Skip to main content

Imaging the Heart in the Cancer Patient

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

The average age of a cancer patient is 67. Sexagenarians with cancer are likely to have comorbidities at the time of diagnosis. Cancer patients > 55 years old have an average of ∼ 2.9 comorbidities, while cancer patients older than 75 have an average of 4.2 comorbidities. The likelihood of coronary artery disease as an etiology of this comorbidity increases with the age of the patient. Cardiovascular comorbidity is present in ∼ 20% of patients with neoplasm. These comorbidities increase the risk of a serious cardiovascular event during treatment. An additional risk factor is limited work capacity. If patients cannot perform 4 METS of work, their all cause mortality is increased. Patients with cancer and known cardiovascular comorbidity or risk factors such as diabetes, hypertension, smoking history, or limited work capacity should have medical clearance prior to invasive diagnostic procedures, major surgery, mediastinal radiation, and/or potentially cardiotoxic chemotherapy. Medical clearance should include a detailed cardiovascular history and physical examination. This information will permit calculation of a clinical score (such as POSSUM) to define the risk of adverse events as a result of a major surgical procedure, blood tests to determine hematologic and renal status, and if necessary, assessment of the patients work capacity. Stress testing with imaging should be done in patients with an intermediate risk of coronary heart disease and considered in patients with limited work capacity or advanced age. In selected patients, coronary CT angiography or coronary calcium score may be a suitable evaluation. In patients with cancer of the esophagus, breast, lung, melanoma, or lymphoma, chest-CT and PET/CT studies should be carefully evaluated to detect possible pericardial or myocardial involvement.

Chemotherapy may cause myocardial ischemia due to coronary spasm and decreased ventricular function due to irreversible or reversible myocardial damage, as well as repolarization abnormalities, which may result in fatal arrhythmia. Radiotherapy may accelerate the development of atherosclerosis of vessels in the radiation field and cause irreversible damage to myocardium in the radiation field. Myocardial perfusion imaging is useful to detect regions of acute ischemia or scar induced by therapy, while blood pool imaging is useful for serial monitoring of ventricular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakker EJ, Ravensbergen NJC, Poldermans D. Perioperative ­cardiac evaluation, monitoring, and risk reduction strategies in ­noncardiac surgery patients. Curr Opin Crit Care. 2011;17:409–15. doi:10.1097/MCC.0b013e328348d40f.

    Article  PubMed  Google Scholar 

  2. Older P, Hall A, Hader R. Cardiopulmonary exercise testing as a screening test for perioperative management of major surgery in the elderly. Chest. 1999;116:355–62.

    Article  PubMed  CAS  Google Scholar 

  3. Weinstein H, Bates AT, Spaltro BE, Thaler HT, Steingart RM. Influence of preoperative exercise capacity on length of stay after thoracic cancer surgery. Ann Thorac Surg. 2007;84:197–202.

    Article  PubMed  Google Scholar 

  4. Lee TH, Marcantonio ER, Mangione CM, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999;100:1043–9.

    Article  PubMed  CAS  Google Scholar 

  5. Devereaux PJ, Goldman L, Cook DJ, Gilbert K, Leslie K, Guyatt GH. Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and ­communicate risk. Can Med Assoc J. 2005;173:627–34.

    Article  CAS  Google Scholar 

  6. http://www.riskprediction.org.uk/pp-index.php. Accessed 11 July 2012.

  7. Fleischer LA, Beckman JA, Brown KA, et al. ACCF/AHA Focused Update on Perioperative Beta Blockade Incorporated Into the ACC/AHA 2007 Guidelines on Perioperative Cardiovascular Evaluation and Care for Noncardiac Surgery. Circulation. 2009;120:e-169–276.

    Google Scholar 

  8. Weiser TG, Regenbogen SE, Thompson KD, et al. An estimation of the global volume of surgery: a modeling strategy based on available data. Lancet. 2008;30:139–44.

    Article  Google Scholar 

  9. Sebel PS, Bowdle TA, Ghoneim MM, Rampil IJ, Padilla RE, Gan TJ, Domino KB. The incidence of awareness during anesthesia: a multicenter United States study. Anesth Analg. 2004;99:833–9.

    Article  PubMed  Google Scholar 

  10. Fleisher LA, Eagle KA. Lowering cardiac risk in noncardiac surgery. N Eng J Med. 2001;345:1677–82.

    Article  CAS  Google Scholar 

  11. Mangano DT. Perioperative cardiac mortality. Anesthesiology. 1990;72:153–84.

    Article  PubMed  CAS  Google Scholar 

  12. American Cancer Society – Cancer facts and figures 2010. http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-026238.pdf. Accessed 11 July 2012.

  13. Hayat MJ, Howlader N, Reichman ME, Edwards BK. Cancer statistics, trends, multiple primary cancer analysis from the surveillance, epidemiology, and end results (SEER) program. Oncologist. 2007;12:20–37.

    Article  PubMed  Google Scholar 

  14. Heart Disease and Stroke Statistics 2012 Update at a glance – http://www.heart.org/HEARTORG/General/Heart-and-Stroke-Association-Statistics_UCM_319064_SubHomePage.jsp. Accessed 11 July 2012

  15. Mangano DT, Hollenberg M, Fegert G, Meyer ML, London MJ, Tubau JF, Krupski WC. Perioperative myocardial ischemia in patients undergoing noncardiac surgery–I: Incidence and severity during the 4 day perioperative period. The Study of Perioperative Ischemia (SPI) Research Group. J Am Coll Cardiol. 1991;17:843–50.

    Article  PubMed  CAS  Google Scholar 

  16. London MJ. Cardiovascular problems in noncardiac surgery. Curr Opin Crit Care. 2009;15:333–41.

    Article  PubMed  Google Scholar 

  17. Fisher MB, Svatek RS, Hegarty PK, et al. Cardiac history and risk of post cystectomy cardiac complications. Urology. 2009;74:1085–9.

    Article  PubMed  Google Scholar 

  18. Cruden NLM, Harding SZ, Flapan AD, Graham C, Wild SH, Slack R, Newby DE. Previous coronary stent implantation and cardiac events in patients undergoing noncardiac surgery. Circ Cardiovasc Interv. 2010;3:236–42.

    Article  PubMed  Google Scholar 

  19. Devereaux PJ, Goldman L, Yusuf S, Gilbert K, Leslie K, Guyatt GH. Surveillance and prevention of major perioperative ischemic cardiac events in patients undergoing noncardiac surgery: a review. CMAJ. 2005;173:779–88.

    Article  PubMed  CAS  Google Scholar 

  20. Nouraei SAR, Al-Yaghchi C, Sandhu GS, Giussani DA, Doyle P, Clarke PM. Laryngoscope. 2007;117:1581–7.

    Article  PubMed  Google Scholar 

  21. Dawood MM, Gutpa DK, Southern J, Walia A, Atkinson JB, Eagle KA. Pathology of fatal perioperative myocardial infarction: implications regarding pathophysiology and prevention. Int J Cardiol. 1996 Nov 15;57:37–44.

    Article  PubMed  CAS  Google Scholar 

  22. Cohen MC, Artez TH. Histological analysis of coronary artery lesions in fatal postoperative myocardial infarction. Cardiovasc Pathol. 1999;8:133–9.

    Article  PubMed  CAS  Google Scholar 

  23. Landesberg G, Mosseri M, Zahger D, et al. Myocardial infarction after vascular surgery: the role of prolonged stress-induced, ST depression-type ischemia. J Am Coll Cardiol. 2001;37:1839–45.

    Article  PubMed  CAS  Google Scholar 

  24. Landesberg G. The pathophysiology of perioperative myocardial infarction: Facts and perspectives. J Cardiothoracic Vasc Anesth. 2003;17:90–100.

    Article  Google Scholar 

  25. Galal W, Hoeks SE, Flu WJ, et al. Relation between preoperative and intraoperative new wall motion abnormalities in vascular surgery patients: A transesophageal echocardiographic study. Anesthesiology. 2010;112:557–66.

    Article  PubMed  Google Scholar 

  26. Chandra S, Lenihan DJ, Wei W, Yusuf SW, Tong AT. Myocardial perfusion imaging and cardiovascular outcomes in a cancer population. Texas Heart Inst J. 2009;36:205–13.

    Google Scholar 

  27. Kertai MD, Boersma E, Bax JJ, et al. A meta analysis comparing prognostic accuracy of six diagnostic tests for predicting perioperative risk. Heart. 2003;89:1327–3.

    Article  PubMed  CAS  Google Scholar 

  28. Fleisher LA. Cardiac risk stratification for noncardiac surgery: Update from the American College of Cardiology/American heart Association 2007 guidelines. Cleve Clin J Med. 2009;76 Suppl 4:S9–15. doi:10.3949/ccjm.76.s4.02.

    Article  PubMed  Google Scholar 

  29. Wijeysundera DN, Beattie WS, Austin PC, Hux JE, Laupacis A. Non-invasive cardiac stress testing before elective major ­non-cardiac surgery: population based cohort study. BMJ. 2010;340:b5526. doi:10.1136/bmj.b5526.

    Article  PubMed  Google Scholar 

  30. Navare SM, Mather JF, Shaw LJ, Fowler MS, Heller GV. Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: a meta-analysis. J Nucl Cardiol. 2004;11:551–61.

    Article  PubMed  Google Scholar 

  31. Chang K, Sarkiss M, Won KS, Swafford J, Broemeling L, Gayed I. Preoperative risk stratification using gated myocardial perfusion studies in patients with cancer. J Nucl Med. 2007;48:344–8.

    PubMed  Google Scholar 

  32. Mukherjee D, Eagle KA. Ischemia, revascularization, and perioperative troponin elevation after vascular surgery. J Am Coll Cardiol. 2004;44:576–8.

    Article  PubMed  CAS  Google Scholar 

  33. Vander Salm TJ. Unusual primary tumors of the heart. Semin Thorac Cardiovasc Surg. 2000;12:89–100.

    PubMed  CAS  Google Scholar 

  34. Reardon MJ, Walkes JC, Benjamin R. Therapy insight: malignant primary cardiac tumors. Nature Clin Pract Cardiovasc Med. 2006;3:548–53.

    Article  Google Scholar 

  35. Lee RW, Woo KS, Chow LTC, Ng HK, Chan WWM, Yu CM, Lo AWI. Diffuse infiltration of lymphoma of the myocardium mimicking clinical hypertrophic cardiomyopathy. Circulation. 2006;113:e662–4.

    Article  PubMed  CAS  Google Scholar 

  36. Ekmetzoglou KA, Samelis GF, Xanthos T. Heart and tumors: location, metastasis, clinical manifestations, diagnostic approaches and therapeutic considerations. J Cardiovasc Med. 2008;9:769–77.

    Article  Google Scholar 

  37. Chiles C, Woodard PK, Guiterrez FR, Link KM. Metastatic involvement of the heart and pericardium: CT and MR imaging. Radiographics. 2001;21:439–49.

    PubMed  CAS  Google Scholar 

  38. Antman K, Marks AR. The patient with cardiovascular disease and cancer. Chapter 83. In: Zipes DP, Libby P, Bonow RO, Braunwald E, editors. Braunwalds heart disease. 7th ed. Philadelphia: Elsevier Saunders; 2005. p. 2117–28.

    Google Scholar 

  39. Gay JD, Guileyardo JM, Townsend-Perchman JK, Ross K. Clinical and morphologic features of lipomatous hypertrophy (“massive fatty deposits”) of the interatrial septum. Am J Forens Med Pathol. 1997;18:107–8.

    Google Scholar 

  40. Rao PM, Woodard PK, Patterson GA, Peterson LR. Myocardial metastasis or benign brown fat? Circ Cardiovascul Imag. 2009;2:e25–27.

    Article  Google Scholar 

  41. Gerard PS, Finestone H, Lazarro R, Geller MD. Intermittent FDG uptake in lipomatous hypertrophy of the interatrial septum on serial PET/CT scans. Clin Nucl Med. 2008;33:602–5.

    Article  PubMed  Google Scholar 

  42. Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt B. A scintiphotographic method for measuring LVEF in man without cardiac catheterization. Am J Cardiol. 1971;28:275.

    Article  Google Scholar 

  43. Burow RD, Strauss HW, Singleton R, et al. Analysis of LV function from multiple gated acquisition cardiac blood pool imaging. Comparison to contrast angiography. Circulation. 1977;56:1024.

    Article  PubMed  CAS  Google Scholar 

  44. Folland ED, Hamilton GW, Larson SM, Kennedy JW, Williams DL, Ritchie JL. The radionuclide ejection fraction: A comparison of three radionuclide techniques with contrast angiography. J Nucl Med. 1977;18:1159.

    PubMed  CAS  Google Scholar 

  45. Wackers FJ, Berger HJ, Johnstone DE, et al. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: validation of the technique and assessment of variability. Am J Cardiol. 1979 Jun;43:1159–66.

    Article  PubMed  CAS  Google Scholar 

  46. Stortesky S, Suter TM. Insights into cardiovascular side-effects of modern anticancer therapeutics. Curr Opin Oncol. 2010;22:312–7.

    Article  Google Scholar 

  47. Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23:2900–2.

    Article  PubMed  CAS  Google Scholar 

  48. Arcamone F, Franceschi G, Penco S, Selva A. Adriamycin (14-hydroxydaunomycin), a novel antitumor antibiotic. Tetrahedron Lett. 1969;13:1007–10.

    Article  PubMed  Google Scholar 

  49. Bristow MR, Mason JW, Billingham ME, Daniels JR. Dose-effect and structure-function relationships in doxorubicin cardiomyopathy. Am Heart J. 1981 Oct;102:709–18.

    Article  PubMed  CAS  Google Scholar 

  50. Ewer MS, Ali MK, Mackay B, Wallace S, et al. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J Clin Oncol. 1984;2:112–7.

    PubMed  CAS  Google Scholar 

  51. Isner JM, Ferrans VJ, Cohen SR, et al. Clinical and morphologic cardiac findings after anthracycline chemotherapy. Analysis of 64 patients studied at necropsy. Am J Cardiol. 1983;51:1167–74.

    Article  PubMed  CAS  Google Scholar 

  52. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32:302–14.

    Article  PubMed  CAS  Google Scholar 

  53. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7.

    Google Scholar 

  54. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.

    Article  PubMed  CAS  Google Scholar 

  55. Harris EE, Correa C, Hwang WT, Liao J, Litt HI, Ferrari VA, Solin LJ. Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol. 2006;24:4100–6. Epub 2006 Aug 14.

    Article  PubMed  Google Scholar 

  56. Alexander J, Dainiak N, Berger HJ, et al. Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclideangiocardiography. N Engl J Med. 1979;300:278–83.

    Article  PubMed  CAS  Google Scholar 

  57. Schwartz RG, McKenzie WB, Alexander J, et al. Congestive heart failure and LV dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med. 1987;82:1109–18.

    Article  PubMed  CAS  Google Scholar 

  58. Agarwala S, Kumar R, Bhatnagar V, Bajpai M, Gupta DK, Mitra DK. High incidence of adriamycin cardiotoxicity in children even at low cumulative doses: role of radionuclide cardiac angiography. J Pediatr Surg. 2000;35:1786–9.

    Article  PubMed  CAS  Google Scholar 

  59. Lipshultz SE, Colan SD, Gelber RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324:808–15.

    Article  PubMed  CAS  Google Scholar 

  60. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 1991;266:1672–7.

    Article  PubMed  CAS  Google Scholar 

  61. Pein F, Sakiroglu O, Dahan M, et al. Cardiac abnormalities 15 years and more after adriamycin therapy in 229 childhood survivors of a solid tumour at the Institut Gustave Roussy. Br J Cancer. 2004 5;91:37–44.

    Google Scholar 

  62. Tukenova M, Guibout C, Oberlin O, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28:1308–15.

    Article  PubMed  Google Scholar 

  63. Hudis CA. Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med. 2007;357:39–51.

    Article  PubMed  CAS  Google Scholar 

  64. Chien KR. Herceptin and the heart—a molecular modifier of cardiac failure. N Engl J Med. 2006;354:789–90.

    Article  PubMed  CAS  Google Scholar 

  65. de Korte MA, de Vries EG, Lub-de Hooge MN, et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: A clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43:2046–51.

    Article  PubMed  Google Scholar 

  66. Perik PJ, de Vries EG, Gietema JA, van der Graaf WT, Smilde TD, Sleijfer DT, van Veldhuisen DJ. Serum HER2 levels are increased in patients with chronic heart failure. Eur J Heart Fail. 2007;9:173–7.

    Article  PubMed  CAS  Google Scholar 

  67. Kaufman B, Mackey JR, Clemens MR, et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol. 2009;27:5529–37.

    Article  PubMed  CAS  Google Scholar 

  68. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21.

    Article  PubMed  CAS  Google Scholar 

  69. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.

    Article  PubMed  CAS  Google Scholar 

  70. Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V, Lenihan DJ. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23:7820–6.

    Article  PubMed  CAS  Google Scholar 

  71. Guarneri V, Lenihan DJ, Valero V, et al. Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson Cancer Center experience. J Clin Oncol. 2006;24:4107–15.

    Article  PubMed  CAS  Google Scholar 

  72. Procter M, Suter TM, de Azambuja E, et al. Longer-term assessment of trastuzumab-related cardiac adverse events in the Herceptin Adjuvant (HERA) trial. J Clin Oncol. 2010;28:3422–8.

    Article  PubMed  Google Scholar 

  73. Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002;95:1592.

    Article  PubMed  CAS  Google Scholar 

  74. Suter TM, Procter M, van Veldhuisen DJ, et al. Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. JCO. 2007;25:3859–65.

    Article  CAS  Google Scholar 

  75. Hensley ML, Hagerty KL, Kewalramani T, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27:127–45.

    Article  PubMed  CAS  Google Scholar 

  76. Hensley ML, Hagerty KL, Kewalramani T, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. Cardinale Circulation. 2006;114:2474–81.

    Google Scholar 

  77. Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55:213–20.

    Article  PubMed  CAS  Google Scholar 

  78. Riad A, Bien S, Westermann D, et al. Pretreatment with statin attenuates the cardiotoxicity of Doxorubicin in mice. Cancer Res. 2009;69:695–9.

    Article  PubMed  CAS  Google Scholar 

  79. Perez EA, Koehler M, Byrne J, Preston AJ, Rappold E, Ewer MS. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc. 2008;83:679–86.

    PubMed  Google Scholar 

  80. Mahmarian JJ, Moye L, Verani MS, Eaton T, Francis M, Pratt CM. Criteria for the accurate interpretation of changes in left ventricular ejection fraction and cardiac volumes as assessed by rest and ­exercise gated radionuclide angiography. J Am Coll Cardiol. 1991;18:112–9.

    Article  PubMed  CAS  Google Scholar 

  81. Calahan RJ, Frowlich JW, McKusick KA, Leppo J, Strauss WH. A modified method for the in vivo labelling of red blood cells with Tc-99 m: concise communication. J Nucl Med. 1982;23:315–8.http://circ.ahajournals.org/cgi/ijlink?linkType=ABST%26journalCode=jnumed%26resid=23/4/315

    Google Scholar 

  82. Massardo T, Jaimovich R, Lavados H, et al. Comparison of radionuclide ­ventriculography using SPECT and planar techniques in different cardiac conditions. Eur J Nucl Med Mol Imaging. 2007;34:1735–46.

    Article  PubMed  Google Scholar 

  83. Gottdiener JS, Mathisen DJ, Borer JS, et al. Doxorubicin cardiotoxicity: Assessment of late LV dysfunction by radionuclide cineangiography. Ann Intern Med. 1981;94:430.

    PubMed  CAS  Google Scholar 

  84. Patel CD, Balakrishnan VB, Kumar L, Naswa N, Malhotra A. Does left ventricular diastolic function deteriorate earlier than left ventricular systolic function in anthracycline cardiotoxicity? Hell J Nucl Med. 2010;13:233–7.

    PubMed  Google Scholar 

  85. Mahadevan G, Davis RC, Frenneaux MP, Hobbs FD, Lip GY, Sanderson JE, Davies MK. Left ventricular ejection fraction: are the revised cut-off points for defining systolic dysfunction sufficiently evidence based? Heart. 2008;94:426–8.

    Article  PubMed  CAS  Google Scholar 

  86. Mukherjee C, Tschernich H, Kaisers UX, Eibel S, Seeburger J. Ender. Real-time three-dimensional echocardiographic assessment of mitral valve: Is it really superior to 2D transesophageal echocardiography? Ann Card Anaesth. 2011;14:91–6.

    Article  PubMed  Google Scholar 

  87. Sibille L, Bouallegue FB, Bourdon A, Micheau A, Vernhet-Kovacsik H, Mariano-Goulart D. Comparative values of gated blood pool SPECT and CMR for ejection fraction and volume estation. Nuc Med Commun. 2011;32:121–8.

    Article  Google Scholar 

  88. Schaefer WM, Lipke CS, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT. J Nucl Med. 2005;46:1256–63.

    PubMed  Google Scholar 

  89. Naik MM, Diamond GA, Pai T, Soffer A, Siegel RJ. Correspondence of LVEF determinations from two-dimensional echocardiography, radionuclide angiography and contrast cineangiography. J Am Coll Cardiol. 1995;25:937–42.

    Article  PubMed  CAS  Google Scholar 

  90. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J. 2000;21:1387–96.

    Article  PubMed  CAS  Google Scholar 

  91. Gopal AS, Shen Z, Sapin PM, et al. Assessment of cardiac function by three-dimensional echocardiography compared with conventional noninvasive methods. Circulation. 1995;92:842–53.

    Article  PubMed  CAS  Google Scholar 

  92. Walker J, Bhullar N, Fallah-Rad N, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol. 2010;28:3429–36.

    Article  PubMed  Google Scholar 

  93. de Geus-Oei LF, Mavinkurve-Groothuis AM, Bellersen L, Gotthardt M, Oyen WJ, Kapusta L, van Laarhoven HW. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med. 2011;52:560–71.

    Article  PubMed  Google Scholar 

  94. Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: Clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28:3910–6.

    Article  PubMed  CAS  Google Scholar 

  95. Lipshultz SE, Rifai N, Sallan SE, Lipsitz SR, Dalton V, Sacks DB, Ottlinger ME. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation. 1997;96:2641–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fox, J.J., Strauss, H.W. (2013). Imaging the Heart in the Cancer Patient. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics