Skip to main content

Polymer Physics

  • Reference work entry

Definition of the Subject

Physics is uniquely endowed among the sciences with complete freedom from restriction to any particular domain of the physical world. It is able toturn its particular outlook on the scientific program and its special set of experimental and theoretical tools to most material phenomena. In particularit is not limited to any particular length scale, but is sensitive to the emergence of new structures and processes of any size. So macromolecularscience, born of the chemistry of the early 20th century, soon gave rise to a branch of physics that seeks to understand the special phenomena ofpolymer molecules and polymeric matter. Polymers are giant, usually linear molecules constructed as covalently-bonded chains of identical units, ormonomers. Individual polymer molecules may contain hundreds or even millions of monomers . Initiallydisfavored by an organic chemistry community that prized exactitude, polymers were largely ignored since their...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

R :

Radius of gyration of a polymer chain

N, M :

Degree of polymerization or number of monomers in a polymer chain, molecular weight.

?:

The screening length or correlation length in semi-dilute polymer solutions; the length over which local density is dominated by a single chain.

\( { N_\mathrm{e} } \), \( { M_\mathrm{e} } \) :

Entanglement degree of polymerization and molecular weight.

\( { l_\mathrm{p} } \) :

Persistence length of polymer chain.

?:

“Flory” exponent of a polymer chain relating R and N so that \( { R\sim N^{\nu} } \).

S(k):

Scattering structure factor from a polymeric fluid as function of scattering vector \( { k=4\pi \sin \theta/\lambda } \) where ? is the wavelength and ? the scattering angle of the experiment.

\( { \Pi(c) } \) :

Osmotic pressure of a solution as a function of concentration c.

s ij :

Components of the stress tensor.

d, D :

Dimensions of a macromolecular object and its embedding space.

\( { \mathbf{R}(n,t) } \) :

Functional description of a macromolecular contour as functions of monomer number n and time t.

G(t):

Time dependent relaxation modulus.

?:

Viscosity.

\( { k_\mathrm{B} } \) :

Boltzmann's constant.

?:

Flory interaction parameter between monomers of different chemistry.

Bibliography

Primary Literature

  1. Kuhn W (1936) Koll Z 76:258

    Google Scholar 

  2. Guth E, Mark H (1934) Monatshefte Chemie 65:93

    Google Scholar 

  3. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca

    Google Scholar 

  4. Zimm BH, Stockmayer WH (1949) J Chem Phys 17:1301

    ADS  Google Scholar 

  5. Edwards SF (1976) The configuration and dynamics of polymer chains. In: Balian R, Weill G (eds) Molecular Fluids. Gordon and Breach, London, pp 151–208

    Google Scholar 

  6. Zimm BH (1956) J Chem Phys 24:269

    MathSciNet  ADS  Google Scholar 

  7. Rouse PE (1953) J Chem Phys 21:1272

    ADS  Google Scholar 

  8. Zinn-Justin J (1993) Field Theory and Critical Phenomena. Clarendon Press, Oxford

    Google Scholar 

  9. De Gennes PG (1986) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca

    Google Scholar 

  10. Edwards SF (1966) Proc Phys Soc Lond 88:265

    ADS  Google Scholar 

  11. Adam M, Delsanti M (1984) J Phys France 45:1513

    Google Scholar 

  12. Verdier PH, Stockmayer WH (1962) J Chem Phys 36:227

    ADS  Google Scholar 

  13. Ferry JD (1986) Viscoelastic Properties of Polymers. Wiley, New York

    Google Scholar 

  14. Treloar LRG (1975) The Physics of Rubber Elasticity. Clarendon, Oxford

    Google Scholar 

  15. James H, Guth E (1947) J Chem Phys 15:669

    ADS  Google Scholar 

  16. Ball RC, Doi M, Edwards SF, Warner M (1981) Polymer 1010:22

    Google Scholar 

  17. Koningsvelt R, Stockmayer WH, Nies E (2001) Polymer Phase Diagrams. Oxford University Press, Oxford

    Google Scholar 

  18. Feynman R (1965) Hibbs Quantum Mechanics and Path Integrals. McGraw Hill, Kogakusha

    Google Scholar 

  19. Perkins TT, Smith DE, Larson RG, Chu S (1995) Stretching of a single tethered polymer in a uniform flow. Science 268:83

    ADS  Google Scholar 

  20. Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28:8759

    ADS  Google Scholar 

  21. Edwards SF (1965) Proc Phys Soc 85:613

    MathSciNet  ADS  MATH  Google Scholar 

  22. Mazur J, McCrakin FL (1968) J Chem Phys 49:648

    ADS  Google Scholar 

  23. de Gennes PG (1972) Phys Lett 38A:339–341

    Google Scholar 

  24. des Cloiseaux J (1981) J Phys 42:635

    Google Scholar 

  25. des Cloiseaux J, Jannink G (1990) Polymers in Solution. Oxford University Press, Oxford

    Google Scholar 

  26. Rubinstein M, Colby RH (2003) Polymer Physics. Oxford University Press, Oxford

    Google Scholar 

  27. Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30(11):1049–1118

    Google Scholar 

  28. Manning GS (1969) Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. J Chem Phys 51(3):924–933

    ADS  Google Scholar 

  29. Ha BY, Liu Andrea J (1998) Effect of Non-Pairwise-Additive Interactions on Bundles of Rodlike Polyelectrolytes. Phys Rev Lett 81:1011

    ADS  Google Scholar 

  30. Daoud M et al (1975) Macromolecules 8:804

    ADS  Google Scholar 

  31. Noda I et al (1981) Macromolecules 14:668

    ADS  Google Scholar 

  32. des Cloiseaux J (1975) J Phys 36:281

    Google Scholar 

  33. Deam RT, Edwards SF (1976) Phil Trans Roy Soc A 280:317–353

    MathSciNet  ADS  MATH  Google Scholar 

  34. Castillo HE, Goldbart P (2000) Phys Rev E 62:8159

    ADS  Google Scholar 

  35. Cates ME (1985) Excluded volume and hyperscaling in polymeric systems. J Phys Lett 46:L837–L843

    ADS  Google Scholar 

  36. Jian T, Vlassopoulos D, Fytas G, Pakula T, Brown W (1996) Colloid Polym Sci 274:1033

    Google Scholar 

  37. Higgins JS, Benoit H (1994) Polymers and Neutron Scattering. Clarendon Press, Oxford

    Google Scholar 

  38. Klein PG, Adams CH, Brereton MG, Ries ME, Nicholson TM, Hutchings LR, Richards RW (1998) Macromolecules 31:8871

    ADS  Google Scholar 

  39. Watanabe H (1999) Prog Polym Sci 24:1253

    Google Scholar 

  40. McLeish TCB (2002) Tube Theory of Entangled Polymer Dynamics Adv Phys 51:1379–1527

    Google Scholar 

  41. Lusignan CP et al (1995) Phys Rev E 52:6271

    ADS  Google Scholar 

  42. Rubinstein M, Panyukov S (2002) Macromoelcules 35:6670

    ADS  Google Scholar 

  43. Small PA (1975) Adv Polym Sci 18:1

    Google Scholar 

  44. Meissner J (1975) Pure Appl Chem 42:551

    Google Scholar 

  45. Edwards SF (1967) Proc Roy Soc London 92:9

    Google Scholar 

  46. de Gennes PG (1971) J Chem Phys 55:572

    ADS  Google Scholar 

  47. de Gennes PG (1975) J Phys (Paris) 36:1199

    Google Scholar 

  48. McLeish TCB, Ball RC (1986) J Polym Sci Polym Phys Edn 24:1755; McLeish TCB (1987) J Polym Sci Polym Edn Phys 25:2253

    Google Scholar 

  49. Watanabe H, Kotaka T (1984) Macromolecules 17:2316

    ADS  Google Scholar 

  50. Pearson DS, Halfand E (1984) Macromolecules 17:888

    ADS  Google Scholar 

  51. McLeish TCB, Allgaier J, Bick DK, Bishko G, Biswas P, Blackwell R, Blottière B, Clarke N, Gibbs B, Groves DJ, Hakiki A, Heenan R, Johnson JM, Kant R, Read DJ, Young RN (1999) Macromolecules 32:6734–6758

    Google Scholar 

  52. Inkson NJ, Graham RS, McLeish TCB, Groves DJ, Fernyhough CM (2006) Macromolecules 39:4217–4227

    ADS  Google Scholar 

  53. Pütz M, Kremer K, Grest GS (2000) Europhys Lett 49:735

    Google Scholar 

  54. Everaers R (1998) Eur Phys J B 4:341

    ADS  Google Scholar 

  55. Das C, Inkson NJ, Read DJ, Kelmanson Mark A, McLeish TCB (2006) J Rheol 50:207

    ADS  Google Scholar 

  56. Das C, Read DJ, Kelmanson MA, McLeish TCB (2006) Phys Rev E 74:011404

    ADS  Google Scholar 

  57. Milner ST, McLeish TCB (1998) Phys Rev Lett 81:725

    ADS  Google Scholar 

  58. Likhtman AE, McLeish TCB (2002) Macromolecules 35:6332–6343

    ADS  Google Scholar 

  59. Marrucci G, Non-Newt J (1996) Fluid Mech 62:279

    Google Scholar 

  60. Mead DW, Doi M, Larson RG (1998) Macromolecules 31:7895

    ADS  Google Scholar 

  61. Likhtman AE, McLeish TCB, Milner ST (2000) Phys Rev Lett 85:4550

    ADS  Google Scholar 

  62. Graham RS, Likhtman AE, Milner ST, McLeish TCB (2003) J Rheol 47:1171

    ADS  Google Scholar 

  63. Fetters LJ, Lohse DJ, Graessley WW (1999) J Polym Sci Polym Phys Edn 37:1023

    ADS  Google Scholar 

  64. Bent J et al (2003) Science 301:1691–1695

    ADS  Google Scholar 

  65. Graham RS (2006) Macromolecules 39:2700–2709

    ADS  Google Scholar 

  66. Heinrich M, Pyckhout-Hintzen W, Allgaier J, Richter D, Straube E, McLeish TCB, Wiedenmann A, Blackwell RJ, Read DJ (2004) Small-Angle Neutron Scattering Study of the Relaxation of a Melt of Polybutadiene H-Polymers Following a Large Step Strain. Macromolecules 37:5054–5064

    ADS  Google Scholar 

  67. McLeish TCB, Larson RG (1998) J Rheol 42:81

    ADS  Google Scholar 

  68. Inkson NJ, McLeish TCB, Groves DJ, Harlen OG (1999) J Rheol 43:873

    ADS  Google Scholar 

  69. Blackwell RJ, McLeish TCB, Harlen OG (2000) J Rheol 44:121

    ADS  Google Scholar 

  70. Graham RS, McLeish TCB, Harlen OG (2001) J Rheol 45:275

    ADS  Google Scholar 

  71. Lee K, Mackley MR, McLeish TCB, Nicholson TM, Harlen OG (2001) Experimental observation and numerical simulation of transient stress fangs within flowing molten polyethyelene. J Rheol 45:1261–1277

    ADS  Google Scholar 

  72. Ruokolainen J, Mezzenga R, Fredrickson GH, Kramer EJ, Hustad PD, Coates GW (2005) Morphology and thermodynamic behaviour of syndiotactic polypropylene-poly(ethylene-copropylene) block polymers prepared by living olefin polymerization. Macromolecules 38(3):851–60

    ADS  Google Scholar 

  73. Adhikari R, Michler GH (2004) Influence of molecular architecture on Morphology and Micromechanical behaviour of styrene/butadiene block copolymer systems. Prog Polym Sci 29:949–86

    Google Scholar 

  74. Leibler L, Ajdari A, Mourran A, Coulon G, Chatenay D (1994) Ordering in macromolecular systems. Springer, Berlin

    Google Scholar 

  75. Matsen MW (2005) In: Gompper G, Schick M (eds) Soft Condensed Matter. Wiley-VCH, Berlin

    Google Scholar 

  76. Onuki A (2002) Phase Transition Dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  77. Henderson IC, Clarke N (2004) Macromolecules 37:1952–1959

    ADS  Google Scholar 

  78. Tanaka H, Araki T, Koyama T, Nishikawa Y (2005) Universality of viscoelastic phase separation in soft matter. J Phys Cond Mat 17:S3195–S3204

    ADS  Google Scholar 

  79. Clarke N, McLeish TCB, Pavawongsak S, Higgins JS (1997) Viscoelastic Effects on the Phase-Separation of Polymer Blends. Macromolecules 30(15):4459–4463

    ADS  Google Scholar 

  80. Mao Y, McLeish TCB, Teixeira PIC, Read DJ (2001) Asymmetric landscapes of early spinodal decomposition. Eur Phys J E 6:69–77

    Google Scholar 

  81. Semenov AN (1985) Sov Phys–JETP 61:733

    Google Scholar 

  82. Matsen MW (2002) The standard Gaussian model for block copolymer melts. J Phys Cond Mat 14:R21–R47

    ADS  Google Scholar 

  83. Leibler L (1980) Macromolecules 13:1602

    ADS  Google Scholar 

  84. Fredrickson GH (2007) Computational field theory of polymers: opportunities and challenges. Soft Matter 3:1329–1334

    ADS  Google Scholar 

  85. Leibler L (2005) Nanostructured plastics: Joys of self-assembling. Prog Polym Sci 30:898–914

    Google Scholar 

  86. Discher DE, Eisenberg A (2002) Science 297:967–973

    ADS  Google Scholar 

  87. Govorun EN, Ivanov VA, Khokhlov AR, Khalatur PG, Borovinsky AL, Grosberg AYU (2001) Phys Rev E 64:R40903

    ADS  Google Scholar 

  88. Khokhlov AR, Semenov AN, Subbotin AV (2005) Shape transformations of protein-like copolymer globules. Eur Phys J E 17:283–306

    Google Scholar 

  89. Dinner AR, Šali A, Smith LJ, Dobson CM, Karplus M (2000) Understanding protein folding via free-energy surfaces from theory and experiment. TIBS 25:331–339

    Google Scholar 

  90. McLeish TCB (2005) Protein Folding in High-Dimensional Spaces: Hypergutters and the Role of Nonnative Interactions. Biophys J 88:172–183

    Google Scholar 

  91. Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE (2002) Single-Molecule Optomechanical Cycle. Science 296:1103–1106

    ADS  Google Scholar 

  92. Bu Z, Biehl R, Monkenbusch M, Richter D, Callaway DJE (2005) Coupled protein domain motion in Taq polymerase revealed byneutron spin-echo spectroscopy. PNAS 102:17646–17651

    ADS  Google Scholar 

  93. Hawkins RJ, McLeish TCB (2004) Coarse-Grained Model of Entropic Allostery. Phys Rev Lett 93:098104

    ADS  Google Scholar 

  94. Lehn JM, Mascal M, DeCian A, Fischer J (1990) J Chem Soc Chem Commun pp 479

    Google Scholar 

  95. Davies RPW, Aggeli A, Beevers AJ, Boden N, Carrick LM, Fishwick CWG, McLeish TCB, Nyrkova I, Semonov AN (2006) Self-assembling ß-Sheet Tape Forming Peptides. Supramol Chem 18:435–443

    Google Scholar 

  96. Barford W (2005) Electronic and Optical Properties of Conjugated Polymers. Oxford University Press, Oxford

    Google Scholar 

  97. Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Oxford University Press, Oxford

    Google Scholar 

Books and Reviews

  1. Larson RG (1999) The Structure and Dynamics of Complex Fluids. Clarendon Press, Oxford

    Google Scholar 

  2. Fredrickson GH (2006) The Equilibrium Theory of Inhomogeneous Polymers. Oxford University Press, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

McLeish, T.C.B. (2009). Polymer Physics . In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_409

Download citation

Publish with us

Policies and ethics