Skip to main content

Comparison of Widefield/Deconvolution and Confocal Microscopy for Three-Dimensional Imaging

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

The biggest limitation inherent in optical microscopy is its lateral spatial resolution, which is determined by the wavelength of the light used and the numerical aperture (NA) of the objective lens. Another important limitation is the resolution in the direction of the optical axis, conventionally called z, which is related to the depth of field. The presence of a finite aperture gives rise to undesirable and rather complicated characteristics in the image. In essence, the depth of field depends on the size of structure or spatial frequency being imaged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Agard, D.A., and Sedat, J.W., 1983, Three-dimensional architecture of a polytene nucleus, Nature 302:676–681.

    Article  CAS  PubMed  Google Scholar 

  • Agard, D.A., Hiraoka, Y., Shaw, P.J., and Sedat, J.W., 1989, Fluorescence microscopy in three dimensions, Methods Cell Biol. 30:353–378.

    Article  CAS  PubMed  Google Scholar 

  • Aikens, R.S., Agard, D.A., and Sedat, J.W., 1989, Solid state imagers for microscopy, Methods Cell Biol. 29:291–313.

    Article  CAS  PubMed  Google Scholar 

  • Beven, A.F., Lee, R., Razaz, M., Leader, D.J., Brown, J.W., and Shaw, P.J., 1996, The organization of ribosomal RNA processing correlates with the distribution of nucleolar snRNAs, J. Cell Sci. 109:1241–1251.

    CAS  Google Scholar 

  • Castleman, K.R., 1979, Digital Image Processing, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Highett, M.I., Rawlins, D.J., and Shaw, P.J., 1993a, Different patterns of rDNA distribution in Pisum sativum nucleoli correlate with different levels of nucleolar activity, J. Cell Sci. 104:843–852.

    CAS  Google Scholar 

  • Highett, M.I., Beven, A.F., and Shaw, P.J., 1993b, Localization of 5S genes and transcripts in Pisum sativum nuclei, J. Cell Sci. 105:1151–1158.

    CAS  Google Scholar 

  • Hiraoka Y., Minden, J.S., Swedlow, J.R., Sedat, J.W., and Agard, D.A., 1989, Focal points for chromosome condensation and decondensation from three-dimensional in vivo time-lapse microscopy, Nature 342:293–296.

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka, Y., Sedat, J.W., and Agard, D.A., 1988, The use of a charge-coupled device for quantitative optical microscopy of biological structures, Science 238:36–41.

    Article  Google Scholar 

  • Hiraoka, Y., Sedat, J.W., and Agard, D.A., 1990, Determination of three-dimensional imaging properties of a light microscope system: Partial confocal behavior in epifluorescence microscopy, Biophys. J. 57:325–333.

    CAS  Google Scholar 

  • Inoué, S., 1986, Video Microscopy, Plenum Press, New York.

    Google Scholar 

  • Jansson, P.A., Hunt, R.M., and Plyler, E.K., 1970, Resolution enhancement of spectra, J. Opt. Soc. Am. 60:596–599.

    Article  CAS  Google Scholar 

  • Pawley, J.B., 1994, The sources of noise in three-dimensional microscopical data sets, In: Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Specimens (J.K. Stevens, L.R. Mills, and J.E. Trogadis, eds.), Academic Press, New York, pp. 48–94.

    Google Scholar 

  • Pawley, J.B., and Smallcomb, A., 1992, An introduction to practical confocal microscopy: The ultimate form of biological light microscopy? Acta Microsc. 1:58–73.

    Google Scholar 

  • Petran, M., Hadravsky, M., Egger, M.D., and Galambos, R., 1968, Tandemscanning reflected light microscope, J. Opt. Soc. Am. 58:661–664.

    Article  Google Scholar 

  • Sandison, D.R., Piston, D.W., and Webb, W.W., 1993, Background rejection and optimization of signal-to-noise in confocal microscopy, In: Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Specimens (J.K. Stevens, L.R. Mills, and J.E. Trogadis, eds.), Academic Press, New York, pp. 211–230.

    Google Scholar 

  • Self, S.A., 1983, Focusing of spherical Gaussian beams, Appl. Opt.22:658–661.

    CAS  Google Scholar 

  • Shaw, P.J., 1993, Computer reconstruction in three-dimensional fluorescence microscopy, In: Electronic Light Microscopy (D. Shotton, ed.), Wiley-Liss, New York, pp. 211–230.

    Google Scholar 

  • Shaw, P.J., and Rawlins, D.J., 1991a, Three-dimensional fluorescence microscopy, Prog. Biophys. Molec. Biol. 56:187–213.

    Article  CAS  Google Scholar 

  • Shaw, P.J., and Rawlins, D.J., 1991b, The point spread function of a confocal microscope: Its measurement and use in deconvolution of 3D data, J. Microsc. 163:151–165.

    Google Scholar 

  • Sheppard, C.J.R., and Choudhury, A., 1977, Image formation in the scanning microscope, Opt. Acta. 24:1051–1073.

    Google Scholar 

  • Stokseth, P.A., 1969, Properties of a defocused optical system, J. Opt. Soc. Am. 59:1314–1321.

    Article  Google Scholar 

  • Wilson, T., 1993, Image formation in confocal microscopy, In: Electronic Light Microscopy (D.M. Shotton, ed.), Wiley-Liss, New York.

    Google Scholar 

  • Young, I.T., 1989, Image fidelity: Characterizing the imaging transfer function, Methods Cell Biol. 30:2–47.

    Google Scholar 

  • Zhang, D.H., Wadsworth, P., and Hepler, P.K., 1990, Microtubule dynamics in living dividing plant cells: Confocal imaging of microinjected fluorescent brain tubulin, Proc. Natl. Acad. Sci. U S A 87:8820–8824.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shaw, P.J. (2006). Comparison of Widefield/Deconvolution and Confocal Microscopy for Three-Dimensional Imaging. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_23

Download citation

Publish with us

Policies and ethics