Skip to main content

Prodrug Approaches to Enhancing the Oral Delivery of Poorly Permeable Drugs

  • Chapter
Prodrugs

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume V))

Abstract

It is appropriate that the improved oral delivery of problematic drugs via prodrugs is treated early in this book. This chapter provides the rationale for the use of prodrugs along with selective examples of prodrugs used to effect improved oral delivery of poorly permeable drugs. Oral drug delivery is the preferred route of dosing in the USA and much of the rest of the world. Marketing forces therefore dictate that every attempt be made to provide an oral form of a drug that shows promise. Major exceptions are drugs used to treat emergencies where fast-acting injectables or inhalables are desired or drugs used to treat cancer where traditionally injectables have been well accepted and many older anticancer drugs are irritating to the gastrointestinal tract (GIT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adibi SA. The Oligopeptide Transporter (Pept-1) in Human Intestine: Biology and Function. Gastroenterology 1997; 113:332–340

    PubMed  CAS  Google Scholar 

  • Amidon GL, Merfeld AE, and Dressman JB. Concentration and pH Dependency of alpha-Methyldopa Absorption in Rat Intestine. J Pharm Pharmacol 1986; 38:363–368

    PubMed  CAS  Google Scholar 

  • Artursson P, and Karlsson J. Correlation Between Oral drug Absorption in Humans and Apparent Drug Permeability Coefficients in Human Intestinal Epithelial (Caco-2) Cells. Biochem Biophys Res Commun 1991; 175:880–885

    PubMed  CAS  Google Scholar 

  • Artursson P, and Matsson P. Absorption Prediction. In: Borchardt RT, Kerns EH, Lipinski CA, Thakker DR, and Wang B. Pharmaceutical Profiling in Drug Discovery for Lead Selection. Arlington, VA AAPS Press; 2004:3–29

    Google Scholar 

  • Bai JP. pGlu-L-Dopa-Pro: A Tripeptide Prodrug Targeting the Intestinal Peptide Transporter for Absorption and Tissue Enzymes for Conversion. Pharm Res 1995; 12:1101–1104

    PubMed  CAS  Google Scholar 

  • Bai PF, Subramanian P, Mosberg HI, and Amidon GL. Structural Requirements for the Intestinal Mucosal-cell Peptide Transporter: the Need for N-Terminal alpha-Amino Group. Pharm Res 1991; 8:593–599

    PubMed  CAS  Google Scholar 

  • Bai JP, Hu M, Subramanian P, Mosberg HI, and Amidon GL. Utilization of Peptide Carrier System to Improve Intestinal Absorption: Targeting Prolidase as a Prodrug-converting Enzyme. J Pharm Sci 1992; 81:113–116

    PubMed  CAS  Google Scholar 

  • Baker H, Thomson AD, Frank O, and Leevy CM. Absorption and Passage of Fatand Water-soluble Thiamin Derivatives into Erythrocytes and Cerebrospinal Fluid of Man. Am J Clin Nutr 1974; 27:676–680

    PubMed  CAS  Google Scholar 

  • Baldwin SA, Mackey JR, Cass CE, and Young JD. Nucleoside Transporters: Molecular Biology and Implications for Therapeutic Development. Mol Med Today 1999; 5:216–224

    PubMed  CAS  Google Scholar 

  • Balimane P, and Sinko P. Effect of Ionization on the Variable Uptake of Valacyclovir via the Human Intestinal Peptide Transporter (hPepT1) in CHO Cells. Biopharm Drug Dispos 2000; 21:165–174

    PubMed  CAS  Google Scholar 

  • Balimane PV, Tamai I, Guo A, Nakanishi T, Kitada H, Leibach FH, Tsuji A, and Sinko PJ. Direct Evidence for Peptide Transporter (PepT1)-mediated Uptake of a Nonpeptide Prodrug, Valacyclovir. Biochem Biophys Res Commun 1998; 250:246–251

    PubMed  CAS  Google Scholar 

  • Bardana Jr EJ, and Montanaro A. Formaldehyde: An Analysis of Its Respiratory, Cutaneous, and Immunologic Effects. Ann Allergy 1991; 66:441–458

    PubMed  Google Scholar 

  • Beauchamp LM, and Krenitsky TA. Acyclovir Prodrugs: The Road to Valaciclovir. Drugs Fut 1993:18;619–628

    Google Scholar 

  • Beauchamp LM, Orr GF, de Miranda P, Burnette T, and Krenitsky TA. Amino Acid Ester Prodrugs of Acyclovir. Antiviral Chem Chemother 1992; 3:157–164

    CAS  Google Scholar 

  • Beaumont K, Webster R, Gardner I, and Dack K. Design of Ester Prodrugs to Enhance Oral Absorption of Poorly Permeable Compounds: Challenges to the Discovery Scientist. Curr Drug Metab 2003; 4:461–485

    PubMed  CAS  Google Scholar 

  • Bidanset DJ, Beadle JR, Wan WB, Hostetler KY, and Kern ER. Oral Activity of Ether Lipid Ester Prodrugs of Cidofovir Against Experimental Human Cytomegalovirus Infection. J Infect Dis 2004;190:499–503

    PubMed  CAS  Google Scholar 

  • Borchardt RT, and Wang B. Prodrug Strategies to Improve the Oral Absorption of Peptides and Peptide Mimetics. In: Park K, and Mrsny RJ (Eds.) Controlled Drug Delivery: Designing Technologies for the Future. ACS Symposium Series 752, American Chemical Society, Washington, DC. 2000: 36–45

    Google Scholar 

  • Borchardt RT, Kerns EH, Lipinski CA, Thakker DR, and Wang B. Pharmaceutical Profiling in Drug Discovery for Lead Selection. AAPS Press, Arlington, VA 2004; 1–90

    Google Scholar 

  • Brass EP. Pivalate-generating Prodrugs and Carnitine Homeostasis in Man. Pharmacol Rev 2002; 54:589–598

    PubMed  CAS  Google Scholar 

  • Brown F, Banken L, Saywell K, and Arum I. Pharmacokinetics of Valganciclovir and Aciclovir Following Multiple Oral Dosages of Valganciclovir in HIV-and CMV-Seropositive Volunteers. Clin Pharmacokinet 1999; 37:167–176

    PubMed  CAS  Google Scholar 

  • Bueno AB, Collado I, de Dios A, Dominguez C, Martin JA, Martin LM, Martinez-Grau MA, Montero C, Pedregal C, Catlow J, Coffey DS, Clay MP, Dantzig AH, Lindstrom T, Monn JA, Jiang H, Schoepp DD, Stratford RE, Tabas LB, Tizzano JP, Wright RA, and Herin MF. Dipeptides as Effective Prodrugs of the Unnatural Amino Acid (+)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY354740), a Selective Group II Metabotropic Glutamate Receptor Agonist. J Med Chem 2005; 48:5305–5320

    PubMed  CAS  Google Scholar 

  • Chanteux H, Van Bambeke F, Mingeot-Leclercq MP, and Tulkens PM. Accumulation and Oriented Transport of Ampicillin in Caco-2 Cells from its Pivaloyloxymethylester Prodrug, Pivampicillin. Antimicrob Agents Chemother 2005; 49:1279–1288

    PubMed  CAS  Google Scholar 

  • Conradi RA, Hilgers AR, Ho NFH, and Burton PS. The Influence of Peptide Structure on Transport across Caco2 Cells. II. Peptide Bond Modification which Results in Improved Permeability. Pharm Res 1992; 9:473–479

    Google Scholar 

  • Cullmann W. Clinical Pharmacokinetics of Oral Cephalosporins. Antibiot Chemother 1995; 47:72–109

    PubMed  CAS  Google Scholar 

  • Cundy KC, Branch R, Chernov-Rogan T, Dias T, Estrada T, Hold K, Koller K, Liu X, Mann A, Panuwat M, Raillard SP, Upadhyay S, Wu QQ, Xiang JN, Yan H, Zerangue N, Zhou CX, Barrett RW, and Gallop MA. XP13512 [(+/−)-1-([(alphaisobutanoyloxyethoxy) carbonyl]aminomethyl)-1-cyclohexane acetic acid], a Novel Gabapentin Prodrug: I. Design, Synthesis, Enzymatic Conversion to Gabapentin, and Transport by Intestinal Solute Transporters. J Pharmacol Exp Ther 2004a; 311:315–323

    PubMed  CAS  Google Scholar 

  • Cundy KC, Annamalai T, Bu L, De Vera J, Estrela J, Luo W, Shirsat P, Torneros A, Yao F, Zou J, Barrett RW, and Gallop MA. XP13512 [(+/−)-1-([(alphaisobutanoyloxyethoxy) carbonyl] aminomethyl)-1-cyclohexane acetic acid], a Novel Gabapentin Prodrug: II. Improved Oral Bioavailability, Dose Proportionality, and Colonic Absorption Compared with Gabapentin in Rats and Monkeys. J Pharmacol Exp Ther 2004b; 311:324–333

    PubMed  CAS  Google Scholar 

  • Dellamonica, P. Cefuroxime Axetil. Int J Antimicrob Agents 1994; 4:23–36, and references therein

    PubMed  CAS  Google Scholar 

  • de Vrueh RLA, Smith PL, and Lee C-P. Transport of L-Valine-Acyclovir Via the Oligopeptide Transporter in the Human Intestinal Cell Line, Caco-2. J Pharmacol Exp Ther 1998; 286:1166–1170

    PubMed  Google Scholar 

  • Enerson BE, and Drewes LR. Molecular Features, Regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 2003; 92:1531–1544

    PubMed  CAS  Google Scholar 

  • Erion MD, van Poelje PD, Mackenna DA, Colby TJ, Montag AC, Fujitaki JM, Linemeyer DL, and Bullough DA. Liver-targeted Drug Delivery Using HepDirect Prodrugs. J Pharmacol Exp Ther 2005; 312:554–560.

    PubMed  CAS  Google Scholar 

  • Ezra A, Hoffman A, Breuer E, Alferiev IS, Monkkonen J, El Hanany-Rozen N, Weiss G, Stepensky D, Gati I, Cohen H, Tormalehto S, Amidon GL, and Golomb G. A Peptide Prodrug Approach for Improving Bisphosphonate Oral Absorption. J Med Chem 2000; 43:3641–3652

    PubMed  CAS  Google Scholar 

  • Ferres H. Pro-Drugs of β-Lactam Antibiotics. Drugs of Today 1983; 19:499–538.

    CAS  Google Scholar 

  • Friedman DI, and Amidon GL. Passive and Carrier-mediated Intestinal Absorption Components of Two Angiotensin Converting Enzyme (ACE) Inhibitor Prodrugs in Rats: Enalapril and Fosinopril. Pharm Res 1989; 6:1043–1047

    PubMed  CAS  Google Scholar 

  • Fujiwara M. Allithiamine and its Properties. J Nutr Sci Vitaminol 1976; 22:57–62

    PubMed  Google Scholar 

  • Ganapathy V, Brandsch M, and Liebach FH. Intestinal Transporters of Amino Acids and Peptides. In: Johnson LR (Ed) Physiology of the Gastrointestinal Tract, 3rd Edition, New York: Raven Press; 1994. Chapter 52, 1773–1794

    Google Scholar 

  • Ganapathy ME, Huang W, Wang H, Ganapathy V, and Leibach FH. Valacyclovir: A Substrate for the Intestinal and Renal Peptide Transporters PEPT1 and PEPT2. Biochem Biophys Res Commun 1998; 246:470–475

    PubMed  CAS  Google Scholar 

  • Gibiansky E, Struys MM, Gibiansky L, Vanluchene AL, Vornov J, Mortier EP, Burak E, and Van Bortel L. AQUAVAN® Injection, a Water-soluble Prodrug of Propofol, as a Bolus Injection: A Phase I Dose-escalation Comparison with DIPRIVAN® (Part 1): Pharmacokinetics. Anesthesiology 2005; 103:718–729

    PubMed  CAS  Google Scholar 

  • Gill KS, and Wood MJ. The Clinical Pharmacokinetics of Famciclovir. Clin Pharmacokinet 1996; 31:1–8

    Article  PubMed  CAS  Google Scholar 

  • Godwin JT, Conradi RA, Burton PS, Mao B, and Vidmar TJ. Strategies Toward Predicting Peptide Cellular Permeability from Computed Molecular Descriptors. J Pept Res 1999:53;355–369

    Google Scholar 

  • Grappel SF, Giovenella AJ, and Nisbet LJ, Activity of a Peptidyl Prodrug, Alafosfalin, Against Anaerobic Bacteria. Antimicob Agents Chemother 1985; 27:961–963

    CAS  Google Scholar 

  • Guo A, Hu P, Balimane PV, Leibach FH, and Sinko PJ. Interactions of a Nonpeptidic Drug, Valacyclovir, with the Human Intestinal Peptide Transporter (hPEPT1) Expressed in a Mammalian Cell Line. J Pharmacol Exp Ther 1999; 289:448–454

    PubMed  CAS  Google Scholar 

  • Gustafsson D. Oral Direct Thrombin Inhibitors in Clinical Development. J Intern Med 2003; 254:322–334.

    PubMed  CAS  Google Scholar 

  • Gustafsson D, Nystrom J, Carlsson S, Bredberg U, Eriksson U, Gyzander E, Elg M, Antonsson T, Hoffmann K, Ungell A, Sorensen H, Nagard S, Abrahamsson A, and Bylund R. The Direct Thrombin Inhibitor Melagatran and Its Oral Prodrug H 376/95: Intestinal Absorption Properties, Biochemical and Pharmacodynamic Effects. Thromb Res 2001; 101:171–181.

    PubMed  CAS  Google Scholar 

  • Halestrap AP, and Price NT. The Proton-linked Monocarboxylate Transporter (MCT) Family: Structure, Function and Regulation. Biochem J 1999; 343:281–299

    PubMed  CAS  Google Scholar 

  • Han H, de Vrueh RL, Rhie JK, Covitz KM, Smith PL, Lee CP, Oh DM, Sadee W, and Amidon GL. 5′-Amino Acid Esters of Antiviral Nucleosides, Acyclovir, and AZT are Absorbed by the Intestinal PEPT1 Peptide Transporter. Pharm Res 1998; 15:1154–1159

    PubMed  CAS  Google Scholar 

  • Hartline CB, Gustin KM, Wan WB, Ciesla SL, Beadle JR, Hostetler KY, and Kern ER. Ether Lipid-ester Prodrugs of Acyclic Nucleoside Phosphonates: Activity Against Adenovirus Replication In Vitro. J Infect Dis 2005; 191:396–399

    PubMed  CAS  Google Scholar 

  • Ho HFH, Park JY, Morozowich W, and Higuchi WI. Physical Model Approach to the Design of Drugs with Improved Intestinal Absorption. In: Roche EB. Design of Biopharmaceutical Properties Through Prodrugs and Analogs. Washington, DC: American Pharmaceutical Association, 1977; 136–227

    Google Scholar 

  • Ho NF, Raub TR, Burton PS, Barsuhn CL, Adson A, Audus KL, and Borchardt RT. Quantitative Approaches to Delineate Transport Mechanisms in Cell Culture Monolayers. In: Himmelstein KJ, Amidon GL, and Lee PI. Transport Processes in Pharmaceutical Systems. New York: Marcel Dekker; 1999:219–316

    Google Scholar 

  • Hockman B, Yamazaki M, Ohe T and Lin JH. Evaluation of Drug Interactions with P-glycoproteinin Drug Discovery: In Vitro Assessment of the Potential for Drug-drug Interactions with P-glycoprotein. Curr Drug Metab 2002; 3:257–273

    Google Scholar 

  • Hoeksema H, Whitfield GB, and Rhuland LE. Effect of Selective Acylation on the Oral Absorption of a Nucleoside in Humans. Biochem Biophys Res Commun 1961:6:213–216

    PubMed  CAS  Google Scholar 

  • Horspool KR, and Lipinski CA. Enabling Strategies: Advancing New Drug Delivery Concepts to Gain the Lead. Drug Del Tech 2003; 3:34–46

    CAS  Google Scholar 

  • Hu M, and Borchardt RT. Mechanism of L-Alpha-methyldopa Transport Through a Monolayer of Polarized Human Intestinal Epithelial Cells (Caco-2). Pharm Res 1990;7:1313–1319

    PubMed  CAS  Google Scholar 

  • Hu M, Subramanian P, Mosberg HI, and Amidon GL. Use of the Peptide Carrier System to Improve the Intestinal Absorption of L-Alpha-methyldopa: Carrier Kinetics, Intestinal Permeabilities, and In Vitro Hydrolysis of Dipeptidyl Derivatives of L-Alpha-methyldopa. Pharm Res 1989; 6:66–70

    PubMed  CAS  Google Scholar 

  • Jarvest RL. Discovery and Characterization of Famcicolvir (Famvir), a Novel Antiherpesvirus Agent. Drugs Today 1994; 30:575–588

    CAS  Google Scholar 

  • Jarvest RL, Sutton, and Vere Hodge RA. Famciclovir. Discovery and Development of a Novel Antiherpesvirus Agent. Pharm Biotechnol 1998; 11:313–343

    Article  PubMed  CAS  Google Scholar 

  • Kansy M, Fischer H, Bendels S, Wagner B, Senner F, Parrilla I, and Micallef V. Physicochemical Methods for Estimating Permeability and related Properties. In: Borchardt RT, Kerns EH, Lipinski CA, Thakker DR, and Wang B. Pharmaceutical Profiling in Drug Discovery for Lead Selection. Arlington, VA: AAPS Press; 2004; 197–216

    Google Scholar 

  • Kawai C, Wakabayashi A, Matsumura T, and Yui Y. Reappearance of Beriberi Heart Disease in Japan. A Study of 23 Cases. Am J Med 1980; 69:383–386

    PubMed  CAS  Google Scholar 

  • Kearney BP, Flaherty JF, Shah J. Tenofovir Disoproxil Fumarate: Clinical Pharmacology and Pharmacokinetics. Clin Pharmacokinet 2004; 43:595–612

    PubMed  CAS  Google Scholar 

  • Krenitsky TA, Hall WW, de Miranda P, Beauchamp LM, Schaeffer HJ, and Whiteman PD. 6-Deoxyacyclovir: A Xanthine Oxidase-Activated Prodrug of Acyclovir. Proc Natl Acad Sci USA 1984; 81:3209–3213

    PubMed  CAS  Google Scholar 

  • Li W, Escarpe PA, Eisenberg EJ, Cundy KC, Sweet C, Jakeman KJ, Merson J, Lew W, Williams M, Zhang L, Kim CU, Bischofberger N, Chen MS, and Mendel DB. Identification of GS 4104 as an Orally Bioavailable Prodrug of the Influenza Virus Neuraminidase Inhibitor GS 4071. Antimicrob Agents Chemother 1998; 42:647–53

    Article  PubMed  CAS  Google Scholar 

  • Li YH, Tanno M, Itoh T, and Yamada H. Role of the Monocarboxylic Acid Transport System in the Intestinal Absorption of an Orally Active beta-Lactam Prodrug: Carindacillin as a Model. Int J Pharm 1999a; 191:151–159

    PubMed  CAS  Google Scholar 

  • Li YH, Ito K, Tsuda Y, Kohda R, Yamada H, and Itoh T. Mechanism of Intestinal Absorption of an Orally Active beta-Lactam Prodrug: Uptake and Transport of Carindacillin in Caco-2 Cells. J Pharmacol Exp Ther 1999b; 290:958–964

    PubMed  CAS  Google Scholar 

  • Liang R, Fei YJ, Prasad PD, Ramamoorthy S, Han H, Yang-Feng TL, Hediger MA, Ganapathy V, and Leibach FH. Human Intestinal H+/Peptide Cotransporter. J Biol Chem 1995; 270:6456–6463

    PubMed  CAS  Google Scholar 

  • Liederer BM, and Borchardt RT. Stability of Oxymethyl-modified Coumarinic Acid Cyclic Prodrugs of Diastereomeric Opioid Peptides in Biological Media from Various Animal Species Including Human. J Pharm Sci 2005; 94:2198–2206

    PubMed  CAS  Google Scholar 

  • Lin JH, and Yamazaki M. Clinical Relevance of P-Glycoprotein in Drug Therapy. Drug Met Rev 2003a; 35:417–454.

    CAS  Google Scholar 

  • Lin JH, and Yamazaki M. Role of P-Glycoprotein in Pharmacokinetics: Clinical Implications. Clin Pharmacokinet 2003b; 42:59–98.

    PubMed  CAS  Google Scholar 

  • Lipinski CA. Drug-Like Properties and the Causes of Poor Solubility and Poor Permeability. J Pharmacol Toxicol Meth 2000; 44:235–249.

    CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, and Feeney PJ. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv Drug Deliv Rev 1997; 23:3–25.

    CAS  Google Scholar 

  • Loew D. Pharmacokinetics of Thiamine Derivatives Especially of Benfotiamine. Int J Clin Pharmacol Ther 1996;34:47–50

    PubMed  CAS  Google Scholar 

  • Majumdar S, Duvvuri S, and Mitra AK. Membrane Transporter/receptor-targeted Prodrug Design: Strategies for Human and Veterinary Drug Development. Adv Drug Deliv Rev 2004; 56:1437–1452

    PubMed  CAS  Google Scholar 

  • Nielson NM, and Bundgaard H, Facile Plasma-catalyzed Degradation of Penicillin Alkyl Esters but with No Liberation of the Parent Penicillin. J Pharm Pharmacol 1988; 40:506–509

    Google Scholar 

  • Oh DM, Han HK, and Amidon GL. Drug Transport and Targeting. Intestinal Transport. Pharm Biotechnol 1999; 1:59–88

    Google Scholar 

  • Ouyang H, Vander Velde DG, Borchardt RT, and Siahaan TJ. Synthesis and Conformational Analysis of a Coumarinic Acid-based Cyclic Prodrug of an Opioid Peptide with Modified Sensitivity to Esterase-catalyzed Bioconversion. J Pept Res 2002a; 59:183–195

    PubMed  CAS  Google Scholar 

  • Ouyang H, Tang F, Siahaan TJ, and Borchardt RT. A Modified Coumarinic Acidbased Cyclic Prodrug of an Opioid peptide: Its Enzymatic and Chemical Stability and Cell Permeation Characteristics. Pharm Res 2002b; 19:794–801

    PubMed  CAS  Google Scholar 

  • Peyrottes S, Egron D, Lefebvre I, Gosselin G, Imbach JL, and Perigaud C. SATE Pronucleotide Approaches: an Overview. Mini Rev Med Chem 2004; 4:395–408

    PubMed  CAS  Google Scholar 

  • Polli JW, and Serabjit-Singh CJ. In Vitro Cell-based Assays for Estimating the Effects of Efflux Transporters on Cell Permeation. In: Borchardt RT, Kerns EH, Lipinski CA, Thakker DR, and Wang B. Pharmaceutical Profiling in Drug Discovery for Lead Selection. Arlington, VA: AAPS Press; 2004:235–256

    Google Scholar 

  • Price NT, Jackson VN, and Halestrap AP. Cloning and Sequencing of Four New Mammalian Monocarboxylate Transporter (MCT) Homologues Confirms the Existence of a Transporter Family with an Ancient Past. Biochem J 1998; 329:321–328

    PubMed  CAS  Google Scholar 

  • Pue MA, and Benet LZ. Pharmacokinetics of Famciclovir in Man. Antiviral Chem Chemother 1993; 4:47–55

    CAS  Google Scholar 

  • Pue MA, Pratt SK, Fairless AJ, Fowles S, Laroche J, Georgiou P, and Prince W. Linear Pharmacokinetics of Penciclovir Following Administration of Single Oral Doses of Famciclovir 125, 250, 500 and 750 mg to Healthy Volunteers. J Antimicrob Chemother. 1994; 33:119–127

    PubMed  CAS  Google Scholar 

  • Richter WF, Chong YH, and Stella VJ. On the Mechanism of Isomerization of Cephalosporin Esters. J Pharm Sci 1990; 79:185–186

    PubMed  CAS  Google Scholar 

  • Schoenmakers RG, Stehouwer MC, and Tukker JJ. Schoenmakers RG, Stehouwer MC, and Tukker JJ. Structure-transport Relationship for the Intestinal Small-peptide Carrier: is the Carbonyl Group of the Peptide Bond Relevant for Transport? Pharm Res 1999; 16:62–68

    PubMed  CAS  Google Scholar 

  • Shaw JP, Sueoko CM, Oliyai R, Lee WA, Arimilli MN, Kim CU, and Cundy KC. Metabolism and Pharmacokinetics of Novel Oral Prodrugs of 9-[(R)-2-(phosphonomethoxy)propyl] Adenine (PMPA) in Dogs. Pharm Res 1997; 14:1824–1829.

    PubMed  CAS  Google Scholar 

  • Shindo H, Miyakoski N, and Takahashi I. Studies on the Metabolism of the D-and L-Isomers of 3,4-Dihydroxyphenylalanine (DOPA). I. Autoradiographic Study on the Distribution of 14C-Labeled D-and L-DOPA and Dopamine after Intravenous Administration in Rats. Chem Pharm Bull 1971; 19:2490–2500

    PubMed  CAS  Google Scholar 

  • Shindo H, Komai T, and Kawai K. Studies on the Metabolism of the D-and L-Isomers of 3,4-Dihydroxyphenylalanine (DOPA). V. Mechanism of Intestinal Absorption of D-and L-DOPA-14C in Rats. Chem Pharm Bull 1973; 21:2031–2038

    PubMed  CAS  Google Scholar 

  • Shu C, Shen H, Hopfer U, and Smith DE. Mechanism of Intestinal Absorption and Renal Reabsorption of an Orally Active Ace Inhibitor: Uptake and Transport of Fosinopril in Cell Cultures. Drug Metab Dispos 2001; 29:1307–1315

    PubMed  CAS  Google Scholar 

  • Shubin H, Dumas K, and Sokmensuer A. Clinical and Laboratory Studies on a New Derivative of Oleandomycin. Antibiot Annu 1957–1958; 5:679–684

    PubMed  Google Scholar 

  • Sinko PJ, and Balimane PV. Carrier-mediated Intestinal Absorption of Valacyclovir, the L-Valyl Ester Prodrug of Acyclovir: 1. Interactions with Peptides, Organic Anions and Organic Cations in Rats. Biopharm Drug Dispos 1998; 19:209–217

    PubMed  CAS  Google Scholar 

  • Sinkula A. Application of the Pro-drug Approach to Antibiotics. In:, Higuchi T and Stella V. Pro-drugs as Novel Drug Delivery Systems. American Chemical Society, Washington DC: ACS Symposium Series # 14 1975:116–153

    Google Scholar 

  • Smith PL, Eddy EP, Lee C-P, and Wilson G. Exploitation of the Intestinal Oligopeptide Transporter to Enhance Drug Absorption. Drug Deliv 1993; 1:103–111

    CAS  Google Scholar 

  • Stoeckel K, Hofheinz W, Laneury JP, Duchene P, Shedlofsky S, and Blouin RA. Stability of Cephalosporin Prodrug Esters in Human Intestinal Juice: Implications for Oral Bioavailability. Antimicrob Agents Chemother 1998; 42:2602–2606

    PubMed  CAS  Google Scholar 

  • Sugawara M, Huang W, Fei YJ, Leibach FH, Ganapathy V, and Ganapathy ME. Transport of Valganciclovir, a Ganciclovir Prodrug, Via Peptide Transporters PEPT1 and PEPT2. J Pharm Sci 2000; 89:781–789

    PubMed  CAS  Google Scholar 

  • Swaan PW, Stehouwer MC, and Tukker JJ. Molecular Mechanism for the Relative Binding Affinity to the Intestinal Peptide Carrier. Comparison of Three ACE-inhibitors: Enalapril, Enalaprilat, and Lisinopril. Biochim Biophys Acta 1995; 1236:31–38

    PubMed  Google Scholar 

  • Tang F, and Borchardt RT. Characterization of the Efflux Transporter(s) Responsible for Restricting Intestinal Mucosa Permeation of an Acyloxyalkoxy-based Cyclic Prodrug of the Opioid Peptide DADLE. Pharm Res 2002a; 19:780–786

    PubMed  CAS  Google Scholar 

  • Tang F, and Borchardt RT. Characterization of the Efflux Transporter(s) Responsible for Restricting Intestinal Mucosa Permeation of the Coumarinic Acid-based Cyclic Prodrug of the Opioid Peptide DADLE. Pharm Res 2002b;19:787–793

    PubMed  CAS  Google Scholar 

  • Tanigawara Y, Tamaoka K, Nakagawa T, and Uno T. Absorption Kinetics of Carbenicillin Phenyl Sodium and Carbenicillin Indanyl Sodium in Man. Chem Pharm Bull (Tokyo) 1982; 30:2174–2180

    CAS  Google Scholar 

  • Thomson AD, and Leevy CM. Observations on the Mechanism of Thiamine Hydrochloride Absorption in Man. Clin Sci 1972; 43:153–163

    PubMed  CAS  Google Scholar 

  • Thomson AD, and Majumdar SK. The Influence of Ethanol on Intestinal Absorption and Utilization of Nutrients. Clin Gastroenterol 1981; 10:263–293

    PubMed  CAS  Google Scholar 

  • Thomson AD, Frank O, Baker H, and Leevy CM. Thiamine Propyl Disulfide: Absorption and Utilization. Ann Intern Med 1971; 74:529–534

    PubMed  CAS  Google Scholar 

  • Tsuji A. Tissue Selective Drug Delivery Utilizing Carrier-mediated Transport Systems. J Control Rel 1999; 62:239–244

    CAS  Google Scholar 

  • Tsuji A, and Tamai I. Carrier-mediated Intestinal Transport of Drugs. Pharm Res 1996; 13:963–977

    PubMed  CAS  Google Scholar 

  • Tsuji A, Tamai I, Nakanishi M, and Amidon GL. Mechanism of Absorption of the Dipeptide Alpha-methyldopa-phe in Intestinal Brush-border Membrane Vesicles. Pharm Res 1990; 7:308–309

    PubMed  CAS  Google Scholar 

  • Ulm EH. Enalaril Maleate (MK-421), a Potent Nonsulfhydryl Angiotensin-Converting Enzyme Inhibitor: Absorption, Disposition, and Metabolism in Man. Drug Metab Dispos 1983; 14:99–110

    CAS  Google Scholar 

  • Veber D, Johnson SR, Cheng HY, Smith BR, Wrad KW, and Kopple KD, Molecular Properties that Influence the Oral Bioavailability of Drug Candidates. J Med Chem 2002; 45:2615–2623.

    PubMed  CAS  Google Scholar 

  • Vepsalainen JJ. Vepsalainen JJ. Bisphosphonate Prodrugs Curr Med Chem 2002; 9:1201–1208

    PubMed  CAS  Google Scholar 

  • Vere Hodge RA, Sutton D, Boyd MR, Harnden MR, and Jarvest RL. Selection of An Oral Prodrug (BRL 42810; famciclovir) for the Antiherpesvirus Agent BRL 39123 [9-(4-Hydroxy-3-hydroxymethylbut-l-yl)guanine; Penciclovir]. Antimicrob Agents Chemother 1989; 33:1765–1773

    PubMed  CAS  Google Scholar 

  • von Daehne W, Godtfredsen WO, Roholt K, Tybring L. Pivampicillin, a New Orally Active Ampicillin Ester. Antimicrobial Agents Chemother 1970a; 10:431–437

    Google Scholar 

  • von Daehne W, Frederiksen E, Gundersen E, Lund F, Morch P, Petersen HJ, Roholt K, Tybring L, and Godtfredsen WO,. Acyloxymethyl Esters of Ampicillin. J Med Chem 1970b; 13:607–612

    PubMed  CAS  Google Scholar 

  • Wade DN, Mearrick PT, and Morris JL. Active Transport of L-Dopa in the Intestine. Nature 1973; 242:463–465

    PubMed  CAS  Google Scholar 

  • Weller S, Blum MR, Doucette M, Burnette T, Cederberg DM, de Miranda P, and Smiley ML. Pharmacokinetics of the Acyclovir Pro-drug Valaciclovir After Escalating Single-and Multiple-dose Administration to Normal Volunteers. Clin Pharmacol Ther 1993; 54:595–605

    Article  PubMed  CAS  Google Scholar 

  • Welch AD. Some Metabolic Approaches to Cancer Chemotherapy. Cancer Res 1961; 21:1475–1490

    PubMed  CAS  Google Scholar 

  • Wilson FA. Intestinal Transport of Bile Acids. Am J Physiol 1981; 241:G83–G92

    PubMed  CAS  Google Scholar 

  • Yang CY, Dantzig AH, and Pidgeon C. Intestinal Peptide Transport Systems and Oral Drug Availability. Pharm Res 1999; 16:1331–1343

    PubMed  CAS  Google Scholar 

  • Yang C, Tirucherai GS, and Mitra AK. Prodrug Based Optimal Delivery Via Membrane Transporter/Receptor. Exp Opin Biol Ther 2001; 1:159–175

    CAS  Google Scholar 

  • Yabuuchi H, Tamai I, Sai Y, and Tsuji A. Possible Role of Anion Exchanger AE2 as the Intestinal Monocarboxylic Acid/Anion Antiporter. Pharm Res 1998; 15:411–416

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Stella, V.J. (2007). Prodrug Approaches to Enhancing the Oral Delivery of Poorly Permeable Drugs. In: Stella, V.J., Borchardt, R.T., Hageman, M.J., Oliyai, R., Maag, H., Tilley, J.W. (eds) Prodrugs. Biotechnology: Pharmaceutical Aspects, vol V. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49785-3_2

Download citation

Publish with us

Policies and ethics