Skip to main content

Regulation of SNARE Complex Assembly by Second Messengers

Roles of Phospholipases, Munc13 and Munc18

  • Chapter
Book cover Molecular Mechanisms of Exocytosis

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 632 Accesses

Abstract

Many specialized cell types are dedicated to the regulated exocytosis of biologically active substances. The secretory cargo is stored in vesicles, that have a low release probability in the absence of suitable secretory signals. Membrane fusion requires the assembly of soluble N-ethylmaleimide attachment protein receptor (SNARE) proteins into a trimeric SNARE complex, in mammals composed of syntaxin, SNAP-25/23 and synaptobrevin.1 Although SNARE complex assembly is sufficient to drive fusion of liposomes in cell-free systems, 2,3 spatially and temporally controlled membrane fusion in living cells requires the activity of accessory proteins. Such accessory proteins have been identified, for instance Muncl3 and Muncl8, that are essential for regulated secretion.

Here we review the molecular mechanisms by which Muncl3 and Muncl8 may regulate SNARE complex assembly. Regulatory mechanisms can be invoked by external signals such as ligand-receptor interactions, as well as by the local production of second messengers due to high secretory activity. All these routes are convergently reflected by central signaling molecules such as intracellular Ca2+, diacylglycerol, inositol-triphosphate or other phospholipase-generated products. Recently several novel pathways were described by which these molecules can provide regulatory feedback on the activity of Muncl3 and Muncl8 and hence, on SNARE-dependent exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen YA, Scales SJ, Patel SM et al. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 1999;97:165–174.

    PubMed  CAS  Google Scholar 

  2. Weber T, Zemelman BV, McNew JA et al. SNARE-pins: Minimal machinery for membrane fusion. Cell 1998;92:759–772.

    PubMed  CAS  Google Scholar 

  3. Nickel W, Weber T, McNew JA et al. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc Natl Acad Sci USA 1999;96:12571–12576.

    PubMed  CAS  Google Scholar 

  4. Fernandez-Chacon R, Konigstorfer A, Gerber SH et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001;410:41–49.

    PubMed  CAS  Google Scholar 

  5. Brose N, Petrenko AG, Sudhof TC et al. Synaptotagmin: A calcium sensor on the synaptic vesicle surface. Science 1992;256:1021–1025.

    PubMed  CAS  Google Scholar 

  6. Reim K, Mansour M, Varoqueaux F et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 2001;104:71–81.

    PubMed  CAS  Google Scholar 

  7. Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 2004;27:509–547.

    PubMed  Google Scholar 

  8. Korogod N, Lou X, Schneggenburger R. Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held. J Neurosci 2005;25:5127–5137.

    PubMed  CAS  Google Scholar 

  9. Meinrenken CJ, Borst JG, Sakmann B. Local routes revisited: The space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol 2003;547:665–689.

    PubMed  CAS  Google Scholar 

  10. Zucker RS. Calcium-and activity-dependent synaptic plasticity. Curr Opin Neurobiol 1999;9:305–313.

    PubMed  CAS  Google Scholar 

  11. Lang J, Nishimoto I, Okamoto T et al. Direct control of exocytosis by receptor-mediated activation of the heterotrimeric GTPases Gi and G(o) or by the expression of their active G alpha subunits. EMBO J 1995;14:3635–3644.

    PubMed  CAS  Google Scholar 

  12. Marley PD. Mechanisms in histamine-mediated secretion from adrenal chromaffin cells. Pharmacol Ther 2003;98:1–34.

    PubMed  CAS  Google Scholar 

  13. Chen XK, Wang LC, Zhou Y et al. Activation of GPCRs modulates quantal size in chromaffin cells through G(betagamma) and PKC. Nat Neurosci 2005;8:1160–1168.

    PubMed  CAS  Google Scholar 

  14. Wilde JI, Watson SP. Regulation of phospholipase C gamma isoforms in haematopoietic cells: Why one, not the other? Cell Signal 2001;13:691–701.

    PubMed  CAS  Google Scholar 

  15. Rickman C, Davletov B. Arachidonic acid allows SNARE complex formation in the presence of Munc18. Chem Biol 2005;12:545–553.

    PubMed  CAS  Google Scholar 

  16. De Matteis MA, Godi A. PI-loting membrane traffic. Nat Cell Biol 2004;6:487–492.

    PubMed  Google Scholar 

  17. Aikawa Y, Martin TF. ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5) bisphosphate required for regulated exocytosis. J Cell Biol 2003;162:647–659.

    PubMed  CAS  Google Scholar 

  18. Smrcka AV, Hepler JR, Brown KO et al. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 1991;251:804–807.

    PubMed  CAS  Google Scholar 

  19. Taylor SJ, Chae HZ, Rhee SG et al. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature 1991;350:516–518.

    PubMed  CAS  Google Scholar 

  20. Lee CH, Park D, Wu D et al. Members of the Gq alpha subunit gene family activate phospholipase C beta isozymes. J Biol Chem 1992;267:16044–16047.

    PubMed  CAS  Google Scholar 

  21. Lee SB, Shin SH, Hepler JR et al. Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits. J Biol Chem 1993;268:25952–25957.

    PubMed  CAS  Google Scholar 

  22. Park D, Jhon DY, Lee CW et al. Activation of phospholipase C isozymes by G protein beta gamma subunits. J Biol Chem 1993;268:4573–4576.

    PubMed  CAS  Google Scholar 

  23. Camps M, Carozzi A, Schnabel P et al. Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature 1992;360:684–686.

    PubMed  CAS  Google Scholar 

  24. Wang T, Pentyala S, Rebecchi MJ et al. Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. Biochemistry 1999;38:1517–1524.

    PubMed  CAS  Google Scholar 

  25. Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 2001;70:281–312.

    PubMed  CAS  Google Scholar 

  26. Kim HK, Kim JW, Zilberstein A et al. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell 1991;65:435–441.

    PubMed  CAS  Google Scholar 

  27. Tallquist M, Kazlauskas A. PDGF signaling in cells and mice. Cytokine Growth Factor Rev 2004;15:205–213.

    PubMed  CAS  Google Scholar 

  28. Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 2004;25:177–204.

    PubMed  CAS  Google Scholar 

  29. Grobler JA, Essen LO, Williams RL et al. C2 domain conformational changes in phospholipase C-delta 1. Nat Struct Biol 1996;3:788–795.

    PubMed  CAS  Google Scholar 

  30. Grobler JA, Hurley JH. Catalysis by phospholipase C deltal requires that Ca2+ bind to the catalytic domain, but not the C2 domain. Biochemistry 1998;37:5020–5028.

    PubMed  CAS  Google Scholar 

  31. Yamamoto T, Takeuchi H, Kanematsu T et al. Involvement of EF hand motifs in the Ca(2+)-dependent binding of the pleckstrin homology domain to phosphoinositides. Eur J Biochem 1999;265:481–490.

    PubMed  CAS  Google Scholar 

  32. Lomasney JW, Cheng HF, Roffler SR et al. Activation of phospholipase C deltal through C2 domain by a Ca(2+)-enzyme-phosphatidylserine ternary complex. J Biol Chem 1999;274:21995–22001.

    PubMed  CAS  Google Scholar 

  33. Essen LO, Perisic O, Cheung R et al. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature 1996;380:595–602.

    PubMed  CAS  Google Scholar 

  34. Lopez I, Mak EC, Ding J et al. A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 2001;276:2758–2765.

    PubMed  CAS  Google Scholar 

  35. Wing MR, Bourdon DM, Harden TK. PLC-epsilon: A shared effector protein in Ras-, Rho-, and G alpha beta gamma-mediated signaling. Mol Interv 2003;3:273–280.

    PubMed  CAS  Google Scholar 

  36. Balsinde J, Winstead MV, Dennis EA. Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett 2002;531:2–6.

    PubMed  CAS  Google Scholar 

  37. Brown WJ, Chambers K, Doody A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: Mediators of membrane shape and function. Traffic 2003;4:214–221.

    PubMed  CAS  Google Scholar 

  38. Clark JD, Lin LL, Kriz RW et al. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell 1991;65:1043–1051.

    PubMed  CAS  Google Scholar 

  39. Malik KU, Sehic E. Prostaglandins and the release of the adrenergic transmitter. Ann NY Acad Sci 1990;604:222–236.

    PubMed  CAS  Google Scholar 

  40. Matsumoto Y, Yamaguchi T, Watanabe S et al. Involvement of arachidonic acid cascade in working memory impairment induced by interleukin-1 beta. Neuropharmacology 2004;46:1195–1200.

    PubMed  CAS  Google Scholar 

  41. Sublette ME, Russ MJ, Smith GS. Evidence for a role of the arachidonic acid cascade in affective disorders: A review. Bipolar Disord 2004;6:95–105.

    PubMed  CAS  Google Scholar 

  42. Farooqui AA, Horrocks LA. Brain phospholipases A2: A perspective on the history. Prostaglandins Leukot Essent Fatty Acids 2004;71:161–169.

    PubMed  CAS  Google Scholar 

  43. Juhl K, Hoy M, Olsen HL et al. cPLA2 alpha-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic beta-cells. Am J Physiol Endocrinol Metab 2003;285:E73–81.

    PubMed  CAS  Google Scholar 

  44. Farooqui AA, Yang HC, Rosenberger TA et al. Phospholipase A2 and its role in brain tissue. J Neurochem 1997;69:889–901.

    PubMed  CAS  Google Scholar 

  45. Nalefski EA, Slazas MM, Falke JJ. Ca2+-signaling cycle of a membrane-docking C2 domain. Biochemistry 1997;36:12011–12018.

    PubMed  CAS  Google Scholar 

  46. Dessen A, Tang J, Schmidt H et al. Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism. Cell 1999;97:349–360.

    PubMed  CAS  Google Scholar 

  47. Murakami M, Masuda S, Kudo I. Arachidonate release and prostaglandin production by group IVC phospholipase A2 (cytosolic phospholipase A2gamma). Biochem J 2003;372:695–702.

    PubMed  CAS  Google Scholar 

  48. Six DA, Dennis EA. Essential Ca(2+)-independent role of the group IVA cytosolic phospholipase A(2) C2 domain for interfacial activity. J Biol Chem 2003;278:23842–23850.

    PubMed  CAS  Google Scholar 

  49. Hirabayashi T, Murayama T, Shimizu T. Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol Pharm Bull 2004;27:1168–1173.

    PubMed  CAS  Google Scholar 

  50. Thorn P, Lawrie AM, Smith PM et al. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 1993;74:661–668.

    PubMed  CAS  Google Scholar 

  51. Kasai H, Li YX, Miyashita Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell 1993;74:669–677.

    PubMed  CAS  Google Scholar 

  52. Bezprozvanny I, Watras J, Ehrlich BE. Bell-shaped calcium-response curves of Ins(1,4,5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991;351:751–754.

    PubMed  CAS  Google Scholar 

  53. Patterson RL, Boehning D, Snyder SH. Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 2004;73:437–465.

    PubMed  CAS  Google Scholar 

  54. Tu H, Nosyreva E, Miyakawa T et al. Functional and biochemical analysis of the type 1 inositol (1,4,5)-trisphosphate receptor calcium sensor. Biophys J 2003;85:290–299.

    PubMed  CAS  Google Scholar 

  55. Kelly PT, Mackinnon IInd RL, Dietz RV et al. Postsynaptic IP3 receptor-mediated Ca2+ release modulates synaptic transmission in hippocampal neurons. Brain Res Mol Brain Res 2005;135:232–248.

    PubMed  CAS  Google Scholar 

  56. Taylor CW, Laude AJ. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium 2002;32:321–334.

    PubMed  CAS  Google Scholar 

  57. Miyata M, Finch EA, Khiroug L et al. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 2000;28:233–244.

    PubMed  CAS  Google Scholar 

  58. Goni FM, Alonso A. Structure and functional properties of diacylglycerols in membranes. Prog Lipid Res 1999;38:1–48.

    PubMed  CAS  Google Scholar 

  59. Hindenes JO, Nerdal W, Guo W et al. Physical properties of the transmembrane signal molecule, sn-1-stearoyl 2-arachidonoylglycerol. Acyl chain segregation and its biochemical implications. J Biol Chem 2000;275:6857–6867.

    PubMed  CAS  Google Scholar 

  60. Sanchez-Migallon MP, Aranda FJ, Gomez-Fernandez JC. Role of phosphatidylserine and diacylglycerol in the fusion of chromaffin granules with target membranes. Arch Biochem Biophys 1994;314:205–216.

    PubMed  CAS  Google Scholar 

  61. Castagna M, Takai Y, Kaibuchi K et al. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 1982;257:7847–7851.

    PubMed  CAS  Google Scholar 

  62. Shariff A, Luna EJ. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science 1992;256:245–247.

    PubMed  CAS  Google Scholar 

  63. Zoukhri D, Sergheraert C, Rossignol B. Phorbol ester-stimulated exocytosis in lacrimal gland: PKC might not be the sole effector. Am J Physiol 1993;264:C1045–1050.

    PubMed  CAS  Google Scholar 

  64. Rose SD, Lejen T, Zhang L et al. Chromaffin cell F-actin disassembly and potentiation of catecholamine release in response to protein kinase C activation by phorbol esters is mediated through myristoylated alanine-rich C kinase substrate phosphorylation. J Biol Chem 2001;276:36757–36763.

    PubMed  CAS  Google Scholar 

  65. Lou X, Scheuss V, Schneggenburger R. Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 2005;435:497–501.

    PubMed  CAS  Google Scholar 

  66. Brose N, Betz A, Wegmeyer H. Divergent and convergent signaling by the diacylglycerol second messenger pathway in mammals. Curr Opin Neurobiol 2004;14:328–340.

    PubMed  CAS  Google Scholar 

  67. Hurley JH, Newton AC, Parker PJ et al. Taxonomy and function of Cl protein kinase Chomology domains. Protein Sci 1997;6:477–480.

    PubMed  CAS  Google Scholar 

  68. Xu RX, Pawelczyk T, Xia TH et al. NMR structure of a protein kinase C-gamma phorbol-binding domain and study of protein-lipid micelle interactions. Biochemistry 1997;36:10709–10717.

    PubMed  CAS  Google Scholar 

  69. Zhang G, Kazanietz MG, Blumberg PM et al. Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell 1995;81:917–924.

    PubMed  CAS  Google Scholar 

  70. Shen N, Guryev O, Rizo J. Intramolecular occlusion of the diacylglycerol-binding site in the Cl domain of muncl3-l. Biochemistry 2005;44:1089–1096.

    PubMed  CAS  Google Scholar 

  71. Canagarajah B, Leskow FC, Ho JY et al. Structural mechanism for lipid activation of the Rac-specific GAP, beta2-chimaerin. Cell 2004;119:407–418.

    PubMed  CAS  Google Scholar 

  72. Ales E, Fuentealba J, Garcia AG et al. Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: The role of mitochondria. Eur J Neurosci 2005;21:142–150.

    PubMed  CAS  Google Scholar 

  73. Villalobos C, Nunez L, Montero M et al. Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. Faseb J 2002;16:343–353.

    PubMed  CAS  Google Scholar 

  74. Rizo J, Sudhof TC. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 1998;273:15879–15882.

    PubMed  CAS  Google Scholar 

  75. Bai J, Tucker WC, Chapman ER. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat Struct Mol Biol 2004;11:36–44.

    PubMed  CAS  Google Scholar 

  76. Tsuboi T, Fukuda M. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense-core vesicle exocytosis in PC12 cells. J Biol Chem 2005.

    Google Scholar 

  77. Haiech J, Moulhaye SB, Kilhoffer MC. The EF-Handome: Combining comparative genomic study using FamDBtool, a new bioinformatics tool, and the network of expertise of the European Calcium Society. Biochim Biophys Acta 2004;1742:179–183.

    PubMed  CAS  Google Scholar 

  78. Lewit-Bentley A, Rety S. EF-hand calcium-binding proteins. Curr Opin Struct Biol 2000;10:637–643.

    PubMed  CAS  Google Scholar 

  79. Takai Y, Kishimoto A, Iwasa Y et al. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem 1979;254:3692–3695.

    PubMed  CAS  Google Scholar 

  80. Ochoa WF, Garcia-Garcia J, Fita I et al. Structure of the C2 domain from novel protein kinase Cepsilon. A membrane binding model for Ca(2+)-independent C2 domains. J Mol Biol 2001;311:837–849.

    PubMed  CAS  Google Scholar 

  81. Rhee JS, Betz A, Pyott S et al. Beta phorbol ester-and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 2002;108:121–133.

    PubMed  CAS  Google Scholar 

  82. Brose N, Rosenmund C. Move over protein kinase C, you’ve got company: Alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 2002;115:4399–4411.

    PubMed  CAS  Google Scholar 

  83. Silinsky EM, Searl TJ. Phorbol esters and neurotransmitter release: More than just protein kinase C? Br J Pharmacol 2003;138:1191–1201.

    PubMed  CAS  Google Scholar 

  84. Yang C, Kazanietz MG. Divergence and complexities in DAG signaling: Looking beyond PKC. Trends Pharmacol Sci 2003;24:602–608.

    PubMed  CAS  Google Scholar 

  85. Nagy G, Matti U, Nehring RB et al. Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Serl87 potentiates vesicle recruitment. J Neurosci 2002;22:9278–9286.

    PubMed  CAS  Google Scholar 

  86. Barclay JW, Craig TJ, Fisher RJ et al. Phosphorylation of Muncl8 by protein kinase C regulates the kinetics of exocytosis. J Biol Chem 2003;278:10538–10545.

    PubMed  CAS  Google Scholar 

  87. Mendez CF, Leibiger IB, Leibiger B et al. Rapid association of protein kinase C-epsilon with insulin granules is essential for insulin exocytosis. J Biol Chem 2003;278:44753–44757.

    PubMed  CAS  Google Scholar 

  88. Abeliovich A, Paylor R, Chen C et al. PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell 1993;75:1263–1271.

    PubMed  CAS  Google Scholar 

  89. Schulman H, Greengard P. Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein. Nature 1978;271:478–479.

    PubMed  CAS  Google Scholar 

  90. Steinhardt RA, Alderton JM. Calmodulin confers calcium sensitivity on secretory exocytosis. Nature 1982;295:154–155.

    PubMed  CAS  Google Scholar 

  91. Chen YA, Duvvuri V, Schulman H et al. Calmodulin and protein kinase C increase Ca(2+)-stimulated secretion by modulating membrane-attached exocytic machinery. J Biol Chem 1999; 274:26469–26476.

    PubMed  CAS  Google Scholar 

  92. Burgoyne RD, Clague MJ. Calcium and calmodulin in membrane fusion. Biochim Biophys Acta 2003; 1641:137–143.

    PubMed  CAS  Google Scholar 

  93. Quetglas S, Leveque C, Miquelis R et al. Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin-and phospholipid-binding domain of synaptobrevin. Proc Natl Acad Sci USA 2000; 97:9695–9700.

    PubMed  CAS  Google Scholar 

  94. de Haro L, Ferracci G, Opi S et al. Ca2+/calmodulin transfers the membrane-proximal lipid-binding domain of the v-SNARE synaptobrevin from cis to trans bilayers. Proc Natl Acad Sci USA 2004; 101:1578–1583.

    PubMed  Google Scholar 

  95. Coppola T, Perret-Menoud V, Luthi S et al. Disruption of Rab3-calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. EMBO J 1999; 18:5885–5891.

    PubMed  CAS  Google Scholar 

  96. Schumacher MA, Rivard AF, Bachinger HP et al. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 2001; 410:1120–1124.

    PubMed  CAS  Google Scholar 

  97. Lee A, Zhou H, Scheuer T et al. Molecular determinants of Ca(2+)/calmodulin-dependent regula tion of Ca(v)2.1 channels. Proc Natl Acad Sci USA 2003; 100:16059–16064.

    PubMed  CAS  Google Scholar 

  98. Mori MX, Erickson MG, Yue DT. Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 2004; 304:432–435.

    PubMed  CAS  Google Scholar 

  99. Moreau B, Straube S, Fisher RJ et al. Ca2+-calmodulin-dependent facilitation and Ca2+ inactivation of Ca2+ release-activated Ca2+ channels. J Biol Chem 2005; 280:8776–8783.

    PubMed  CAS  Google Scholar 

  100. Zhu X, Ghanta J, Walker JW et al. The calmodulin binding region of the skeletal ryanodine receptor acts as a self-modulatory domain. Cell Calcium 2004; 35:165–177.

    PubMed  CAS  Google Scholar 

  101. Wei F, Qiu CS, Liauw J et al. Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci 2002; 5:573–579.

    PubMed  CAS  Google Scholar 

  102. Ninan I, Arancio O. Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons. Neuron 2004; 42:129–141.

    PubMed  CAS  Google Scholar 

  103. Hinds HL, Goussakov I, Nakazawa K et al. Essential function of alpha-calcium/calmodulin-dependent protein kinase II in neurotransmitter release at a glutamatergic central synapse. Proc Natl Acad Sci USA 2003; 100:4275–4280.

    PubMed  CAS  Google Scholar 

  104. Garcia EP, Gatti E, Butler M et al. A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci USA 1994; 91:2003–2007.

    PubMed  CAS  Google Scholar 

  105. Betz A, Okamoto M, Benseler F et al. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem 1997; 272:2520–2526.

    PubMed  CAS  Google Scholar 

  106. Richmond JE, Davis WS, Jorgensen EM. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 1999; 2:959–964.

    PubMed  CAS  Google Scholar 

  107. Aravamudan B, Fergestad T, Davis WS et al. Drosophila UNC-13 is essential for synaptic trans mission. Nat Neurosci 1999; 2:965–971.

    PubMed  CAS  Google Scholar 

  108. Augustin I, Rosenmund C, Sudhof TC et al. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 1999; 400:457–461.

    PubMed  CAS  Google Scholar 

  109. Ashery U, Varoqueaux F, Voets T et al. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J 2000; 19:3586–3596.

    PubMed  CAS  Google Scholar 

  110. Augustin I, Betz A, Herrmann C et al. Differential expression of two novel Munc13 proteins in rat brain. Biochem J 1999; 337 (Pt 3):363–371.

    PubMed  CAS  Google Scholar 

  111. Varoqueaux F, Sons MS, Plomp JJ et al. Aberrant morphology and residual transmitter release at the Munc13-deficient mouse neuromuscular synapse. Mol Cell Biol 2005; 25:5973–5984.

    PubMed  CAS  Google Scholar 

  112. Sheu L, Pasyk EA, Ji J et al. Regulation of insulin exocytosis by Munc13-1. J Biol Chem 2003; 278:27556–27563.

    PubMed  CAS  Google Scholar 

  113. Varoqueaux F, Sigler A, Rhee JS et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci USA 2002; 99:9037–9042.

    PubMed  CAS  Google Scholar 

  114. Rosenmund C, Sigler A, Augustin I et al. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 2002; 33:411–424.

    PubMed  CAS  Google Scholar 

  115. Augustin I, Korte S, Rickmann M et al. The cerebellum-specific Munc13 isoform Munc13-3 regu lates cerebellar synaptic transmission and motor learning in mice. J Neurosci 2001; 21:10–17.

    PubMed  CAS  Google Scholar 

  116. Koch H, Hofmann K, Brose N. Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem J 2000; 349:247–253.

    PubMed  CAS  Google Scholar 

  117. Feldmann J, Callebaut I, Raposo G et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 2003; 115:461–473.

    PubMed  CAS  Google Scholar 

  118. Neeft M, Wieffer M, de Jong AS et al. Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol Biol Cell 2005; 16:731–741.

    PubMed  CAS  Google Scholar 

  119. Shirakawa R, Higashi T, Tabuchi A et al. Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J Biol Chem 2004; 279:10730–10737.

    PubMed  CAS  Google Scholar 

  120. Shiratsuchi T, Oda K, Nishimori H et al. Cloning and characterization of BAP 3 (BAI-associated protein 3), a C2 domain-containing protein that interacts with BAI1. Biochem Biophys Res Commun 1998; 251:158–165.

    PubMed  CAS  Google Scholar 

  121. Betz A, Thakur P, Junge HJ et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 2001; 30:183–196.

    PubMed  CAS  Google Scholar 

  122. Dresbach T, Qualmann B, Kessels MM et al. The presynaptic cytomatrix of brain synapses. Cell Mol Life Sci 2001; 58:94–116.

    PubMed  CAS  Google Scholar 

  123. Takao-Rikitsu E, Mochida S, Inoue E et al. Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J Cell Biol 2004; 164:301–311.

    PubMed  CAS  Google Scholar 

  124. Castillo PE, Schoch S, Schmitz F et al. RIM1alpha is required for presynaptic long-term potentiation. Nature 2002; 415:327–330.

    PubMed  CAS  Google Scholar 

  125. Dulubova I, Lou X, Lu J et al. A Munc13/RIM/Rab3 tripartite complex: From priming to plasticity? EMBO J 2005; 24:2839–2850.

    PubMed  CAS  Google Scholar 

  126. Betz A, Ashery U, Rickmann M et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 1998; 21:123–136.

    PubMed  CAS  Google Scholar 

  127. Duncan RR, Betz A, Shipston MJ et al. Transient, phorbol ester-induced DOC2-Munc13 interactions in vivo. J Biol Chem 1999; 274:27347–27350.

    PubMed  CAS  Google Scholar 

  128. Groffen AJ, Brian EC, Dudok JJ et al. Ca(2+)-induced recruitment of the secretory vesicle protein DOC2B to the target membrane. J Biol Chem 2004; 279:23740–23747.

    PubMed  CAS  Google Scholar 

  129. Orita S, Sasaki T, Komuro R et al. Doc2 enhances Ca2+-dependent exocytosis from PC12 cells. J Biol Chem 1996; 271:7257–7260.

    PubMed  CAS  Google Scholar 

  130. Sakaguchi G, Manabe T, Kobayashi K et al. Doc2alpha is an activity-dependent modulator of excitatory synaptic transmission. Eur J Neurosci 1999; 11:4262–4268.

    PubMed  CAS  Google Scholar 

  131. Hori T, Takai Y, Takahashi T. Presynaptic mechanism for phorbol ester-induced synaptic potentiation. J Neurosci 1999; 19:7262–7267.

    PubMed  CAS  Google Scholar 

  132. Mochida S, Orita S, Sakaguchi G et al. Role of the Doc2 alpha-Munc13-1 interaction in the neurotransmitter release process. Proc Natl Acad Sci USA 1998; 95:11418–11422.

    PubMed  CAS  Google Scholar 

  133. Orita S, Naito A, Sakaguchi G et al. Physical and functional interactions of Doc2 and Munc13 in Ca2+-dependent exocytotic machinery. J Biol Chem 1997; 272:16081–16084.

    PubMed  CAS  Google Scholar 

  134. Basu J, Shen N, Dulubova I et al. A minimal domain responsible for Munc13 activity. Nat Struct Mol Biol 2005.

    Google Scholar 

  135. Stevens DR, Wu ZX, Matti U et al. Identification of the minimal protein domain required for priming activity of munc13-1. Curr Biol 2005; 15:2243–2248.

    PubMed  CAS  Google Scholar 

  136. Junge HJ, Rhee JS, Jahn O et al. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 2004; 118:389–401.

    PubMed  CAS  Google Scholar 

  137. Toonen RF, Verhage M. Vesicle trafficking: Pleasure and pain from SM genes. Trends Cell Biol 2003; 13:177–186.

    PubMed  CAS  Google Scholar 

  138. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980; 21:205–215.

    PubMed  CAS  Google Scholar 

  139. Hosono R, Sassa T, Kuno S. Mutations affecting acetylcholine levels in the nematode Caenorhabditis elegans. J Neurochem 1987; 49:1820–1823.

    PubMed  CAS  Google Scholar 

  140. Weimer RM, Richmond JE, Davis WS et al. Defects in synaptic vesicle docking in unc-18 mutants. Nat Neurosci 2003; 6:1023–1030.

    PubMed  CAS  Google Scholar 

  141. Verhage M, Maia AS, Plomp JJ et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 2000; 287:864–869.

    PubMed  CAS  Google Scholar 

  142. Voets T, Toonen RF, Brian EC et al. Munc18-1 promotes large dense-core vesicle docking. Neuron 2001; 31:581–591.

    PubMed  CAS  Google Scholar 

  143. Oh E, Spurlin BA, Pessin JE et al. Munc18c heterozygous knockout mice display increased susceptibility for severe glucose intolerance. Diabetes 2005; 54:638–647.

    PubMed  CAS  Google Scholar 

  144. Biederer T, Sudhof TC. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J Biol Chem 2000; 275:39803–39806.

    PubMed  CAS  Google Scholar 

  145. Dulubova I, Sugita S, Hill S et al. A conformational switch in syntaxin during exocytosis: Role of munc18. EMBO J 1999; 18:4372–4382.

    PubMed  CAS  Google Scholar 

  146. Misura KM, Scheller RH, Weis WI. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 2000; 404:355–362.

    PubMed  CAS  Google Scholar 

  147. Sassa T, Harada S, Ogawa H et al. Regulation of the UNC-18-Caenorhabditis elegans syntaxin complex by UNC-13. J Neurosci 1999; 19:4772–4777.

    PubMed  CAS  Google Scholar 

  148. Fujita Y, Shirataki H, Sakisaka T et al. Tomosyn: A syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 1998; 20:905–915.

    PubMed  CAS  Google Scholar 

  149. Fujita Y, Sasaki T, Fukui K et al. Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: Its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem 1996; 271:7265–7268.

    PubMed  CAS  Google Scholar 

  150. Richmond JE, Weimer RM, Jorgensen EM. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 2001; 412:338–341.

    PubMed  CAS  Google Scholar 

  151. Ciufo LF, Barclay JW, Burgoyne RD et al. Munc18-1 regulates early and late stages of exocytosis via syntaxin-independent protein interactions. Mol Biol Cell 2005; 16:470–482.

    PubMed  CAS  Google Scholar 

  152. Weimer RM, Richmond JE. Synaptic vesicle docking: A putative role for the Munc18/Sec1 protein family. Curr Top Dev Biol 2005; 65:83–113.

    PubMed  CAS  Google Scholar 

  153. Korteweg N, Maia AS, Thompson B et al. The role of Munc18-1 in docking and exocytosis of peptide hormone vesicles in the anterior pituitary. Biol Cell 2005; 97:445–455.

    PubMed  CAS  Google Scholar 

  154. Groffen AJ, Jacobsen L, Schut D et al. Two distinct genes drive expression of seven tomosyn isoforms in the mammalian brain, sharing a conserved structure with a unique variable domain. J Neurochem 2005; 92:554–568.

    PubMed  CAS  Google Scholar 

  155. Pobbati AV, Razeto A, Boddener M et al. Structural basis for the inhibitory role of tomosyn in exocytosis. J Biol Chem 2004; 279:47192–47200.

    PubMed  CAS  Google Scholar 

  156. Sakisaka T, Baba T, Tanaka S et al. Regulation of SNAREs by tomosyn and ROCK: Implication in extension and retraction of neurites. J Cell Biol 2004; 166:17–25.

    PubMed  CAS  Google Scholar 

  157. de Vries KJ, Geijtenbeek A, Brian EC et al. Dynamics of munc18-1 phosphorylation/dephosphorylation in rat brain nerve terminals. Eur J Neurosci 2000; 12:385–390.

    PubMed  Google Scholar 

  158. Craig TJ, Evans GJ, Morgan A. Physiological regulation of Munc18/nSec1 phosphorylation on serine-313. J Neurochem 2003; 86:1450–1457.

    PubMed  CAS  Google Scholar 

  159. Schutz D, Zilly F, Lang T et al. A dual function for Munc-18 in exocytosis of PC12 cells. Eur J Neurosci 2005; 21:2419–2432.

    PubMed  Google Scholar 

  160. Gaisano HY, Lutz MP, Leser J et al. Supramaximal cholecystokinin displaces Munc18c from the pancreatic acinar basal surface, redirecting apical exocytosis to the basal membrane. J Clin Invest 2001; 108:1597–1611.

    PubMed  CAS  Google Scholar 

  161. Imai A, Nashida T, Shimomura H. Roles of Munc18-3 in amylase release from rat parotid acinar cells. Arch Biochem Biophys 2004; 422:175–182.

    PubMed  CAS  Google Scholar 

  162. Fasshauer D, Margittai M. A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J Biol Chem 2004; 279:7613–7621.

    PubMed  CAS  Google Scholar 

  163. Carr CM, Grote E, Munson M et al. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J Cell Biol 1999; 146:333–344.

    PubMed  CAS  Google Scholar 

  164. Dulubova I, Yamaguchi T, Arac D et al. Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. Proc Natl Acad Sci USA 2003; 100:32–37.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Groffen, A.J.A., Verhage, M. (2007). Regulation of SNARE Complex Assembly by Second Messengers. In: Molecular Mechanisms of Exocytosis. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39961-4_2

Download citation

Publish with us

Policies and ethics