Skip to main content

Hydrogen Generation by Water Splitting

  • Chapter
Light, Water, Hydrogen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energy 26:185–190

    Google Scholar 

  • Sato S (1979) Thermochemical hydrogen production. In: Ohta T (ed) Solar hydrogen energy systems. Pergamon Press, New York

    Google Scholar 

  • Ihara S (1979) Direct thermal decomposition of water. In: Ohta T (ed) Solar hydrogen energy systems. Pergamon press, New York

    Google Scholar 

  • Casper MS (1978) Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques. Noyes Data Corporation, New Jersey, USA

    Google Scholar 

  • Kreuter W, Hofmann H (1998) Electrolysis: the important energy transformer in a world of sustainable energy. Int J Hydrogen Energy 23:661–666

    Google Scholar 

  • Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrogen Energy 30:809–819

    Google Scholar 

  • Divisek J (1990) Water electrolysis in a low and medium temperature regime. In: Wendt H (ed) Electrochemical hydrogen technologies - Electrochemical production and combustion of hydrogen. Elsevier, New York, pp 137–212

    Google Scholar 

  • Donitz W, Erdle E, Streicher R (1990) High temperature electrochemical technology for hydrogen production and power generation. In: Wendt H (ed.) Electrochemical hydrogen technologies - Electrochemical production and combustion of hydrogen. Elsevier, New York, pp 213–259

    Google Scholar 

  • Barbir F (2005) PEM electrolysis for production of hydrogen from renewable energy sources. Sol Energy 78:661–669

    Google Scholar 

  • JANAF (1971) Thermochemical tables QD511.D614

    Google Scholar 

  • Rossmeisl J, Logadottir A, Norskov JK (2005) Electrolysis of water on (oxidized) metal surface. Chem Phys 319:178–184

    Google Scholar 

  • Takahashi T (1979) Water electrolysis. In:Solar hydrogen energy systems. Ohta T (ed.) Pergamon Press, New York

    Google Scholar 

  • Burstein GT (2005) A hundred years of Tafel’s equation: 1905–2005. Corrosion Sci 47:2858–2870

    Google Scholar 

  • Esaki H, Nambu T, Morinaga M, Udaka M, Kawasaki K (1996) Development of low hydrogen overpotential electrodes utilizing metal ultra-fine particles. Int J Hydrogen Energy 21:877–881

    Google Scholar 

  • Nagai N, Takeuchi M, Kimura T, Oka T (2003) Existence of optimum space between electrodes on hydrogen production by water electrolysis. Int J Hydrogen Energy 28:35–41

    Google Scholar 

  • de Jonge RM, Barendrecht E, Janssen LJJ, van Stralen SJD (1982) Gas bubble behavior and electrolyte resistance during water electrolysis. Int J Hydrogen Energy 7:883–894

    Google Scholar 

  • Sillen CWMP, Barendrecht E, Janssen LJJ, van Stralen SJD (1982) Gas bubble behavior during electrolysis. Int J Hydrogen Energy 7:577–587

    Google Scholar 

  • Roy A, Watson S, Infield D (2006) Comparison of electrical energy efficiency of atmospheric and high-pressure electrolyzers, Int J Hydrogen Energy 31:1964–1979

    Google Scholar 

  • Dickson EM, Ryan, JW, Smulyan MH (1977) The hydrogen energy economy: a realistic appraisal of prospects and impacts. Praeger, New York, USA

    Google Scholar 

  • Ulleberg O (2003) Modeling of advanced alkaline electrolyzers: a system simulation approach. Int J Hydrogen Energy 28:21–33

    Google Scholar 

  • Wendt H, Imarisio G (1988) Nine years of research and development on advanced water electrolysis. A review of research program of the commission of the European communities. J Applied Electrochem 18:1–14

    Google Scholar 

  • Dutta S (1990) Technology assessment of advanced electrolytic hydrogen production. Int J Hydrogen Energy 15:379–386

    Google Scholar 

  • LeRoy RL (1983) Industrial water electrolysis: Present and future, Int J Hydrogen Energy. 8:401–417

    Google Scholar 

  • LeRoy RL, Bowen CT, LeRoy DJ (1980) The thermodynamics of aqueous water electrolysis. J Electrochem Soc 127:1954–1962

    Google Scholar 

  • Onda K, Kyakuno T, Hattori K, Ito K (2004) Prediction of production power for high-pressure hydrogen by highpressure water electrolysis. J Power Sources 132:64−70

    Google Scholar 

  • Chen L, Lasia A (1991) Study of the kinetics of hydrogen evolution reaction on nickel-zinc Alloy electrodes. J Electrochem Soc 138:3321–3328

    Google Scholar 

  • Rosalbino F, Maccio D, Angelini E, Saccone A, Delfino S (2005) Electrocatalytic properties of Fe-R (R=rare earth metal) crystalline alloys as hydrogen electrodes in alkaline water electrolysis. J Alloys Compd 403:275–282

    Google Scholar 

  • Bockris JOM (1956) Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J Chem Phys 24:817–827

    Google Scholar 

  • Chapman EA (1965) Production of hydrogen by electrolysis. Chem Process Eng 46:387–393

    Google Scholar 

  • Dutta S (1990) Technology assessment of advanced electrolytic hydrogen production. Int J Hydrogen Energy 15:379–386

    Google Scholar 

  • Yazici B, Tatli G, Galip H, Erbil M (1995) Investigation of suitable cathodes for the production of hydrogen gas by electrolysis. Int J Hydrogen Energy 20:957–965

    Google Scholar 

  • Suffredini HB, Cerne JL, Crnkovic FC, Machado SAS, Avaca LA (2000) Recent developments in electrode materials for water electrolysis. Int J Hydrogen Energy 25:415–423

    Google Scholar 

  • Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interface Sci 119:97–130

    Google Scholar 

  • Singh RN, Pandey JP, Anitha KL (1993) Preparation of electrodeposited thin films of Nickel-Iron alloys on mild steel for alkaline water electrolysis. Part I: Studies on oxygen evolution. Int J Hydrogen Energy 18:467–473

    Google Scholar 

  • Kaninski MPM, Stojic DLJ, Saponjic DP, Potkonjak NI, Miljanic SS (2006) Comparison of different electrode materials- Energy requirements in the electrolytic hydrogen evolution process. J Power Sources 157:758–764

    Google Scholar 

  • Hu W, Cao X, Wang F, Zhang Y (1997) Short Communication: a novel cathode for alkaline water electrolysis. Int J Hydrogen Energy 22:621–623

    Google Scholar 

  • Stojic DL, Maksic AD, Kaninski MPM, Cekic BD, Mijanic SS (2005) Improved energy efficiency of the electrolytic evolution of hydrogen - Comparison of conventional and advanced electrode materials. J Power Sources 145:278–281

    Google Scholar 

  • Raney M (1925), U.S. patent 1563787; (1927) 1628191; (1933) 1915473. From E. Endoh E et al. (1987) New Raney nickel electrode. Int. J. Hydrogen Energy 12:473–47939

    Google Scholar 

  • Singh SP, Singh RN, Poillearat G, Chartier P (1995) Physiochemical and electrochemical characterization of active films of LaNiO3 for use as anode in alkaline water electrolysis. Int J Hydrogen Energy 20:203–210

    Google Scholar 

  • Rosa VM, Santos MBF, da Silva EP (1995) New materials for water electrolysis diaphragms. Int J Hydrogen Energy 20:697–700

    Google Scholar 

  • http://americanhistory.si.edu/fuelcells/pem/pemmain.htm

    Google Scholar 

  • http://www.chemsoc.org/chembytes/ezine/2000/kingston _jun00. htm

    Google Scholar 

  • Han SD, Park KB, Rana R, Singh KC (2002) Developments of water electrolysis technology by solid polymer electrolyte. Ind J Chem 41A:245–253

    Google Scholar 

  • Hijikata T (2002) Research and development of international clean energy network using hydrogen energy (WE-NET). Int J Hydrogen Energy 27:115–129

    Google Scholar 

  • Paddison SJ (2003) Proton conduction mechanism at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Ann Rev Mater Res 33:289–319

    Google Scholar 

  • Rasten E, Hagen G, Tunold R (2003) Electrocatalysts in water electrolysis with solid polymer electrolyte. Electrochimica acta 48:3945–3952

    Google Scholar 

  • Linkous CA, Anderson HR, Kopitzke RW, Nelson GL (1998) Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures. Int J Hydrogen Energy 23:525–529

    Google Scholar 

  • Linkous CA (1993) Development of solid polymer electrolytes for water electrolysis at intermediate temperatures. Int J Hydrogen Energy 18:641–646

    Google Scholar 

  • Grigoriev SA, Porembsky VI, Fateev VN (2006) Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrogen Energy 31:171–175

    Google Scholar 

  • Millet P, Andolfatto F, Durand R (1996) Design and performance of a solid polymer electrolyte water electrolyzer. Int J Hydrogen Energy 21:87–93

    Google Scholar 

  • Herring JS, Brien JEO, Stoots CM, Hawkes GL, Hartvigsen JJ, Shagnam M (2007) Progress in high temperature electrolysis for hydrogen production using planar SOFC technology. Int J Hydrogen Energy 32:440–450

    Google Scholar 

  • Hino R, Haga K, Aita H, Sekita K (2004) R&D on hydrogen production by high temperature electrolysis of steam. Nucl Eng Des 233:363–375

    Google Scholar 

  • Dutta S, Morehouse JH, Khan JA (1977) Numerical analysis of laminar flow and heat transfer in a high temperature electrolyzer. Int J Hydrogen Energy 22:883–895

    Google Scholar 

  • Donitz W, Erdle E (1985) High temperature electrolysis of water vapor-status of development and perspectives for application. Int J Hydrogen Energy 10:291–295

    Google Scholar 

  • Yildiz B, Kazimi MS (2006) Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrogen Energy 31:77–92

    Google Scholar 

  • Kharton VV, Marques FMB, Atkinson A (2004) Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174:135–149

    Google Scholar 

  • Hong HS, Chae US, Choo ST, Lee KS (2006) Microstructure and electrical conductivity of Ni/YSZ and NiO/YSZ composites for high temperature electrolysis prepared by mechanical alloying. J Power Sources 149:84–89

    Google Scholar 

  • Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energy 31:939–944

    Google Scholar 

  • Liepa MA, Borhan A (1986) High-temperature steam electrolysis: Technical and economic evaluation of alternative process designs. Int J Hydrogen Energy 11:435

    Google Scholar 

  • Funk JE, Reinstrom RM (1966) Energy requirements in the production of hydrogen from water. Ind Eng Chem Process Des Dev 5:336–342

    Google Scholar 

  • Funk JE (1976) Thermochemical production of hydrogen via multistage water splitting processes, Int J Hydrogen Energy 1:33–43

    Google Scholar 

  • Engels H, Funk JE, Hesselmann K, Knoche KF (1987) Thermochemical Hydrogen-Production. Int J Hydrogen Energy 12:291–295

    Google Scholar 

  • Rosen MA (1996) Thermodynamic comparison of hydrogen production processes. Int J Hydrogen Energy 21:349–365

    Google Scholar 

  • Scott DS (2003) Exergy. Int J Hydrogen Energy 28:369–375

    Google Scholar 

  • Struck BD, Schutz GH, Van Velzen D, (1990) Cathodic hydrogen evolution in thermochemical-electrochemical hybrid cycles. In: electrochemical hydrogen technologies- Electrochemical production and combustion of hydrogen Wendt H (ed), Elsevier, New York, pp 213–259

    Google Scholar 

  • Schultz K, Herring S, Lewis M, Summers WA (2005) The hydrogen reaction. Nucl Eng Int 50:10–15

    Google Scholar 

  • Abanades S, Charvin P, Flamant G, Neveu P (2006) Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31:2805–2822

    Google Scholar 

  • Perkins C, Weimer AW (2004) Likely near-term solar-thermal water splitting technologies. Int J Hydrogen Energy 29:1587–1599

    Google Scholar 

  • Yildiz B Kazimi MS (2006) Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrogen Energy 31:77–92

    Google Scholar 

  • Kodama T (2003) High temperature solar chemistry for converting solar heat to chemical fuels. Prog Energy & Combust. Sci 29 567–597

    Google Scholar 

  • Steinfeld A (2005) Solar thermochemical production of hydrogen – a review. Sol Energy 78:603–615

    Google Scholar 

  • Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295

    Google Scholar 

  • Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Solar UT-3 thermochemical cycle for hydrogen production. Sol Energy 57:51–58

    Google Scholar 

  • Baykara SZ (2004) Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency. Int J Hydrogen Energy 29:1451–1458

    Google Scholar 

  • Baykara SZ (2004) Experimental solar water thermolysis. Int J Hydrogen Energy 29:1459–1469

    Google Scholar 

  • Lede J, Lapicque F, Villermaux J (1983) Production of hydrogen by direct thermal decomposition of water. Int J Hydrogen Energy 8:675–679

    Google Scholar 

  • Kogan A, Spiegler E, Wolfshtein M (2000) Direct solar thermal splitting of water and on-site separation of the products. III. Improvement of reactor efficiency by steam entrainment. Int J Hydrogen Energy 25:739–745

    Google Scholar 

  • Fletcher EA (2001) Solar thermal processing: A Review. J Solar Energy Eng 123:63–74

    Google Scholar 

  • Kogan A (1998) Direct thermal splitting of water and on-site separation of the products—II. Experimental feasibility study. Int J Hydrogen Energy 23:89–98

    Google Scholar 

  • Nakamura T (1977) Hydrogen production from water utilizing solar heat at high temperatures. Sol Energy 19:467–475

    Google Scholar 

  • Ross RT (1966) Thermodynamic limitations on the conversion of radiant energy into work. J Chem Phys 45:1–7

    Google Scholar 

  • Kogan A (1998) Direct thermal splitting of water and on-site separation of the products—II. Experimental feasibility study. Int J Hydrogen Energy 23:89–98

    Google Scholar 

  • Sturzenegger M, Ganz J, Nuesch P, Schelling T (1999) Solar hydrogen from a manganese oxide based thermochemical cycle. J PhyS. IV:JP 9:3–331

    Google Scholar 

  • Kaneko H, Gokon N, Hasegawa N, Tamaura Y (2005) Solar thermochemical process for hydrogen production using ferrites. Energy 30:2171–2178

    Google Scholar 

  • Kodama Y, Kondoh Y, Yamamoto R, Andou H, Satou N (2005) Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite. Sol Energy 78:623–631

    Google Scholar 

  • Alvani C, Ennas G, La Barbera A, Marongiu G, Padella F, Varsano F (2005) Synthesis and characterization of nanocrystalline MnFe2O4: advances in thermochemical water splitting. Int J Hydrogen Energy 30:1407–1411

    Google Scholar 

  • Kodoma T, Kondoh Y, Kiyama A, Shimizu K (2003) Hydrogen production by solar thermochemical water-splitting/methane-reforming process. International Solar Energy Conference pp 121–128

    Google Scholar 

  • Lede J, Ricart EE, Ferrer M (2001) Solar thermal splitting of zinc oxide: A review of some of the rate controlling factors. J Solar Energy Eng 123:91–97

    Google Scholar 

  • Agrafiotis C, Roeb M, Konstandopoulos AG, Nalbandian L, Zaspalis VT, Sattler C, Stobbe P, Steele AM (2005) Solar water splitting for hydrogen production with monolithic reactors. Sol Energy 79:409–421

    Google Scholar 

  • Wegner K, Ly HC, Weiss RJ, Pratsinis SE, Steinfeld A (2006) In situ formation and hydrolysis of Zn nanoparticles for H2 production by the 2-step ZnO/Zn water-splitting thermochemical cycle. Int J Hydrogen Energy 31:55–61

    Google Scholar 

  • Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrogen Energy 27:611–619

    Google Scholar 

  • Haueter P, Moeller S, Palumbo R, Steinfeld A (1999) The production of zinc by thermal dissociation of zinc oxide-solar chemical reactor design. Sol Energy 67:161–167

    Google Scholar 

  • Berman A, Epstein M (2000) The kinetics of hydrogen production in the oxidation of liquid zinc with water vapor. Int J Hydrogen Energy 25:957–967

    Google Scholar 

  • Perret R, Chen Y, Besenbruch G, Diver R, Weimer A, Lewandowski A, Miller E (2005) High-temperature thermochemical: solar hydrogen generation research. DOE Hydrogen Program Progress Report

    Google Scholar 

  • Yalcin S (1989) A review of nuclear hydrogen production. Int J Hydrogen Energy 14:551–561

    Google Scholar 

  • Huang CP, Raissi AT (2005) Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid. Sol Energy 78:632–646

    Google Scholar 

  • Beghi GE (1981) Review of thermochemical hydrogen production. Int J Hydrogen Energy 6:555–566

    Google Scholar 

  • Norman JH, Mysels KJ, Sharp R, Williamson D (1982) Studies of the sulfur-iodine thermochemical water-splitting cycle. Int J Hydrogen Energy 7:545–556

    Google Scholar 

  • Keefe DO, Allen C, Besenbruch G, Brown L, Norman J, Sharp R (1982) Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water splitting cycle. Int J Hydrogen Energy 7:381–392

    Google Scholar 

  • Kasahara S, Hwang GJ, Nakajima H, Choi HS, Onuki K, Nomura M (2003) Effects of chemical engineering parameters of the IS process on total thermal efficiency to produce hydrogen from water. J Chem Eng Jpn 36:887–899

    Google Scholar 

  • Onuki K, Inagaki Y, Hino R, Tachibana Y (2005) Research and development on nuclear hydrogen production using HTGR at JAERI. Prog Nucl Energy 47:496–503

    Google Scholar 

  • Kubo S, Kasahara S, Okuda H, Terada A, Tanaka N, Inaba Y, Ohashi H, Inagaki Y, Onuki K, Hino R (2004) A pilot test plan of the thermochemical water-splitting iodine-sulfur process. Nucl Eng Des 233:355–362

    Google Scholar 

  • Kubo S, Nakajima, Kasahara HS, Higashi S, Masaki T, Abe H, Onuki (2004) A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process. Nucl Eng Des 233:347–354

    Google Scholar 

  • Huang CP, Raissi AT (2005) Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid. Sol Energy 78:632–646

    Google Scholar 

  • Gorensek MB, Summers WA, Buckner MR (2004) Model-based evaluation of thermochemical nuclear hydrogen processes, Trans Am Nucl Soc 91:107–108

    Google Scholar 

  • Sakurai M, Miyake N, Tsutsumi A, Yoshida K (1996) Analysis of a reaction mechanism in the UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 21:871–875

    Google Scholar 

  • Sakurai M, Bilgen E, Tsutsumi A, Yoshida K (1996) Adiabatic UT-3 thermochemical process for hydrogen production. Int J Hydrogen Energy 21:865–870

    Google Scholar 

  • Teo ED, Brandon NP, Vos E, Kramer GJ (2005) A critical pathway energy efficiency analysis of the thermochemical UT-3 cycle, Int J Hydrogen Energy 30:559–564

    Google Scholar 

  • Lemort F, Lafon C, Dedryvere R, Gonbeau D (2006) Physicochemical and thermodynamic investigation of the UT-3 hydrogen production cycle: a new technological assessment. Int J Hydrogen Energy 31:906–918

    Google Scholar 

  • Tadokoro Y, Kajiyama T, Yamaguchi T, Sakai N, Kameyama H, Yoshida K (1997) Technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant. Int J Hydrogen Energy 22:49–56

    Google Scholar 

  • Lewis MA, Serban M, Basco JK (2004) A progress report on the chemistry of the low temperature Cu-Cl thermochemical cycle. Trans Am Nucl Soc 91:113–114

    Google Scholar 

  • Dokiya M, Kotera Y (1976) Hybrid cycle with electrolysis using Cu-Cl system. Int J Hydrogen Energy 1:117–121

    Google Scholar 

  • Deneuve F, Roncato JP (1981) Thermochemical or hybrid cycles of hydrogen production- technolo-echonomical comparison with water electrolysis. Int J Hydrogen Energy 6:9–23

    Google Scholar 

  • Beghi GE (1985) Development of thermochemical and hybrid processes for hydrogen production. Int J Hydrogen Energy 10:431–438

    Google Scholar 

  • Deneuve F, Roncato JP (1981) Thermochemical or hybrid cycles of hydrogen production- technolo-echonomical comparison with water electrolysis. Int J Hydrogen Energy 6:9–23

    Google Scholar 

  • Summers WA, Buckner MR (2005) Hybrid sulfur thermochemical process development, DOE Hydrogen Program Progress Report

    Google Scholar 

  • Carty R, Cox K, Funk J, Soliman M, Conger W (1977) Process sensitivity studies of the Westinghouse sulfur cycle for hydrogen generation, International journal of hydrogen energy 2:17–22

    Google Scholar 

  • Bilgen E (1988) Solar hydrogen production by hybrid thermochemical processes, Solar Energy 41:199–206

    Google Scholar 

  • Volkov AG, Volkova-Gugeshashvili MI, Brown-McGauley CL, Osei AJ (2007) Nanodevices in nature: electrochemical aspects. Electrochim Acta 52:2905–2912

    Google Scholar 

  • Volkov AG (1989) Oxygen evolution in the course of photosynthesis: molecular mechanisms. Bioelectrochem Bioenergetics 21:3–24

    Google Scholar 

  • Giardi MT, Pace E (2005) Photosynthetic proteins for technological applications. Trends Biotechnol 23:257–263

    Google Scholar 

  • Weaver PF, Lien S, Seibert M (1980) Photobiological production of hydrogen. Sol Energy 24:3–45

    Google Scholar 

  • Prince RC (1996) Photynthesis: the Z-scheme revised. TIBS:121–122

    Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    Google Scholar 

  • Bukhov NG (2004) Dynamic light regulation of photosynthesis (A review). Russ J Plant physiol 51:742–753

    Google Scholar 

  • Howell JM, Vieth WR (1982) Biophotolytic membranes: simplified kinetic model of photosynthetic electron transport, J Mol Catal 16:245–298

    Google Scholar 

  • Renger G (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism, Biochim Biophys Acta 1503:210–228

    Google Scholar 

  • Kraub N (2003) Mechanisms for photosystems I and II. Curr Op Chem Biol 7:540–550

    Google Scholar 

  • Fromme P, Jordan P, Kraub N (2001) β Structure of photosystem I. Biochim Biophys Acta 1507:5–31

    Google Scholar 

  • Fairclough WV, Forsyth A, Evans MCW, Rigby SEJ, Purton S, Heathcote P (2003) Bidirectional electron transfer in photosystem I: electron transfer on the PsaA side is not essential for phototrophic growth in Chlamydomonas. Biochim Biophys Acta 1606:43–55

    Google Scholar 

  • Setif P (2001) Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507:161–179

    Google Scholar 

  • Onda Y, Hase T (2004) FAD assembly and thylakoid membrane binding of ferredoxin: NADP+ oxidoreductase in chloroplasts. FEBS Lett 564:116–120

    Google Scholar 

  • Reeves SG, Hall DO (1978) Photophosphorylation in chlorplasts. Biochim Biophys Acta 463:275–297

    Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Google Scholar 

  • Griffin KL, Seemann JR (1996) Plants, CO2 and photosynthesis in the 21st century. Chem Biol 3:245–254

    Google Scholar 

  • Jackson DD, Ellms JW (1896) On odors and tastes of surface waters with special reference to Anabaena, a microscopial organism found in certain water supplies of Massachusetts, Report of the Massachusetts State Board Health 410–420

    Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 219–240

    Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies, Photochem Photobiol Sci 4:957–969

    Google Scholar 

  • Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O (2006) Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol 72:442–449

    Google Scholar 

  • Miura Y (1995) Hydrogen-Production by Biophotolysis Based on Microalgal Photosynthesis. Process Biochem 30:1–7

    Google Scholar 

  • Das D, Veziro TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Google Scholar 

  • Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2955–2982

    Google Scholar 

  • Adams MWW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145

    Google Scholar 

  • Adams MWW, Mortenson LE, Chen JS (1981) Hydrogenase, Biochim Biophys Acta 594:105–176

    Google Scholar 

  • Krasna AI (1979) Hydrogenase: properties and applications, Enzyme Microb. Technol. 1:165–172

    Google Scholar 

  • Darensbourg MY, Lyon EJ, Smee JJ (2000) The bio-organometallic chemistry of active site iron in hydrogenases. Coord Chem Rev 206–207:533–561

    Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    Google Scholar 

  • Mertens R, Liese A (2004) Biotechnological applications of hydrogenases, Curr Op Biotechnol 15:343–348

    Google Scholar 

  • Das D, Dutta T, Nath K, Kotay SM, Das AK, Veziroglu TN (2006) Role of Fe-hydrogenase in biological hydrogen production. Curr Sci 90:1627–1637

    Google Scholar 

  • Happe T, Hemeschemeier A, Winkler M, Kaminski A (2002) Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Sci 7:246–250

    Google Scholar 

  • Frey M (2002) Hydrogenases: Hydrogen-activating enzymes. Chem Biochem 3:153–160

    Google Scholar 

  • Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green algae Clamydomonas reinhardtii. Eur J Biochem 269:1022–1032

    Google Scholar 

  • Adams MWW, Stiefel EI (1998) Biological hydrogen production: Not so elementary, Science 282:1842–1843

    Google Scholar 

  • Thauer RK, Klein AR, Hartmann GC (1996) Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chem Rev 96:3031–3042

    Google Scholar 

  • Ma Y, Balbuena PB (2007) Density functional theory approach for improving the catalytic activity of a biomimetic model based on the Fe-only hydrogenase active site. J Electroanal Chem (in press)

    Google Scholar 

  • Nicolet Y, Lemon BJ, Fontecilla-Camps JC, Peters JW (2000) A novel FeS cluster in Fe-only hydrogenases. TIBS 25:138–143

    Google Scholar 

  • Appel J, Schulz R (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising. J Photochem Photobiol 47:1–11

    Google Scholar 

  • Bauwman E, Reedijk J (2005) Structural and functional models related to the nickel hydrogenases. Coord Chem Rev 249:1555–1581

    Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    Google Scholar 

  • Albracht SPJ (1994) Nickel hydrogenases: in search of the active site. Biochim Biophys Acta 1188:167–204

    Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66 (2002) 1–20

    Google Scholar 

  • Korbas M, Vogt S, Meyer-Klaucke W, Bill E, Lyon EJ, Thauer RK, Shima S (2006) The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. J Biol Chem 281:30804–30813

    Google Scholar 

  • Lyon EJ, Shima S, Burman G, Chowdhuri S, Batschauer A, Steinback K, Thauer RK (2004) UV-A/blue-light inactivation of the ‘metal-free’ hydrogenase (Hmd) from methanogenic archaea. Eur J Biochem 271:195–204

    Google Scholar 

  • Berkessel A, Thauer RK (1995) On the mechanism of catalysis by a metal-free hydrogenase from methanogenic archaea: enzymatic transformation of H2 without a metal and its analogy to the chemistry of alkanes in superacidic solution. Angew Chem Int Ed 34:2247

    Google Scholar 

  • Rees DC, Howard JB (2000) Nitrogenase: standing at the crossroads. Curr Op Chem Biol 4:559–566

    Google Scholar 

  • Asada Y Miyake J (1999) Photobiological hydrogen production. J Biosci Bioeng 88:1–6

    Google Scholar 

  • Peters JW, Szilagyi RK (2006) Exploring new frontiers of nitrogenase structure and mechanism, Curr Op Chem Biol 10:101–108

    Google Scholar 

  • Eady RR (2003) Current status of structure function relationships of vanadium nitrogenase, Coord Chem Rev 237:23–30

    Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12 (2000) 291–300

    Google Scholar 

  • Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27:1195–1208

    Google Scholar 

  • Prince RC, Kheshgi HD (2005) The photobiological production of hydrogen: Potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31

    Google Scholar 

  • Vijayaraghavan K, Soom MAM (2006) Trends in bio-hydrogen generation: A review, Environmental Sciences 3: 255–271

    Google Scholar 

  • Miura Y, Akano T, Fukatsu K, Miyasaka H, Mizoguchi T, Yagi K, Maeda I, Ikuta Y, Matsumoto H (1995) Hydrogen-Production by Photosynthetic Microorganisms. Energy Conv Manag 36:903–906

    Google Scholar 

  • Miura Y, Akano T, Fukatsu K, Miyasaka H, Mizoguchi T, Yagi K, Maeda I, Ikuta Y Matsumoto H. (1997) Stably sustained hydrogen production by biophotolysis in natural day/night cycle. Energy Conv Manag 38:S533-S537

    Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamental and limiting processes. Int J Hydrogen Energy 27:1185–1193

    Google Scholar 

  • Greenbaum E (1980) Simultaneous photoproduction of hydrogen and oxygen by photosynthesis. Biotechnol Bioeng Symp 10:1–13

    Google Scholar 

  • Benemann JR (1997) Feasibility analysis of photobiological hydrogen production. Int J Hydrogen Energy 22:979–987

    Google Scholar 

  • Zaborsky OR (1998) Biohydrogen, Plenum Press, New York

    Google Scholar 

  • Benemann JR, Miyamoto K, Hallenbeck PC (1980) Bioengineering aspects of biophysics. Enzyme Microb. Technol. 2:103–111

    Google Scholar 

  • Adams DG (2000) Heterocyst formation in cyanobacteria. Curr Op Microbiol 3:618–624

    Google Scholar 

  • Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen-starved cultures of Anabaena Cylindrica. Appl Environ Microbiol 33:123–131

    Google Scholar 

  • Benemann JR, Weare NM (1974) Hydrogen evolution by nitrogen-fixing Anabaena cylindrical cultures. Science 184:174–175

    Google Scholar 

  • Hansel A, Linblad P (1998) Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbiol Biotechnol 50:153–160

    Google Scholar 

  • Smith GD, Ewart GD, Tucker W (1992) Hydrogen-Production by Cyanobacteria. Int J Hydrogen Energy 17:695–698

    Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185

    Google Scholar 

  • Asada Y, Kawamura S (1986) Aerobic hydrogen accumulation by a nitrogen-fixing cyanobacterium. Anabaena sp. Appl Envrion Microbiol 51:1063–1066

    Google Scholar 

  • Benemann JR (1994) Photobiological Hydrogen Production. Intersociety Energy Conversion Engineering Conference Proceedings, pp. 1636–1640

    Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green souce of renewable H2. TIBTECH 18:506–511

    Google Scholar 

  • Melis A (2002) Green alga hydrogen production: progress, challenges and prospects Int J Hydrogen Energy 27:1217–1228

    Google Scholar 

  • Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygankov AA, Seibert M (2003) The dependence of algal H2 production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607:153–160

    Google Scholar 

  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 78:731–740

    Google Scholar 

  • Guan YF, Deng MC, Yu XJ, Zhang W (2004) Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J,19:69–73

    Google Scholar 

  • Greenbaum E (1998) Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys J 54:365–368

    Google Scholar 

  • Bergene T (1996)The efficiency and physical principles of photolysis of water by microalgae Int J Hydrogen Energy 21:89–194

    Google Scholar 

  • Hall DO (1978) Solar energy conversion through biology-could it be practical energy source? Fuel 57:322–333

    Google Scholar 

  • Herron HA, Mauzerall D (1972) The development of photosynthesis in a greening mutant of Chlorella and an analysis of the light saturation curve. Plant physiology 50:141–148

    Google Scholar 

  • Masukawa H, Mochimaru M, Sakurai H (2002) Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria. Int J Hydrogen Energy 27:1471–1474

    Google Scholar 

  • Markov SA, Thomas AD, Bazin MJ, Hall DO (1997) Photoproduction of hydrogen by cyanobacteria under partial vacuum in batch culture or in a photobioreactor. Int J Hydrogen Energy 22:521–524

    Google Scholar 

  • Modigell M, Holle N (1998) Reactor development for a biosolar hydrogen production process. Renewable Energy 14:421–426

    Google Scholar 

  • Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int J Hydrogen Energy 27:1331–1338

    Google Scholar 

  • Miyake J, Miyake M, Asada Y (1999) Biotechnological hydrogen production: research for efficient light energy conversion. J Biotechnol 70:89–101

    Google Scholar 

  • Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo JN, Domen K, Hosono H, Kawazoe H, Tanaka A (1998) Mechano-catalytic overall water splitting, Chem Commun 2185–2186

    Google Scholar 

  • Ikeda S, Takata T, Komoda M, Hara M, Kondo JN, Domen K, Tanaka A, Hosono H, Kawazoe H (1999) Mechano-catalysis-a novel method for overall water splitting. Phys Chem Chem Phys 1:4485–4491

    Google Scholar 

  • Takata T, Ikeda S, Tanaka A, Hara M, Kondo JN, Domen K (2000) Mechano-catalytic overall water splitting on some oxides (II). Appl Catal A: Gen 200:255–262

    Google Scholar 

  • Domen K, Ikeda S, Takata T, Tanaka A, Hara M, Kondo JN (2000) Mechano-catalytic overall water-splitting into hydrogen and oxygen on some metal oxides. Appl Energy 67:159–179

    Google Scholar 

  • Hitoki G, Takata T, Ikeda S, Hara M, Kondo JN, Kakihana M, Domen K (2001) Mechano-catalytic overall water splitting on some mixed oxides. Catal Today 63:175–181

    Google Scholar 

  • Hara M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo JN, Domen K (2000) Mechano-catalytic overall water splitting (II) nafion-deposited Cu2O. Appl Catal A: Gen 190:35–42

    Google Scholar 

  • Ross DS (2004) Comment on “A study of Mechano-Catalysis for overall water splitting”. J Phys Chem B 108:19076–19077

    Google Scholar 

  • (1998) Mechano-catalytic water splitting claimed, Chemical & Engineering News 76:36

    Google Scholar 

  • Hara M, Domen K (2004) Reply to “Comment on A study of mechano-catalysts for overall water splitting. J Phys Chem B 108:19078

    Google Scholar 

  • Ohta T (2000) Preliminary theory of mechano-catalytic water-splitting. Int J Hydrogen Energy 25:287–293

    Google Scholar 

  • Ohta T (2000) On the theory of mechano-catalytic water-splitting system. Int J Hydrogen Energy 25:911–917

    Google Scholar 

  • Ohta T (2000) Mechano-catalytic water-splitting. Appl Energy 67:181–193

    Google Scholar 

  • Ohta T (2000) Efficiency of mechano-catalytic water-splitting system. Int J Hydrogen Energy 25:1151–1156

    Google Scholar 

  • Ohta T (2001) A note on the gas-evolution of mechano-catalytic water splitting system. Int J Hydrogen Energy 26:401

    Google Scholar 

  • Suib SL, Brock SL, Marquez M, Luo J, Matsumoto H, Hayashi Y (1998) Efficient catalytic plasma activation of CO2, NO and H2O. J Phys Chem B 102:9661–9666

    Google Scholar 

  • Luo J, Suib SL, Hayashi Y, Matsumoto H (2000) Water splitting in low-temperature AC plasmas at atmospheric pressure. Res Chem Intermed 26:849–874

    Google Scholar 

  • Luo J, Suib SL, Hayashi Y, Matsumoto H (1999) Emission spectroscopic studies of plasma-induced NO decompostion and water spltting. J Phys Chem A 103 (1999) 6151–6161

    Google Scholar 

  • Givotov VK, Fridman AA, Krotov MF, Krasheninnikov EG, Patrushev BI, Rusanov VD, Sholin GV (1981) Plasmochemical methods of hydrogen production, Int J Hydrogen Energy 6:441–449

    Google Scholar 

  • Bockris JOM, Dandapani B, Cocke D, Ghoroghchian J (1985) On the splitting of water. Int J Hydrogen Energy 10:179–201

    Google Scholar 

  • Chen X, Suib SL, Hayashi Y, Matsumoto H (2001) H2O splitting in tubular PACT (Plasma and catalyst integrated technologies) reactors. J Catal 201:198–205

    Google Scholar 

  • Kabashima H, Einaga H, Futamura S (2003) Hydrogen evolution from water, methane and methanol with nonthermal plasma. IEEE Transactions on Industry Applications 39:340–345

    Google Scholar 

  • Chen X, Marquez M, Rozak J, Marun C, Luo J, Suib SL, Hayashi Y, Matsumoto H (1998) H2O splitting in tubular plasma reactors. J Catal 178:372–377

    Google Scholar 

  • Ghoroghchian J, Bockris JOM (1985) Use of a homopolar generator in hydrogen production from water. Int J Hydrogen Energy 10:101–112

    Google Scholar 

  • Harteck P, Dondes S (1956) Producing chemicals with reactor radiations. Nucleonics 14:22–25

    Google Scholar 

  • Daniels M, Wigg E (1966) Oxygen as a primary species in radiolysis of water. Science 153:1533–1534

    Google Scholar 

  • Wojcik DS, Buxton GV (2005) On the possible role of the reaction H•+H2O → H2+•OH in the radiolysis of water at high temperatures. Rad Phys Chem 74:210–219

    Google Scholar 

  • Sunaryo GR, Katsumura Y, Ishigure K (1995) Radiolysis of water at elevated temperatures-III. Simulation of radiolytic products at 25 and 250°C under the irradiation with γ rays and fast neutrons. Rad Phys Chem 45:703–714

    Google Scholar 

  • Gervais B, Beuve M, Olivera GH, Galassi ME (2006) Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis, Radiation Physics and Chemistry 75:493–513

    Google Scholar 

  • Katsumura Y, Sunaryo G, Hiroishi D, Ishiqure K (1998) Fast neutron radiolysis of water at elevated temperatures relevant to water chemistry. Prog Nucl Energy 32:113–121

    Google Scholar 

  • Cecal A, Goanta M, Palamaru M, Stoicescu T, Popa K, Paraschivescu A, Anita V (2001) Use of some oxides in radiolytical decomposition of water. Rad Phys Chem 62:333–336

    Google Scholar 

  • Sawasaki T, Tanabe T, Yoshida T, Ishida R (2003) Application of gamma radiolysis of water for H2 production. J Radioanal Nucl Chem 255:271–274

    Google Scholar 

  • Petrik NG, Alexandrov AB, Vall AI (2001) Interfacial energy transfer during gamma radiolysis of water on the surface of ZrO2 and some other oxides. J Phys Chem B 105:5935–5944

    Google Scholar 

  • Laverne JA (2005) H2 formation from the radiolysis of liquid water with zirconia, J Phys Chem B 109:5395–5397

    Google Scholar 

  • Yamamoto TA, Seino S, Katsura M, Okitsu K, Oshima R, Nagata Y (1999) Hydrogen gas evolution from alumina nanoparticles dispersed in water irradiated with gamma ray. Nanostructured Mater 12:1045

    Google Scholar 

  • Nakashima M, Masaki NM (1996) Radiolytic hydrogen gas formation from water adsorbed on type Y zeolytes. Rad Phys Chem 46:241–245

    Google Scholar 

  • LaVerne JA, Tandon L (2002) H2 produced in the radiolysis of water on CeO2 and ZrO2. J Phys Chem B 106:380–386

    Google Scholar 

  • Caer SL, Rotureau P, Brunet F, Charpentier T, Blain G, Renault JP, Mialocq JC (2005) Radiolysis of confined water: Hydrogen production at a high dose rate. Chem Phys Chem 6:2585-2596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grimes, C.A., Varghese, O.K., Ranjan, S. (2008). Hydrogen Generation by Water Splitting. In: Grimes, C.A., Varghese, O.K., Ranjan, S. (eds) Light, Water, Hydrogen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68238-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68238-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33198-0

  • Online ISBN: 978-0-387-68238-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics