Skip to main content

Fractal Structures in Condensed Matter Physics

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 369 Accesses

Definition of the Subject

The idea of fractals is based on self‐similarity, which is a symmetry property of a systemcharacterized by invariance under an isotropic scale‐transformation on certain length scales. The term scale‐invariance has the implication that objects look the same on different scales of observations. While the underlyingconcept of fractals is quite simple, the concept is used for an extremely broad range of topics, providing a simple description of highly complexstructures found in nature. The term fractal was first introduced byBenoit B. Mandelbrot in 1975, who gave a definition on fractals in a simple manner “A fractal isa shape made of parts similar to the whole in some way”. Thus far, the concept of fractals has been extensively used to understandthe behaviors of many complex systems or has been applied from physics, chemistry, and biology for applied sciences and technological purposes. Examplesof fractal structures in condensed matter physics are numerous such...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Anomalous diffusion:

It is well known that the mean‐square displacement \( { \langle r^{2}(t) \rangle } \) of a diffusing particle on a uniform system is proportional to the time t such as \( { \langle r^{2}(t) \rangle \sim t } \). This is called normal diffusion. Particles on fractal networks diffuse more slowly compared with the case of normal diffusion. This slow diffusion called anomalous diffusion follows the relation given by \( { \langle r^{2}(t) \rangle \sim t^{a} } \), where the condition \( { 0<a<1 } \) always holds.

Brownian motion:

Einstein published the important paper in 1905 opening the way to investigate the movement of small particles suspended in a stationary liquid, the so‐called Brownian motion, which stimulated J. Perrin in 1909 to pursue his experimental work confirming the atomic nature of matter. The trail of a random walker provides an instructive example for understanding the meaning of random fractal structures.

Fractons:

Fractons, excitations on fractal elastic‐networks, were named by S. Alexander and R. Orbach in 1982. Fractons manifest not only static properties of fractal structures but also their dynamic properties. These modes show unique characteristics such as strongly localized nature with the localization length of the order of wavelength.

Spectral density of states:

The spectral density of states of ordinary elastic networks are expressed by the Debye spectral density of states given by \( { D(\omega)\sim\omega^{d-1} } \), where d is the Euclidean dimensionality. The spectral density of states of fractal networks is given by \( { D(\omega)\sim\omega^{d_\mathrm{s}-1} } \), where \( { d_\mathrm{s} } \) is called the spectral or fracton dimension of the system.

Spectral dimension:

This exponent characterizes the spectral density of states for vibrational modes excited on fractal networks. The spectral dimension constitutes the dynamic exponent of fractal networks together with the conductivity exponent and the exponent of anomalous diffusion.

Bibliography

Primary Literature

  1. Alexander S, Orbach R (1982) Density of states: Fractons. J Phys Lett 43:L625–631

    Google Scholar 

  2. Beeckmans JM (1963) The density of aggregated solid aerosol particles. Ann Occup Hyg 7:299–305

    Google Scholar 

  3. Ben-Avraham D, Havlin S (1982) Diffusion on percolation at criticality. J Phys A 15:L691–697

    ADS  Google Scholar 

  4. Brady RM, Ball RC (1984) Fractal growth of copper electro‐deposits. Nature 309:225–229

    ADS  Google Scholar 

  5. Broadbent SR, Hammersley JM (1957) Percolation processes I: Crystals and mazes. Proc Cambridge Philos Soc 53:629–641

    MathSciNet  ADS  MATH  Google Scholar 

  6. Courtens E, Vacher R, Pelous J, Woignier T (1988) Observation of fractons in silica aerogels. Europhys Lett 6:L691–697

    Google Scholar 

  7. de Gennes PG (1976) La percolation: un concept unificateur. Recherche 7:919–927

    Google Scholar 

  8. Einstein A (1905) Über die von der molekularkinetischen Theorie der Waerme geforderte Bewegung von in Ruhenden Fluessigkeiten Suspendierten Teilchen. Ann Phys 17:549–560

    MATH  Google Scholar 

  9. Gefen Y, Aharony A, Alexander S (1983) Anomalous diffusion on percolating clusters. Phys Rev Lett 50:70–73

    ADS  Google Scholar 

  10. Hausdorff F (1919) Dimension und Aeusseres Mass. Math Ann 79:157–179

    MathSciNet  Google Scholar 

  11. Kolb M, Botel R, Jullien R (1983) Scaling of kinetically growing clusters. Phys Rev Lett 51:1123–1126

    ADS  Google Scholar 

  12. Mandelbrot BB, Given JA (1984) Physical properties of a new fractal model of percolation clusters. Phys Rev Lett 52:1853–1856

    ADS  Google Scholar 

  13. Matsushita M, et al (1984) Fractal structures of zinc metal leaves grown by electro‐deposition. Phys Rev Lett 53:286–289

    ADS  Google Scholar 

  14. Meakin P (1983) Formation of fractal clusters and networks by irreversible diffusion‐limited aggregation. Phys Rev Lett 51:1119–1122

    ADS  Google Scholar 

  15. Nyquist H (1928) Termal agitation nof electric charge in conductors. Phys Rev 32:110–113

    ADS  Google Scholar 

  16. Perrin J (1909) Movement brownien et realite moleculaire. Ann Chim Phys 19:5–104

    Google Scholar 

  17. Rammal R, Toulouze G (1983) Random walks on fractal structures and percolation clusters. J Phys Lett 44:L13–L22

    Google Scholar 

  18. Smoluchowski MV (1906) Zur Kinematischen Theorie der Brownschen Molekular Bewegung und der Suspensionen. Ann Phys 21:756–780

    MATH  Google Scholar 

  19. Saffman PG, Taylor GI (1959) The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous fluid. Proc Roy Soc Lond Ser A 245:312–329

    MathSciNet  ADS  Google Scholar 

  20. Tambo N, Watanabe Y (1967) Study on the density profiles of aluminium flocs I (in japanese). Suidou Kyoukai Zasshi 397:2–10; ibid (1968) Study on the density profiles of aluminium flocs II (in japanese) 410:14–17

    Google Scholar 

  21. Tambo N, Watanabe Y (1979) Physical characteristics of flocs I: The floc density function and aluminium floc. Water Res 13:409–419

    Google Scholar 

  22. Vacher R, Woignier T, Pelous J, Courtens E (1988) Structure and self‐similarity of silica aerogels. Phys Rev B 37:6500–6503

    ADS  Google Scholar 

  23. Vold MJ (1963) Computer simulation of floc formation in a colloidal suspension. J Colloid Sci 18:684–695

    Google Scholar 

  24. Weitz DA, Oliveria M (1984) Fractal structures formed by kinetic aggregation of aqueous cold colloids. Phys Rev Lett 52:1433–1436

    ADS  Google Scholar 

  25. Weitz DA, Huang JS, Lin MY, Sung J (1984) Dynamics of diffusion‐limited kinetics aggregation. Phys Rev Lett 53:1657–1660

    ADS  Google Scholar 

  26. Witten TA, Sander LM (1981) Diffusion‐limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403

    ADS  Google Scholar 

  27. Yakubo K, Nakayama T (1989) Direct observation of localized fractons excited on percolating nets. J Phys Soc Jpn 58:1504–1507

    ADS  Google Scholar 

  28. Yakubo K, Nakayama T (1989) Fracton dynamics of percolating elastic networks: energy spectrum and localized nature. Phys Rev B 40:517–523

    ADS  Google Scholar 

Books and Reviews

  1. Barabasi AL, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Bunde A, Havlin S (1996) Fractals and disordered systems. Springer, New York

    MATH  Google Scholar 

  4. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Itahca

    Google Scholar 

  5. Falconer KJ (1989) Fractal geometry: Mathematical foundations and applications. Wiley, New York

    Google Scholar 

  6. Feder J (1988) Fractals. Plenum, New York

    MATH  Google Scholar 

  7. Flory PJ (1969) Statistical mechanics of chain molecules. Inter Science, New York

    Google Scholar 

  8. Halsey TC (2000) Diffusion‐limited aggregation: A model for pattern formation. Phys Today 11:36–41

    Google Scholar 

  9. Kadanoff LP (1976) Domb C, Green MS (eds) Phase transitions and critical phenomena 5A. Academic Press, New York

    Google Scholar 

  10. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    ADS  Google Scholar 

  11. Mandelbrot BB (1979) Fractals: Form, chance and dimension. Freeman, San Francisco

    Google Scholar 

  12. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    MATH  Google Scholar 

  13. Meakin P (1988) Fractal aggregates. Adv Colloid Interface Sci 28:249–331

    Google Scholar 

  14. Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Nakayama T, Yakubo K, Orbach R (1994) Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations. Rev Mod Phys 66:381–443

    ADS  Google Scholar 

  16. Nakayama T, Yakubo K (2003) Fractal concepts in condensed matter. Springer, Heidelberg

    Google Scholar 

  17. Sahimi M (1994) Applications of percolation theory. Taylor and Francis, London

    Google Scholar 

  18. Schroeder M (1991) Fractals, chaos, power laws. W.H. Freeman, New York

    MATH  Google Scholar 

  19. Stauffer D, Aharony A (1992) Introduction to percolation theory, 2nd edn. Taylor and Francis, London

    Google Scholar 

  20. Vicsek T (1992) Fractal growth phenomena, 2nd edn. World Scientific, Singapore

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Nakayama, T. (2009). Fractal Structures in Condensed Matter Physics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_229

Download citation

Publish with us

Policies and ethics