Skip to main content

Evanescent Waves as Nanoprobes for Surfaces and Interfaces: From Waveguide Technology to Sensor Application

  • Chapter
Frontiers in Surface Nanophotonics

Part of the book series: Optical Sciences ((SSOS,volume 133))

  • 839 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann-Schaefer, Lehrbuch der Experimentalphysik, Band III Optik, de Gruyter, Berlin (1978).

    Google Scholar 

  2. C. Gerthsen, H.O. Kneser, and H. Vogel, Physik, 13th edition, Springer-Verlag, Berlin (1977).

    Google Scholar 

  3. J.D. Jackson, Classical Electrodynamics, 3rd edition, Wiley, New York (1999).

    MATH  Google Scholar 

  4. M.J. Adams, An Introduction to Optical Waveguides, Wiley, New York (1981).

    Google Scholar 

  5. R.G. Hunsperger, Integrated Optics: Theory and Technology, 4th edition, Springer-Verlag, Berlin (1995).

    Book  Google Scholar 

  6. T. Tamir (Ed.), Integrated Optics, 2nd edition, Springer-Verlag, Berlin (1979).

    Google Scholar 

  7. A.W. Snyder and J.D. Love, Optical Waveguide Theory, Chapman & Hall, London (1983).

    Google Scholar 

  8. R. Syms and J. Cozens, Optical Guided Waves and Devices, McGraw–Hill, New York (1992).

    Google Scholar 

  9. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd edition, Academic Press, Boston (1991).

    Google Scholar 

  10. G.P. Agrawal, Applications of Nonlinear Fiber Optics, Academic Press, San Diego (2001).

    Google Scholar 

  11. C.D. Chaffee, Building the Global Fiber Optics Superhighway, Kluwer Academic/Plenum, New York (2001).

    Google Scholar 

  12. G.D. Cole, Computer Networking for Systems Programmers, Wiley, New York (1990).

    Google Scholar 

  13. R. Ulrich and R. Torge, Measurement of thin film parameters with a prism coupler, Appl. Opt. 12, 2901–2908 (1973).

    Article  ADS  Google Scholar 

  14. W. Karthe and R. Müller, Integrierte Optik, Akademische Verlagsgesellschaft Geest & Portig, Leipzig (1991).

    Google Scholar 

  15. T. Liu and R.J. Samuels, Physically corrected theoretical prism waveguide coupler model, J. Opt. Soc. Am. A 21, 1322–1333 (2004).

    Article  ADS  Google Scholar 

  16. M.A. Uddin, H.P. Chan, and C.K. Chow, Thermal and chemical stability of a spin-coated epoxy adhesive for the fabrication of a polymer optical waveguide, Chem. Mater. 16, 4806–4811 (2004).

    Article  Google Scholar 

  17. X. Zhang, H.J. Lu, A.M. Soutar, and X.T. Zeng, Thick UV-patternable hybrid sol-gel films prepared by spin coating, J. Mater. Chem. 14, 357–361 (2004).

    Article  Google Scholar 

  18. D.A. Chang-Yen and B.K. Gale, An integrated optical oxygen sensor fabricated using rapid-prototyping techniques, Lab on a Chip 3, 297–301 (2003).

    Article  Google Scholar 

  19. G.M. Wang, H. Ai, X. Liu, and F.G. Tao, A nonlinear optical waveguide made up of alternating NMOB/CdA multilayers, J. Opt. A Pure Appl. Opt. 4, 587–590 (2002).

    Article  ADS  Google Scholar 

  20. M. Yanagida, A. Takahara, and T. Kajiyama, Construction of defect-diminished fatty acid Langmuir-Blodgett film and its optical waveguide properties, Bull. Chem. Soc. Jpn. 72, 2795–2802 (1999).

    Article  Google Scholar 

  21. W. Hickel, G. Appel, D. Lupo, W. Prass, and U. Scheunemann, Langmuir-Blodgett multilayers from polymers for low-loss planar waveguides, Thin Solid Films 210, 182–184 (1992).

    Article  ADS  Google Scholar 

  22. C. Bosshard, M. Florsheimer, M. Kupfer, and P. Günter, Cerenkov-type phase-matched 2nd- harmonic generation in DCANP Langmuir-Blodgett-film waveguides, Opt. Commun. 85, 247–253 (1991).

    Article  ADS  Google Scholar 

  23. S. Mittler-Neher, A. Otomo, G.I. Stegeman, C. Y.-C. Lee, R. Mehta, A.K. Agrawal, and S.A. Jenekhe, Waveguiding in substrate and freestanding films of insoluble polymers, Appl. Phys. Lett. 62, 115–117 (1993).

    Article  ADS  Google Scholar 

  24. G. Ihlein, B. Menges, S. Mittler-Neher, J.A. Osaheni, and S.A. Jenekhe, Channel waveguides of insoluble conjugated polymers, Opt. Mater. 4, 685–689 (1995).

    Article  Google Scholar 

  25. C.C. Huang, D.W. Hewak, and J.V. Badding, Deposition and characterization of germanium sulphide glass planar waveguides, Opt. Express 12, 2501–2506 (2004).

    Article  ADS  Google Scholar 

  26. N.J. Goddard, K. Singh, J.P. Hulme, C. Malins, and R.J. Holmes, Internally-referenced resonant mirror devices for dispersion compensation in chemical sensing and biosensing applications, Sens. Actuat. A 100, 1–9 (2002).

    Article  Google Scholar 

  27. D.P. Bour, M. Kneissl, C.G. Van de Walle, G.A. Evans, L.T. Romano, J. Northrup, M. Teepe, R. Wood, T. Schmidt, S. Schoffberger, and N.M. Johnson, Design and performance of asymmetric waveguide nitride laser diodes, IEEE J. Quantum Electron. 36, 184–191 (2000).

    Article  ADS  Google Scholar 

  28. Q. Gao, M. Buda, H.H. Tan, and C. Jagadish, Room-temperature preperation of InGaAsN quantum dot lasers grown by MOCVD, Electrochem. Solid State Lett. 8, G57–G59 (2005).

    Article  Google Scholar 

  29. M. Born and E. Wolf, Principles of Optics, Pergamon Press, London (1970).

    Google Scholar 

  30. S.I. Najafi, Introduction to Glass Integrated Optics, Artech House, Boston (1992).

    Google Scholar 

  31. R.V. Ramaswamy and R. Srivastavam, Ion-exchanged glass waveguides — a review, J. Lightwave Technol. 6, 984–1002 (1988).

    Article  ADS  Google Scholar 

  32. P.D. Townsend, P.J. Chandler, and L. Zhang, Optical Effects of Ion Implantation, Cambridge University Press, Cambridge (1994).

    Book  Google Scholar 

  33. S. Mittler-Neher and H. Einsiedel, Photothermal beam deflection techniques: a useful tool for integrated optics, Proc. SPIE 2852, 248–257 (1996).

    Article  ADS  Google Scholar 

  34. S. Mittler-Neher, Linear optical characterization of nonlinear optical polymers for integrated optics, Macromol. Chem. Phys. 199, 513–523 (1998).

    Article  Google Scholar 

  35. H. Einsiedel, M. Kreiter, M. Leclerc, and S. Mittler-Neher, Photothermal beam deflection spectroscopy in the near IR on poly[3-alkylthiophene]s, Opt. Mater. 10, 61–68 (1998).

    Article  Google Scholar 

  36. G. Lenz and J. Salzman, Eigenmodes of multiwaveguide structures, J. Lightwave Technol. 8, 1803–1809 (1990).

    Article  ADS  Google Scholar 

  37. W. Lukos and K. Tiefenthaler, Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors, Sensors Actuat. 15, 273–284 (1988).

    Article  Google Scholar 

  38. K. Tiefenthaler and W. Lukosz, Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B 6, 209–220 (1989).

    Article  ADS  Google Scholar 

  39. P. Mohr, M. Holtzhauer, and G. Kaiser, Immunosorption Techniques: Fundamentals and Applications, Akademie-Verlag, Berlin (1992).

    Google Scholar 

  40. T. Cass and F.S. Ligler (Eds.), Immobilized Biomolecules in Analysis, Oxford University Press, Oxford (1998).

    Google Scholar 

  41. E.M. Blalock (Ed.), A Beginner’s Guide to Microarrays, Kluwer Academic, Boston (2003).

    Google Scholar 

  42. D. Wild (Ed.), The Immunoassay Handbook, 2nd edition, Nature Publishing Group, New York (2001).

    Google Scholar 

  43. A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic Press, Boston (1991).

    Google Scholar 

  44. A. Ulman, Formation and structure of self-assembled monolayers, Chem. Rev. 96, 1533–1554 (1996).

    Article  Google Scholar 

  45. A. Ulman, Organic Thin Films and Surfaces: Directions for the Nineties, Academic Press, San Diego (1995).

    Google Scholar 

  46. A. Ulman (Ed.), Characterization of Organic Thin Films, Butterworth-Heinemann, Boston (1995).

    Google Scholar 

  47. F. Schreiber, Structure and growth of self-assembling monolayers, Prog. Surf. Sci. 65, 151–256 (2000).

    Article  ADS  Google Scholar 

  48. M.C. Petty, Langmuir-Blodgett Films: An Introduction, Cambridge University Press; Cambridge (1996).

    Book  Google Scholar 

  49. M. Wilchek and E.A. Bayer, Avidin-Biotin Technology, Academic Press, San Diego (1990).

    Google Scholar 

  50. V.C. Yang and T. T. Ngo (Eds.), Biosensors and Their Applications, Kluwer Academic/Plenum, New York (2000).

    Google Scholar 

  51. D.Möbius and R. Miller (Eds.), Organized Monolayers and Assemblies: Structure, Processes, and Function, Elsevier, Boston (2002).

    Google Scholar 

  52. C.M. Niemeyer, Bioconjugation Protocols: Strategies and Methods, Humana Press, Totowa, NJ (2004).

    Book  Google Scholar 

  53. S. Busse, J. Käshammer, S. Krämer, and S. Mittler-Neher, Gold and thiol surface functionalized integrated optical Mach-Zehnder interferometer for sensing purposes, Sens. Actuat. B 60, 148–154 (1999).

    Article  Google Scholar 

  54. Z.-M. Qi, N. Matsuda, T. Yoshida, A. Takatsu, and K. Kato, Colloidal gold submonolayer- coated thin-film glass plates for waveguide-coupled surface plasmon resonance sensors, Appl. Opt. 42, 4522–4528 (2003).

    Article  ADS  Google Scholar 

  55. N.J. Brewer and G.L. Leggett, Chemical force microscopy of mixed self-assembled monolayers of alkanethiols on gold: Evidence for phase separation, Langmiur 20, 4109–4115 (2004).

    Article  Google Scholar 

  56. F.Q. Fan, C. Maldarelli, and A. Couzis, Fabrication of surfaces with nanoislands of chemical functionality by the phase separation of self-assembling monolayers on silicon, Langmuir 19, 3254–3265 (2003).

    Article  Google Scholar 

  57. K. Aoki, Theory of phase separation of binary self-assembled films, J. Electroanal. Chem. 513, 1–7 (2001).

    Article  Google Scholar 

  58. J. Spinke, M. Liley, F.-J. Schmitt, H.-J. Guder, L. Angermaier, and W. Knoll, Molecular recognition at self-assembled monolayers: Optimization of surface functionalization, J. Chem. Phys. 99, 7012–7019 (1993).

    Article  ADS  Google Scholar 

  59. J. Spinke, M. Liley, H.-J. Guder, L. Angermaier, and W. Knoll, Molecular recognition at self-assembled monolayers: the construction of multicomponent multilayers, Langmuir 9, 1821–1825 (1993).

    Article  Google Scholar 

  60. M. Weisser, G. Nelles, G. Wenz, and S. Mittler-Neher, Guest–host interaction with immobilized cyclodextrins, Sens. Actuat. B 38–39, 58–67 (1997).

    Article  Google Scholar 

  61. M. Weisser, J. Käshammer, J. Matsumoto, F. Nakamura, K. Ijiro, M. Shimomura, and S. Mittler-Neher, Adenin–uridin base pairing at the water-solid-interface, J. Am. Chem. Soc. 122, 87–95 (2000).

    Article  Google Scholar 

  62. G. Tovar, L. Angermaier, P. Sluka, H.G. Batz, and W. Knoll, Molecular recognition at biotin-functionalized oxidic surfaces: Biofunctional self-assembly of proteins, Abstr. Pap. Am. Chem. Soc. 212, 12 (1996) Part 1.

    Google Scholar 

  63. M. Weisser, G. Tovar, S. Mittler-Neher, W. Knoll, F. Brosinger, H. Freimuth, M. Lacher, and W. Ehrfeld, Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer, Biosens. Bioelectron. 14, 405–411 (1999).

    Article  Google Scholar 

  64. A.L. Lehninger, Principles of Biochemistry, Worth Publishers, New York (1982).

    Google Scholar 

  65. D.A. Metzler, Biochemistry: The Chemical Reactions of Living Cells, Volume 1, 2nd edition, Harcourt Academic Press, San Diego (2001).

    Google Scholar 

  66. G. Stengel, F. Höök, and W. Knoll, Viscoelastic modeling of template-directed DNA synthesis, Anal. Chem. 77 (11)3709–3714(2005).

    Article  Google Scholar 

  67. G. Stengel and W. Knoll, Surface plasmon field-enhanced fluorescence spectroscopy studies of primer extension of surface-bound oligonucleotides, Nucleic Acids Res. 33 (7)E69 (2005).

    Article  Google Scholar 

  68. V. Ruddy, Nonlinearity of absorbency with sample concentration and path-length in evanescent wave spectroscopy using optical fiber sensors, Opt. Eng. 33, 3891–3894 (1994).

    Article  ADS  Google Scholar 

  69. K. Kato, A. Takatsu, N. Matsuda, R. Azumi, and M. Matsumoto, A slab waveguide absorption spectroscopy of Langmuir-Blodgett films with a white light excitation source, Chem. Lett. 6, 437–438 (1995).

    Article  Google Scholar 

  70. H. Kawai, K. Nakano, and T. Nagamura, White light optical waveguide detection of transient absorption spectra in ultrathin organic films upon pulsed laser excitation, Chem. Lett. 12, 1300–1301 (2001).

    Article  Google Scholar 

  71. J.H. Santos, N. Matsuda, Z.M. Qi, A. Takatsu, and K. Kato, Effect of surface hydrophilicity and solution chemistry on the adsorption behaviour of cytochrome c in quartz studied using slab optical waveguide spectroscopy, IEEE Trans. Electron. E85-C, 1275–1281 (2002).

    Google Scholar 

  72. J.T. Bradshaw, S.B. Mendes and S.S. Saavedra, A simplified broadband coupling approach applied to chemically robust sold-gel, planar integrated optical waveguides, Anal. Chem. 74, 1751–1759 (2002).

    Article  Google Scholar 

  73. F.T. Bradshaw, S.B. Mendes, N. Armstrong, and S.S. Saavedra, Broadband coupling into a single-mode, electroactive integrated optical waveguide for spectroelectrochemical analysis of surface-confined redox couples, Anal. Chem. 75, 1080–1088 (2003).

    Article  Google Scholar 

  74. F. Thoma, U. Langbein, and S. Mittler-Neher, Waveguide scattering microscopy, Opt. Commun. 134, 16–20 (1997).

    Article  ADS  Google Scholar 

  75. F. Thoma, J. Armitage, H. Trembley, B. Menges, U. Langbein, and S. Mittler-Neher, Waveguide scattering microscopy in air and water, Proc. SPIE 3414, 242–249 (1998).

    Article  ADS  Google Scholar 

  76. W. Knoll, W. Hickel, M. Sawodny, and J. Stumpe, Polymer interface and ultrathin films characterization by optical evanescent wave techniques, Makromol. Chem. Makromol. Symp. 48, 363–379 (1991).

    Article  Google Scholar 

  77. W. Knoll, W. Hickel, M. Sawodny, J. Stumpe, and H. Knobloch, Novel optical techniques for the analysis of polymer surfaces and thin films, Fresenius J. Anal. Chem. 341, 272–278 (1991).

    Article  Google Scholar 

  78. E.F. Aust and W. Knoll, Electrooptical waveguide microscopy, J. Appl. Phys. 73, 2705–2708 (1993).

    Article  ADS  Google Scholar 

  79. M. Bastmeyer, H.B. Deising, and C. Bechinger, Force exertion in fungal infection, Annu. Rev. Biophys. Biomol. Struct. 31, 321–341 (2002).

    Article  Google Scholar 

  80. X.F. Wang and U.J. Krull, Synthesis and fluorescence studies of thiazole orange tethered onto oligonucleotide: Development of a self-contained DNA biosensor on a fiber optic surface, Bioorg. Med. Chem. Lett. 15, 1725–1729 (2005).

    Article  Google Scholar 

  81. R.A. Yotter, L.A. Lee, and D.M. Wilson, Sensor technologies for monitoring metabolic activity in single cells — Part I: Optical methods, IEEE Sens. J. 4, 395–411 (2004).

    Article  Google Scholar 

  82. T.J. Pfefer, L.S. Matchette, A.M. Ross, and M.N. Ediger, Selective detection of fluorophore layers in turbid media: The role of fiber-optic probe design, Opt. Lett. 28, 120–122 (2003).

    Article  ADS  Google Scholar 

  83. M. Weisser, B. Menges, and S. Mittler-Neher, Multimode integrated optical sensor based on absorption due to resonantly coupled surface plasmons, Proc. SPIE 3414, 250–256 (1998).

    Article  ADS  Google Scholar 

  84. M. Weisser, B. Menges, and S. Mittler-Neher, Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons, Sens. Actuat. B 56, 189–197 (1999).

    Article  Google Scholar 

  85. M. Weisser, J. Käshammer, J. Matsumoto, F. Nakamura, K. Ijiro, M. Shimomura, and S. Mittler-Neher, Adenin–uridin base pairing at the water-solid-interface, J. Am. Chem. Soc. 122, 87–95 (2000).

    Article  Google Scholar 

  86. A. Theis, B. Menges, S. Mittler, M. Mierzwa, T. Pakula, and H. Ritter, Polymeric mesoions: Novel synthetic methods, photochemistry, and characterization in the solid state by dielectric and waveguide-mode spectroscopy, Macromolecules 36, 7520–7526 (2003).

    Article  ADS  Google Scholar 

  87. X. Mai, R.S. Moshrefzahdeh, U.J. Gibson, G.I Stegeman, and C.T. Seaton, Simple versatile method for fabricating guided wave gratings, Appl. Opt. 24, 3155–3161 (1985).

    Article  ADS  Google Scholar 

  88. S. Busse, V. Scheumann, B. Menges, and S. Mittler, Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods, Biosens. Bioelectron. 17, 704–710 (2002).

    Article  Google Scholar 

  89. T. Liebermann, W. Knoll, P. Sluka, and R. Herrmann, Complement hybridization from solution to surface-attached probe-oligonucleotides observed by surface-plasmon-field enhanced fluorescence spectroscopy, Colloids Surf. A 169, 337–350 (2000).

    Article  Google Scholar 

  90. X.D. Su, R. Robelek, Y.J. Wu, G.Y. Wang, and W. Knoll, Detection of point mutation and insertion mutations in DNA using a quartz crystal microbalance and MutS, a mismatch binding protein, Anal. Chem. 76, 489–494 (2004).

    Article  Google Scholar 

  91. D. Kambhampati, P.E. Nielsen, and W. Knoll, Investigating the kinetics of DNA–DNA and PNA–DNA interactions using surface plasmon resonance-enhanced fluorescence spectroscopy, Biosens. Bioelectron. 16, 1109–1118 (2001).

    Article  Google Scholar 

  92. Y.T. Long, C.Z. Li, T.C. Sutherland, H.B. Kraatz, and J.S. Lee, DNA mismatch detection on gold surface by electrochemical impedance spectroscopy, Abstr. Pap. Am. Chem. Soc. 227: U88–U88 063-ANYL Part 1 (2004).

    Google Scholar 

  93. B. Dubertret, M. Calame, and A.J. Libchaber, Single-mismatch detection using gold-quenched fluorescent oligonucleotides, Nature Biotechnol. 19, 365–370 (2001).

    Article  Google Scholar 

  94. M.T. van Os, B. Menges, R. Förch, R.B. Timmons, G.J. Vancso, and W. Knoll, Thin film plasma deposition of allylamine effects of solvent treatment, Mater. Res. Soc. Symp. Proc. 544, 45–50 (1999).

    Google Scholar 

  95. V. Jacobsen, B. Menges, R. Förch, S. Mittler, and W. Knoll, In-situ thin film diagnostics using waveguide mode spectroscopy, Thin Solid Films 409, 185–193 (2002).

    Article  ADS  Google Scholar 

  96. V. Jacobsen, B. Menges, A. Scheller, R. Förch, S. Mittler, and W. Knoll, In situ film diagnostics during plasma polymerization using waveguide mode spectroscopy, Surf. Coat. Technol. 142–144, 1105–1108 (2001).

    Article  Google Scholar 

  97. J.A. Forrest and K. Dalnoki-Veress, The glass transition in thin polymer films, Adv. Colloid Interface Sci. 94, 167–196 (2001).

    Article  Google Scholar 

  98. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, and J.R. Dutcher, Effect of free surfaces on the glass transition temperature of thin polymer films, Phys. Rev. Lett. 77, 2002 (1996).

    Article  ADS  Google Scholar 

  99. J.A. Forrest, K. Dalnoki-Veress, and J.R. Dutcher, Interface and chain confinement effects on the glass transition temperature of thin polymer films, Phys. Rev. E 56, 5705– 5716 (1997).

    Article  ADS  Google Scholar 

  100. W.E. Wallace, J.H. van Zanten, and W.L. Wu, Influence of an impenetrable interface on a polymer glass transition temperature, Phys. Rev. E 52, R3329–R3332 (1995).

    Article  ADS  Google Scholar 

  101. Y. Grohens, M. Brogly, C. Labbe, M.-O. David, and J. Schultz, Glass transition of stereoregular poly(methyl methacrylate) at interfaces, Langmuir 14, 2929–2932 (1998).

    Article  Google Scholar 

  102. J.K. Keddie, R.A.L. Jones, and R.A. Cory, Size dependent depression on the glass transition temperature in polymer films, Europhys. Lett. 27, 59 (1994).

    Article  ADS  Google Scholar 

  103. S. Kawana and R.A.L. Jones, Character of the glass transition in thin supported films, Phys. Rev. E 63, Art. No. 021501 (2001).

    Google Scholar 

  104. K. Dalnoki-Veress, J.A. Forrest, C.X. Murray, C. Gigault, and J.R. Dutcher, Molecular weight dependence of reductions in the glass transiton temperature of thin, freely standing polymer films, Phys. Rev. E 63, Art.No. 031801 (2001).

    Google Scholar 

  105. H. Bock, S. Christian, W. Knoll, and J. Vydra, Determination of the glass transition temperature of nonlinear optical planar polymer waveguides by attenuated total reflection spectroscopy, Appl. Phys. Lett. 71, 3643 (1997).

    Article  ADS  Google Scholar 

  106. O. Prucker, S. Christian, H. Bock, J. Rühe, C.W. Frank, and W. Knoll, On the glass transition in ultrathin polymer films of different molecular architecture, Macromol. Chem. Phys. 199, 1435–1444 (1998).

    Article  Google Scholar 

  107. R. Kügler and W. Knoll, Influence of the polymethacrylate chain formation in Langmuir-Blodgett-Kuhn films on the glass transition temperature, Macromol. Chem. Phys. 203, 923–930 (2002).

    Article  Google Scholar 

  108. K. Dalnoki-Veress, J.A. Forrest, P.G. de Gennes, and J.R. Dutcher, Glass transition reductions in thin freely-standing polymer films: A scaling analysis of chain confinement effects, J. Phys. IV 10, 221–226 (2000).

    Google Scholar 

  109. P.G. de Gennes, Glass transitions in thin polymer films, Eur. Phys. J. E 2, 201–203 (2000).

    Article  Google Scholar 

  110. G. Rehage and W. Borchard, in The Physics of Glassy Polymers, edited by R.N. Haward, Applied Intersciences, London (1973).

    Google Scholar 

  111. Polymer Handbook, 2nd edition, edited by J. Brandup and E.H. Immergut, Wiley, New York (1975).

    Google Scholar 

  112. H. Raether, Surface Plasmons, Springer, Berlin (1988).

    Google Scholar 

  113. G.W.H. Höhne, W.F. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry, Springer, Berlin (2003).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LCC

About this chapter

Cite this chapter

Mittler, S., Menges, B. (2007). Evanescent Waves as Nanoprobes for Surfaces and Interfaces: From Waveguide Technology to Sensor Application. In: Frontiers in Surface Nanophotonics. Optical Sciences, vol 133. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48951-3_2

Download citation

Publish with us

Policies and ethics