305, 2001.

    Google Scholar 

  32. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films," Science, vol. 305, pp. 1273–1276, 2004.

    Google Scholar 

  33. M. Zhang, S. L. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets," Science, vol. 309, pp. 1215–1219, 2005.

    Google Scholar 

  34. U. J. Kim, H. R. Gutierrez, J. P. Kim, and P. C. Eklund, “Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes," J. Phys. Chem. B, vol. 109, pp. 23358–23365, 2005.

    Google Scholar 

  35. A. Hirsch, “Functionalization of single-walled carbon nanotubes," Angew. Chem. Int. Ed., vol. 41, pp. 1853–1859, 2002.

    Google Scholar 

  36. A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. W. Wang, R. G. Gordon, M. Lundstrom, and H. J. Dai, “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics," Nano Lett., vol. 4, pp. 447–450, 2004.

    Google Scholar 

  37. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. J. Dai, “High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates," Nat. Mater., vol. 1, pp. 241–246, 2002.

    Google Scholar 

  38. M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert, and P. Legagneux, “Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors," Appl. Phys. Lett., vol. 88, pp. 113507, 2006.

    Google Scholar 

  39. B. M. Kim, T. Brintlinger, E. Cobas, M. S. Fuhrer, H. M. Zheng, Z. Yu, R. Droopad, J. Ramdani, and K. Eisenbeiser, “High-performance carbon nanotube transistors on SrTiO3/Si substrates," Appl. Phys. Lett., vol. 84, pp. 1946–1948, 2004.

    Google Scholar 

  40. M. Shim, A. Javey, N. W. S. Kam, and H. J. Dai, “Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors," J. Am. Chem. Soc., vol. 123, pp. 11512–11513, 2001.

    Google Scholar 

  41. G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, and M. Shim, “Highly efficient Gating and doping of carbon nanotubes with polymer electrolytes," Nano Lett., vol. 4, pp. 927–931, 2004.

    Google Scholar 

  42. T. Ozel, A. Gaur, J. A. Rogers, and M. Shim, “Polymer electrolyte gating of carbon nanotube network transistors," Nano Lett., vol. 5, pp. 905–911, 2005.

    Google Scholar 

  43. M. Shim, T. Ozel, A. Gaur, and C. J. Wang, “Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption," J. Am. Chem. Soc., vol. 128, pp. 7522–7530, 2006.

    Google Scholar 

  44. C. Klinke, J. Chen, A. Afzali, and P. Avouris, “Charge transfer induced polarity switching in carbon nanotube transistors," Nano Lett., vol. 5, pp. 555–558, 2005.

    Google Scholar 

  45. E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, “Chemical detection with a single-walled carbon nanotube capacitor," Science, vol. 307, pp. 1942–1945, 2005.

    Google Scholar 

  46. E. S. Snow and F. K. Perkins, “Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors," Nano Lett., vol. 5, pp. 2414–2417, 2005.

    Google Scholar 

  47. H. R. Byon and H. C. Choi, “Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications," J. Am. Chem. Soc., vol. 128, pp. 2188–2189, 2006.

    Google Scholar 

  48. A. Star, E. Tu, J. Niemann, J. C. P. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors," Proc. Natl. Acad. Sci. U S A, vol. 103, pp. 921–926, 2006.

    Google Scholar 

  49. I. P. Kang, Y. Y. Heung, J. H. Kim, J. W. Lee, R. Gollapudi, S. Subramaniam, S. Narasimhadevara, D. Hurd, G. R. Kirikera, V. Shanov, M. J. Schulz, D. L. Shi, J. Boerio, S. Mall, and M. Ruggles-Wren, “Introduction to carbon nanotube and nanofiber smart materials," Compos. Pt. B – Eng., vol. 37, pp. 382–394, 2006.

    Google Scholar 

  50. M. F. Islam, D. E. Milkie, C. L. Kane, A. G. Yodh, and J. M. Kikkawa, “Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes," Phys. Rev. Lett., vol. 93, p. 037404, 2004.

    Google Scholar 

  51. M. Kaempgen, G. S. Duesberg, and S. Roth, “Transparent carbon nanotube coatings," Appl. Surf. Sci., vol. 252, pp. 425–429, 2005.

    Google Scholar 

  52. A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and M. Chhowalla, “Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells," Appl. Phys. Lett., vol. 87, p. 203511, 2005.

    Google Scholar 

  53. K. Lee, Z. Wu, Z. Chen, F. Ren, S. J. Pearton, and A. G. Rinzler, “Single Wall Carbon Nanotubes for p-Type Ohmic Contacts to GaN Light-Emitting Diodes," Nano Lett., vol. 4, pp. 911–914, 2004.

    Google Scholar 

  54. C. Kocabas, N. Pimparkar, O. Yesilyurt, M. A. Alam, and J. A. Rogers, “Experimental and theoretical studies of transport through large scale, partially aligned arrays of single walled carbon nanotubes in thin film type transistors," Nano Lett., vol. 7, pp. 1195–1202, 2007.

    Google Scholar 

  55. M. A. Alam, N. Pimparkar, S. Kumar, and J. Murthy, “Theory of nanocomposite network transistors for macroelectronics applications," MRS Bull., vol. 31, pp. 466–470, 2006.

    Google Scholar 

  56. E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, “Random networks of carbon nanotubes as an electronic material," Appl. Phys. Lett., vol. 82, pp. 2145–2147, 2003.

    Google Scholar 

  57. K. Bradley, J. C. P. Gabriel, and G. Grüner, “Flexible nanotube electronics," Nano Lett., vol. 3, pp. 1353–1355, 2003.

    Google Scholar 

  58. R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, and R. Yerushalmi-Rozen, “Stabilization of individual carbon nanotubes in aqueous solutions," Nano Lett., vol. 2, pp. 25–28, 2002.

    Google Scholar 

  59. R. C. Haddon, J. Sippel, A. G. Rinzler, and F. Papadimitrakopoulos, “Purification and separation of carbon nanotubes," Mrs Bull., vol. 29, pp. 252–259, 2004.

    Google Scholar 

  60. D. E. Johnston, M. F. Islam, A. G. Yodh, and A. Johnson, “Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide," Nature Mater., vol. 4, pp. 589–592, 2005.

    Google Scholar 

  61. M. A. Meitl, Y. X. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, and J. A. Rogers, “Solution casting and transfer printing single-walled carbon nanotube films," Nano Lett., vol. 4, pp. 1643–1647, 2004.

    Google Scholar 

  62. J. U. Park, M. A. Meitl, S. H. Hur, M. L. Usrey, M. S. Strano, P. J. A. Kenis, and J. A. Rogers, “In situ deposition and patterning of single-walled carbon nanotubes by Laminar flow and controlled flocculation in microfluidic channels," Angew. Chem.-Int. Edit., vol. 45, pp. 581–585, 2006.

    Google Scholar 

  63. Y. X. Zhou, L. B. Hu, and G. Grüner, “A method of printing carbon nanotube thin films," Appl. Phys. Lett., vol. 88, p. 123109, 2006.

    Google Scholar 

  64. Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures," Chem. Rev., vol. 99, pp. 1823–1848, 1999.

    Google Scholar 

  65. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls," Nature, vol. 363, pp. 605–607, 1993.

    Google Scholar 

  66. H. J. Dai, “Nanotube growth and characterization," in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Eds. Berlin Heidelberg: Springer-Verlag, 2001, pp. 29–53.

    Google Scholar 

  67. H. J. Dai, J. Kong, C. W. Zhou, N. Franklin, T. Tombler, A. Cassell, S. S. Fan, and M. Chapline, “Controlled chemical routes to nanotube architectures, physics, and devices," J. Phys. Chem. B, vol. 103, pp. 11246–11255, 1999.

    Google Scholar 

  68. A. M. Cassell, J. A. Raymakers, J. Kong, and H. J. Dai, “Large scale CVD synthesis of single-walled carbon nanotubes," J. Phys. Chem. B, vol. 103, pp. 6484–6492, 1999.

    Google Scholar 

  69. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, and M. S. Dresselhaus, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons," Appl. Phys. Lett., vol. 72, pp. 3282–3284, 1998.

    Google Scholar 

  70. G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, Y. Nishi, J. Gibbons, and H. Dai, “Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen “ Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 16141–16145, 2005.

    Google Scholar 

  71. Y. Murakami, S. Chiashi, Y. Miyauchi, M. H. Hu, M. Ogura, T. Okubo, and S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy," Chem. Phys. Lett., vol. 385, pp. 298–303, 2004.

    Google Scholar 

  72. Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes," J. Phys. Chem. B, vol. 105, pp. 11424–11431, 2001.

    Google Scholar 

  73. M. Su, B. Zheng, and J. Liu, “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity," Chem. Phys. Lett., vol. 322, pp. 321–326, 2000.

    Google Scholar 

  74. C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, and J. A. Rogers, “Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors," Small, vol. 1, pp. 1110–1116, 2005.

    Google Scholar 

  75. C. Kocabas, M. Shim, and J. A. Rogers, “Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices," J. Am. Chem. Soc., vol. 128, pp. 4540–4541, 2006.

    Google Scholar 

  76. N. Saran, K. Parikh, D. S. Suh, E. Munoz, H. Kolla, and S. K. Manohar, “Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates," J. Am. Chem. Soc., vol. 126, pp. 4462–4463, 2004.

    Google Scholar 

  77. Q. Cao, S.-H. Hur, Z.-T. Zhu, Y. Sun, C. Wang, M. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics," Adv. Mater., vol. 18, pp. 304–309, 2006.

    Google Scholar 

  78. L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks," Nano Lett., vol. 4, pp. 2513–2517, 2004.

    Google Scholar 

  79. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes," Appl. Phys. Lett., vol. 88, 2006.

    Google Scholar 

  80. Q. Cao, Z. T. Zhu, M. G. Lemaitre, M. G. Xia, M. Shim, and J. A. Rogers, “Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes," Appl. Phys. Lett., vol. 88, p. 113511, 2006.

    Google Scholar 

  81. B. Vigolo, C. Coulon, M. Maugey, C. Zakri, and P. Poulin, “An experimental approach to the percolation of sticky nanotubes," Science, vol. 309, pp. 920–923, 2005.

    Google Scholar 

  82. S. Kumar, J. Y. Murthy, and M. A. Alam, “Percolating conduction in finite nanotube networks," Phys. Rev. Lett., vol. 95, p. 066802, 2005.

    Google Scholar 

  83. S. Kumar, N. Pimparkar, J. Y. Murthy, and M. A. Alam, “Theory of transfer characteristics of nanotube network transistors," Appl. Phys. Lett., vol. 88, p. 123505, 2006.

    Google Scholar 

  84. S. D. Li, Z. Yu, C. Rutherglen, and P. J. Burke, “Electrical properties of 0.4 cm long single-walled carbon nanotubes," Nano Lett., vol. 4, pp. 2003–2007, 2004.

    Google Scholar 

  85. V. Perebeinos, J. Tersoff, and P. Avouris, “Mobility in semiconducting carbon nanotubes at finite carrier density," Nano Lett., vol. 6, pp. 205–208, 2006.

    Google Scholar 

  86. J. Guo, S. Goasguen, M. Lundstrom, and S. Datta, “Metal-insulator-semiconductor electrostatics of carbon nanotubes," Appl. Phys. Lett., vol. 81, pp. 1486–1488, 2002.

    Google Scholar 

  87. E. S. Snow, P. M. Campbell, M. G. Ancona, and J. P. Novak, “High-mobility carbon-nanotube thin-film transistors on a polymeric substrate," Appl. Phys. Lett., vol. 86, p. 033105, 2005.

    Google Scholar 

  88. Q. Cao, M. G. Xia, C. Kocabas, M. Shim, S. V. Rotkin, and J. A. Rogers, “Gate Capacitance Coupling of SWNT Thin-film Transistor," Appl. Phys. Lett., vol. 90, p. 023516, 2007.

    Google Scholar 

  89. S. J. Kang, C. Kocabas, T. Ozel, M. Shim, S. V. Rotkin, and J. A. Rogers, “High performance electronics based on dense, perfectly aligned arrays of single walled carbon nanotubes," Nat. Nanotech. vol 2, pp. 230–236, 2007.

    Google Scholar 

  90. K. Balasubramanian, R. Sordan, M. Burghard, and K. Kern, “A selective electrochemical approach to carbon nanotube field-effect transistors," Nano. Lett., vol. 4, pp. 827–830, 2004.

    Google Scholar 

  91. K. Balasubramanian, M. Friedrich, C. Jiang, Y. Fan, A. Mews, M. Burghard, and K. Kern, “Electrical transport and confocal raman studies of electrochemically modified individual carbon nanotubes," Adv. Mater., vol. 15, pp. 1515–1518, 2003.

    Google Scholar 

  92. M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, “Electronic structure control of single-walled carbon nanotube functionalization," Science, vol. 301, pp. 1519–1522, 2003.

    Google Scholar 

  93. C. A. Dyke, M. P. Stewart, F. Maya, and J. M. Tour, “Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications," Synlett, pp. 155–160, 2004.

    Google Scholar 

  94. C. Wang, Q. Cao, T. Ozel, A. Gaur, J. A. Rogers, and M. Shim, “Electronically selective chemical functionalization of carbon nanotubes: correlation between raman spectral and electrical responses," J. Am. Chem. Soc., vol. 127, pp. 11460–11468, 2005.

    Google Scholar 

  95. A. Kukovecz, C. Kramberger, V. Georgakilas, M. Prato, and H. Kuzmany, “A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process," Eur. Phys. J. B, vol. 28, pp. 223–230, 2002.

    Google Scholar 

  96. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects," Phys. Rev. Lett., vol. 93, p. 147406, 2004.

    Google Scholar 

  97. M. S. Strano, “Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy," J. Am. Chem. Soc., vol. 125, pp. 16148–16153, 2003.

    Google Scholar 

  98. J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, “Nanotube molecular wires as chemical sensors," Science, vol. 287, pp. 622–625, 2000.

    Google Scholar 

  99. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, vol. 287, pp. 1801–1804, 2000.

    Google Scholar 

  100. V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, “Controlling doping and carrier injection in carbon nanotube transistors," Appl. Phys. Lett., vol. 80, pp. 2773–2775, 2002.

    Google Scholar 

  101. J. Kong, C. W. Zhou, E. Yenilmez, and H. J. Dai, “Alkaline metal-doped n-type semiconducting nanotubes as quantum dots," Appl. Phys. Lett., vol. 77, pp. 3977–3979, 2000.

    Google Scholar 

  102. A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon, and H. J. Dai, “High performance n-type carbon nanotube field-effect transistors with chemically doped contacts," Nano Lett., vol. 5, pp. 345–348, 2005.

    Google Scholar 

  103. B. Yakobson and P. Avouris, “Mechanical properties of carbon nanotubes," Topics Appl. Phys., vol. 80, pp. 287–327, 2001.

    Google Scholar 

  104. S.-H. Hur, O. O. Park, and J. A. Rogers, “Extreme bendability in thin film transistors that use carbon nanotubes transferred from high temperature growth substrates," Appl. Phys. Lett., vol. 86, p. 243502, 2005.

    Google Scholar 

  105. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube," Nature, vol. 393, pp. 49–52, 1998.

    Google Scholar 

  106. J. U. Lee, “Photovoltaic effect in ideal carbon nanotube diodes," Appl. Phys. Lett., vol. 87, p. 073101, 2005.

    Google Scholar 

  107. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits with carbon nanotube transistors," Science, vol. 294, pp. 1317–1320, 2001.

    Google Scholar 

  108. A. Javey, Q. Wang, A. Ural, Y. M. Li, and H. J. Dai, “Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators," Nano Lett., vol. 2, pp. 929–932, 2002.

    Google Scholar 

  109. Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon, and P. Avouris, “An integrated logic circuit assembled on a single carbon nanotube," Science, vol. 311, pp. 1735–1735, 2006.

    Google Scholar 

  110. N. P. Armitage, J. C. P. Gabriel, and G. Gruner, “Quasi-Langmuir-Blodgett thin film deposition of carbon nanotubes," J. App. Phys, vol. 95, pp. 3228–3230, 2004.

    Google Scholar 

  111. M. D. Lay, J. P. Novak, and E. S. Snow, “Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes," Nano Lett., vol. 4, pp. 603–606, 2004.

    Google Scholar 

  112. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater., vol. 5, pp. 33–38, 2006.

    Google Scholar 

  113. S. J. Kang, C. Kocabas, H.-S. Kim, Q. Cao, M. A. Meitl, D.-Y. Khang and J. A. Rogers, “Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications,” Nano Lett., vol.7, pp. 3343–3348, 2007.

    Google Scholar 

  114. S. H. Hur, M. H. Yoon, A. Gaur, M. Shim, A. Facchetti, T. J. Marks, and J. A. Rogers, “Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates," J. Am. Chem. Soc., vol. 127, pp. 13808–13809, 2005.

    Google Scholar 

  115. M. H. Yoon, A. Facchetti, and T. J. Marks, “Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors," Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 4678–4682, 2005.

    Google Scholar 

  116. Q. Cao, M.-G. Xia, M. Shim, and J. A. Rogers, “Bilayer organic/inorganic gate dielectrics for high performance, low-voltage single walled carbon nanotube thin-film transistors, complementary logic gates and p-n diodes on plastic substrates," Adv. Func. Mater., vol. 16, pp. 2355–2362, 2006.

    Google Scholar 

  117. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, “Carbon nanotubes as Schottky barrier transistors," Phys. Rev. Lett., vol. 89, p. 106801, 2002.

    Google Scholar 

  118. J. Appenzeller, Y. M. Lin, J. Knoch, Z. H. Chen, and P. Avouris, “Comparing carbon nanotube transistors – The ideal choice: A novel tunneling device design," IEEE Trans. Electron Devices, vol. 52, pp. 2568–2576, 2005.

    Google Scholar 

  119. Z. H. Chen, J. Appenzeller, J. Knoch, Y. M. Lin, and P. Avouris, “The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors," Nano Lett., vol. 5, pp. 1497–1502, 2005.

    Google Scholar 

  120. Y. Nosho, Y. Ohno, S. Kishimoto, and T. Mizutani, “n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes," Appl. Phys. Lett., vol. 86, 2005.

    Google Scholar 

  121. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals," Science, vol. 303, pp. 1644–1646, 2004.

    Google Scholar 

  122. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor," Science, vol. 300, pp. 1269–1272, 2003.

    Google Scholar 

  123. E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature," Adv. Mater., vol. 17, pp. 590–594, 2005.

    Google Scholar 

  124. M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, “Crossed nanotube junctions," Science, vol. 288, pp. 494–497, 2000.

    Google Scholar 

  125. A. A. Odintsov, “Schottky barriers in carbon nanotube heterojunctions," Phys. Rev. Lett., vol. 85, pp. 150–153, 2000.

    Google Scholar 

  126. J.-H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneously integrated, three dimensional electronics by use of printed semiconductor nanomaterials, “ Science, vol. 314, pp. 1754–1757, 2006.

    Google Scholar 

  127. D. A. Heller, R. M. Mayrhofer, S. Baik, Y. V. Grinkova, M. L. Usrey, and M. S. Strano, “Concomitant length and diameter separation of single-walled carbon nanotubes," J. Am. Chem. Soc., vol. 126, pp. 14567–14573, 2004.

    Google Scholar 

  128. D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos, “A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes," J. Am. Chem. Soc., vol. 125, pp. 3370–3375, 2003.

    Google Scholar 

  129. Z. Chen, X. Du, M.-H. Du, C. D. Rancken, H.-P. Cheng, and A. G. Rinzler, “Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes," Nano Lett., vol. 3, pp. 1245–1249, 2003.

    Google Scholar 

  130. R. Krupke, F. Hennrich, H. v. Lohneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes," Science, vol. 301, pp. 344–347, 2003.

    Google Scholar 

  131. S. R. Lustig, A. Jagota, C. Khripin, and M. Zheng, “Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids," J. Phys. Chem. B, vol. 109, pp. 2559–2566, 2005.

    Google Scholar 

  132. Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, and H. Dai, “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method," Nano. Lett., vol. 4, pp. 317–321, 2004.

    Google Scholar 

  133. S. Auvray, J. Borghetti, M. F. Goffman, A. Filoramo, V. Derycke, J. P. Bourgoin, and O. Jost, “Carbon nanotube transistor optimization by chemical control of the nanotube-metal interface," Appl. Phys. Lett., vol. 84, pp. 5106–5108, 2004.

    Google Scholar 

  134. J. Chen, C. Klinke, A. Afzali, and P. Avouris, “Self-aligned carbon nanotube transistors with charge transfer doping," Appl. Phys. Lett., vol. 86, p. 123108, 2005.

    Google Scholar 

  135. P. J. Burke, “AC performance of nanoelectronics: towards a ballistic THz nanotube transistor," Solid-State Electron., vol. 48, pp. 1981–1986, 2004.

    Google Scholar 

Download references

Acknowledgements

We thank T. Banks, K. Colravy and D. Sievers for help with the processing. This work was supported by DARPA-funded AFRL-managed Macroelectronics Program Contract FA8650-04-C-7101, the NSF through grant NIRT-0403489, the Frederick Seitz Materials Research Lab and the Center for Microanalysis of Materials in University of Illinois which is funded by U.S. Department of Energy through grant DEFG02-91-ER45439, the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems in University of Illinois which is funded by the NSF through grant DMI-0328162, and a graduate fellowship from the Fannie and John Hertz Foundation (M.A.M.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cao, Q., Kocabas, C., Meitl, M.A., Kang, S.J., Park, J.U., Rogers, J.A. (2009). Single–Walled Carbon Nanotubes for High Performance Thin Film Electronics. In: Kong, J., Javey, A. (eds) Carbon Nanotube Electronics. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69285-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69285-2_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36833-7

  • Online ISBN: 978-0-387-69285-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics