Skip to main content

Stability of Concentrated Emulsions

  • Chapter
Book cover Emulsion Science

Abstract

The lifetime of emulsions may vary considerably from one system to another; it can change from minutes to many years, depending on the nature of the surfactants, the nature of both phases, and their volume ratio. Despite the large amount of work devoted to this issue, predicting the destruction scenario and the emulsion lifetime still raises challenging questions, especially with regard to concentrated emulsions. Irreversible coarsening of emulsions may proceed through two distinct mechanisms. The first mechanism, known as Ostwald ripening [1], is driven by the difference in Laplace pressure between droplets having different radii: the dispersed phase is transferred from the smaller to the larger droplets. The rate of droplet growth may be determined by the molecular diffusion across the continuous phase and/or by the permeation across the surfactant films. The second mechanism, known as coalescence, consists of the rupture of the thin film that forms between droplets, leading them to fuse into a single one. At a microscopic scale, a coalescence event proceeds through the nucleation of a thermally activated hole that reaches a critical size above which it becomes unstable and grows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ostwald: In “Die Wissenschaptlichen grundlegen der analytischen Chemie.” Analytisch Chemi, 221 pp. 3rd Ed. Wilhelm, Ingelmann, Leipzig (1901).

    Google Scholar 

  2. I.M. Lifshitz and V.V. Slyozov: “Kinetics of Diffuse Decomposition of Supersaturated Solid Solutions.” Soviet Physics JETP 35, 331 (1959).

    MathSciNet  Google Scholar 

  3. I.M. Lifshitz and V.V. Slyozov: “The Kinetics of Precipitation from Supersaturated Solid Solutions.” J. Phys. Chem. Solids 19, 35 (1961).

    Article  ADS  Google Scholar 

  4. A.S. Kabalnov, A.V. Pertzov, and E.D. Shchukin: “Ostwald Ripening in Emulsions 1. Direct Observations of Ostwald Ripening in Emulsions.” J. Colloid Interface Sci. 118, 590 (1987).

    Article  Google Scholar 

  5. A.S. Kabalnov, K.N. Makarov, A.V. Pertzov, and E.D. Shchukin: “Ostwald Ripening in Emulsions 2. Ostwald Ripening in Hydrocarbon Emulsions: Experimental Verification of Equation for Absolute Rates.” J. Colloid Interface Sci. 138, 98 (1990).

    Article  Google Scholar 

  6. D.J. Durian, D.A. Weitz, and D.J. Pine: “Scaling Behavior in Shaving Cream.” Phys. Rev. A 44, R7902 (1991).

    Article  ADS  Google Scholar 

  7. C. Wagner: “Theory for the Coarsening of Solid Precipitates Caused by Ostwald Ripening.” Z. Elektrochem. 65, 581 (1961).

    Google Scholar 

  8. J. Bibette, D.C. Morse, T.A. Witten, and D.A. Weitz: “Stability Criteria for Emulsions.” Phys. Rev. Lett. 69, 2439 (1992).

    Article  ADS  Google Scholar 

  9. A. Hasmy, R. Paredes, O. Sonnneville-Aubrun, B. Cabane, and R. Botet: “Dynamical Transition in a Model for Dry Foams.” Phys. Rev. Lett. 82, 3368 (1999).

    Article  ADS  Google Scholar 

  10. R. Lemlich: “Prediction of Changes in Bubble Size Distribution Due to Interbubble Gas Diffusion in Foam.” Ind. Eng. Chem. Fund. 17, 89 (1978).

    Article  Google Scholar 

  11. M. Tokuyama and K. Kawasaki: “Statistical-Mechanical Theory of Coarsening of Spherical Droplets.” Physica A 123, 386 (1984).

    Article  ADS  Google Scholar 

  12. Y. Enomoto, K. Kawasaki, and M. Tokuyama: “Computer Modelling of Ostwald Ripening.” Acta Metall. 35, 907 (1987).

    Article  Google Scholar 

  13. T.W. Patzek: “Self-Similar Collapse of Stationary Bulk Foams.” AIChE J. 39, 1697 (1993).

    Article  Google Scholar 

  14. S.P. Marsh and M.E. Glicksman: “Kinetics of Phase Coarsening in Dense Systems.” Acta Mater. 44, 3761 (1996).

    Article  Google Scholar 

  15. A.S. Kabalnov: “Can Micelles Mediate a Mass Transfer Between Oil Droplets?” Langmuir 10, 680 (1994).

    Article  Google Scholar 

  16. P. Taylor: “Ostwald Ripening in Emulsions.” Colloids Surfaces 99, 175 (1995).

    Article  Google Scholar 

  17. J. Weiss, N. Herrmann, and D.J. McClements: “Ostwald Ripening of Hydrocarbon Emulsion Droplets in Surfactant Solutions.” Langmuir 15, 6652 (1999).

    Article  Google Scholar 

  18. W.I. Higuchi and J. Misra: “Physical Degradation of Emulsions via the Molecular Diffusion Route and Its Possible Prevention.” J. Pharm. Sci. 51, 459 (1962).

    Article  Google Scholar 

  19. A.J. Webster and M.E. Cates: “Stabilization of Emulsions by Trapped Species.” Langmuir 14, 2068 (1998).

    Article  Google Scholar 

  20. A.J. Webster and M.E. Cates: “Osmotic Stabilization of Concentrated Emulsions and Foams.” Langmuir 17, 595 (2001).

    Article  Google Scholar 

  21. A.S. Kabalnov, A.V. Pertsov and E.D. Shchukin: “Ostwald Ripening in Two-Component Disperse Phase Systems: Application to Emulsion Stability.” Colloid Surfaces 24, 19 (1987).

    Article  Google Scholar 

  22. L. Taisne, P. Walstra, and B. Cabane: “Transfer of Oil Between Emulsion Droplets.” J. Colloid Interface Sci. 184, 378 (1996).

    Article  Google Scholar 

  23. R.A. Arlauskas and J.G. Weers: “Sedimentation Field Flow Fractionation Studies of Composition Ripening in Emulsions.” Langmuir 12, 1923 (1996).

    Article  Google Scholar 

  24. J. Weiss, J.N. Coupland, D. Brathwaite, and D.J. McClements: “Influence of Molecular Structure of Hydrocarbon Emulsion Droplets on Their Solubilization in Nonionic Surfactant Micelles.” Colloids Surfaces A 121, 53 (1997).

    Article  Google Scholar 

  25. N. Hedin and I. Furo: “Ostwald Ripening of an Emulsion Monitored by PGSE NMR.” Langmuir 17, 4746 (2001).

    Article  Google Scholar 

  26. L. Taisne and B. Cabane: “Emulsification and Ripening Following a Temperature Quench.” Langmuir 14, 4744 (1998).

    Article  Google Scholar 

  27. V. Schmitt, C. Cattelet, and F. Leal-Calderon: “Coarsening of Alkane-in-Water Emulsions Stabilized by Nonionic Poly(Oxyethylene) Surfactants: The Role of Molecular Permeation and Coalescence.” Langmuir 20, 46 (2004).

    Article  Google Scholar 

  28. O. Sonneville: “Biliquid Foams.” Ph.D thesis, Paris VI University (1997).

    Google Scholar 

  29. A.J. de Vries: “Foam Stability. IV. Kinetics and Activation Energy of Film Rupture.” Rec. Trav. Chim. Pays-Bas Belgique 77, 383 (1958).

    Article  Google Scholar 

  30. A.S. Kabalnov and H. Wennerström: “Macroemulsion Stability: The Oriented Wedge Theory Revisited.” Langmuir 12, 276 (1996).

    Article  Google Scholar 

  31. K. Shinoda and H. Saito: “The Effect of Temperature on the Phase Equilibrium and the Types of Dispersions of the Ternary System Composed of Water, Cyclohexane and Nonionic Surfactant.” J. Colloid Interface Sci. 26, 70 (1968).

    Article  Google Scholar 

  32. W.D. Bancroft: “The Theory of Emulsification, V.” J. Phys. Chem. 17, 501 (1913).

    Article  Google Scholar 

  33. O. Sonneville-Aubrun, V. Bergeron, T. Gulik-Krzywicki, B. Jönsson, H. Wennerström, P. Lindner, and B. Cabane: “Surfactant Films in Biliquid Foams.” Langmuir 16, 1566 (2000).

    Article  Google Scholar 

  34. V. Bergeron: “Disjoining Pressures and Film Stability of Alkyltrimethylammonium Bromide Foam Films.” Langmuir 13, 3474 (1997).

    Article  Google Scholar 

  35. R.M. Pashley: “Effect of Degassing on the Formation and Stability of Surfactant-Free Emulsions and Fine Teflon Dispersions.” J. Phys. Chem. B 107, 1714 (2003).

    Article  Google Scholar 

  36. N. Maeda, K.J. Rosenberg, J.N. Israelachvili, and R.M. Pashley: “Further Studies on the Effect of Degassing on the Dispersion and Stability of Surfactant Free Emulsions.” Langmuir 20, 3129 (2004).

    Article  Google Scholar 

  37. J.N. Israelachvili and R.M. Pashley: “The Hydrophobic Interaction is Long Range, Decaying Exponentially with Distance.” Nature 300, 341 (1982).

    Article  ADS  Google Scholar 

  38. M.E. Karaman, B.W. Ninham, and R.M. Pashley: “Effects of Dissolved Gas on Emulsions, Emulsions Polymerization, and Surfactant Aggregation.” J. Phys. Chem. 100, 15503 (1996).

    Article  Google Scholar 

  39. B. Deminière, A. Colin, F. Leal-Calderon, J.F. Muzy, and J. Bibette: “Cell Growth in a 3d Cellular System Undergoing Coalescence.” Phys. Rev. Lett. 82, 229 (1999).

    Article  ADS  Google Scholar 

  40. A.S. Kabalnov and J. Weers: “Macroemulsion Stability Within the Winsor III Region: Theory Versus Experiment.” Langmuir 12, 1931 (1996).

    Article  Google Scholar 

  41. V. Carrier: “Compared Stability of Aqueous Foams and Emulsions.” Ph.D thesis, Bordeaux I University (2001).

    Google Scholar 

  42. V. Schmitt, C. Cattelet, and F. Leal-Calderon: “Measurement of the Coalescence Frequency in Concentrated Emulsions.” Europhys. Lett. 67, 662 (2004).

    Article  ADS  Google Scholar 

  43. K. Pays: “Double Emulsions: Coalescence and Compositional Ripening.” Ph.D thesis, Bordeaux I University (2000).

    Google Scholar 

  44. K. Pays, J. Kahn, P. Pouligny, J. Bibette, and F. Leal-Calderon: “Double Emulsions: A Tool for Probing Thin Film Metastability.” Phys. Rev. Lett. 87, 178304 (2001).

    Article  ADS  Google Scholar 

  45. K. Pays, J. Kahn, B. Pouligny, J. Bibette, and F. Leal-Calderon: “Coalescence in Surfactant-Stabilized Double Emulsions.” Langmuir 17, 7758 (2001).

    Article  Google Scholar 

  46. S. Arditty, C.P. Whitby, B.P. Binks, V. Schmitt, and F. Leal-Calderon: “Some General Features of Limited Coalescence in Solid-Stabilized Emulsions.” Eur. Phys. J. E 11, 273 (2003).

    Article  Google Scholar 

  47. S. Arditty, C.P. Whitby, B.P. Binks, V. Schmitt, and F. Leal-Calderon: “Erratum—Some General Features of Limited Coalescence in Solid-Stabilized Emulsions.” Eur. Phys. J. E 12, 355 (2003).

    Article  Google Scholar 

  48. T.H. Whitesides and D.S. Ross: “Experimental and Theoretical Analysis of the Limited Coalescence Process: Stepwise Limited Coalescence.” J. Colloid Interface Sci. 169, 48 (1995).

    Article  Google Scholar 

  49. P. Philip, L. Bonakdar, P. Poulin, J. Bibette, and F. Leal-Calderon: “Viscous Sintering Phenomena in Liquid-Liquid Dispersions.” Phys. Rev. Lett. 84, 2018 (2000).

    Article  ADS  Google Scholar 

  50. G.W. Scherer: “Sintering of Low-Density Glasses: I. Theory.” J. Am. Ceram. Soc. 60, 236 (1977).

    Article  Google Scholar 

  51. G.W. Scherer and D.L. Bachman: “Sintering of Low-Density Glasses: II. Experimental Study.” J. Am. Ceram. Soc. 60, 239 (1977).

    Article  Google Scholar 

  52. G.W. Scherer: “Sintering of Low-Density Glasses: III. Effect of a Distribution of Pore Sizes.” J. Am. Ceram. Soc. 60, 243 (1977).

    Article  Google Scholar 

  53. G.W. Scherer: “Viscous Sintering in Inorganic Gels.” Colloid Surface Sci. 14, 265 (1987).

    Google Scholar 

  54. J. Philip, J.E. Poirier, J. Bibette, and F. Leal-Calderon: “Gelation and Coarsening in Dispersions of Highly Viscous Droplets.” Langmuir 17, 3545 (2001).

    Article  Google Scholar 

  55. F. Placin, M. Feder, and F. Leal-Calderon: “Viscous Sintering Phenomena in Liquid-Liquid Dispersions: Application to the Preparation of Silicone Macroporous Aerogels.” J. Phys. Chem. B 107, 9179 (2003).

    Article  Google Scholar 

  56. K. Boode and P. Walstra: “Partial Coalescence in Oil-in-Water Emulsions 1: Nature of the Aggregation.” Colloids and Surfaces A : Physicochem. Eng. Aspects 81, 121 (1993).

    Article  Google Scholar 

  57. K. Boode, P. Walstra, and A.E.A. de Groot-Mostert: “Partial Coalescence in Oil-in-Water Emulsions 2. Influence of the Properties of the Fat.” Colloids Surfaces A Physicochem. Eng. Aspects 81, 139 (1993).

    Article  Google Scholar 

  58. D. Rousseau: “Fat Crystals and Emulsion Stability.” Food Res. Int. 33, 3 (2000).

    Article  Google Scholar 

  59. M.A.J.S. van Boekel and P. Walstra: “Stability of Oil-in-Water Emulsions with Crystals in the Dispersed Phase.” Colloids Surfaces 3, 109 (1981).

    Article  Google Scholar 

  60. B.E. Brooker: “The Adsoprtion of Crystalline Fat to Air-Water Interface of Whipped Cream.” Food Struct. 9, 223 (1990).

    Google Scholar 

  61. K. Golemanov, S. Tcholakova, N.D. Denkov, and T.D. Gurkov “Selection of Surfactants for Stable Paraffin-in-Water Dispersions, Undergoing Solid-Liquid Transition of the Dispersed Particles.” Langmuir 22, 3560 (2006).

    Article  Google Scholar 

  62. E. Davies, E. Dickinson, and R. Bee: “Shear Stability of Sodium Caseinate Emulsions Containing Monoglyceride and Triglyceride Crystals.” Food Hydrocolloids 14, 145 (2000).

    Article  Google Scholar 

  63. N.D. Denkov: “Oil Based Antifoams.” Langmuir 20, 9463 (2004).

    Article  Google Scholar 

  64. G.A. van Aken: “Aeration of Emulsions by Whipping.” Colloids Surfaces A Physicochem. Eng. Aspects 190, 333 (2001).

    Article  Google Scholar 

  65. A.K. Smith, H.D. Goff, and Y. Kakuda: “Microstructure and Rheological Properties of Whipped Cream as Affected by Heat Treatment and Addition of Stabilizer.” Int. Dairy J. 10, 295 (2000).

    Article  Google Scholar 

  66. D.W. Stanley, H.D. Goff, and A.K. Smith: “Texture-Structure Relationships in Foamed Dairy Emulsions.” Food Res. Int. 29, 1 (1996).

    Article  Google Scholar 

  67. B.E. Brooker: “The Stabilization of Air in Foods Containing Fat. A Review.” Food Struct. 12, 115 (1993).

    Google Scholar 

  68. B.E. Brooker, M. Anderson, and A.T. Andrews: “The Development of Structure in Whipped Cream.” Food Microstruct. 5, 277 (1986).

    Google Scholar 

  69. H.D. Goff: “Instability and Partial Coalescence in Whippable Dairy Emulsions.” J. Dairy Sci. 80, 2620 (1997).

    Article  Google Scholar 

  70. H.D. Goff: “Formation and Stabilization of Structure in Ice-Cream and Related Products.” Curr. Opin. Colloid Interface Sci. 7, 432 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Leal-Calderon, F., Bibette, J., Schmitt, V. (2007). Stability of Concentrated Emulsions. In: Emulsion Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39683-5_6

Download citation

Publish with us

Policies and ethics