Skip to main content

Biomedical Applications of Organic–Inorganic Hybrid Nanoparticles

  • Chapter
  • First Online:

Abstract

In this chapter, we discuss the application of various hybrid nanoparticles in different areas of biotechnology and biomedicine. The application of hybrid nanoparticles to these fields stems obviously from the intrinsic properties of nanoparticles (determined by high surface energy and large surface curvature) and also from the ability to design both the chemical nature of the nanoparticle surface (e.g., by attachment of organic moieties) and the nanoparticle structure (e.g., nanoparticle shape and surface structure). These features have allowed for the biocompatibility enhancement of the nanoparticles and hence, their routine use in contact with biogical entities, from the most simple proteins and biomolecules to the most complex living organisms. The first part of this review focuses on biosensors, with optical, electrochemical and magnetic detection systems. Then, exploiting magnetic properties, an entire section is devoted to nuclear magnetic resonance imaging and hyperthermia. Finally, the use of different hybrid nanocapsules for drug delivery purposes is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: Biotechnology Meets materials science. Angewandte Chemie – International Edition 40:128–158

    Google Scholar 

  2. Sanchez C, Gomez-Romero P (2004) Functional Hybrid Materials. Wiley, Weinheim

    Google Scholar 

  3. Whitesides GM (2003) The right size in nanobiotechnology. Nature Biotechnology 21:1161–1165

    Article  CAS  Google Scholar 

  4. Whitesides GM, Alivisatos AP (2003) Nanotechnology Research Directions. IWGN Workshop, Report

    Google Scholar 

  5. Lagally ET, Mathies RA (2004) Integrated genetic analysis microsystems. Journal Physics D-Applied Physics 37:R245–R261

    Article  CAS  Google Scholar 

  6. Lübbers DW, Opitz N (1975) The pCO2/pO2-optrode: a new probe for measuring pCO2 or pO2 of gases and liquids (authors transl). Die pCO2/pO2-Optrode: Eine neue pCO2- bzw. pO2-Messonde zur Messung des pCO2 oder pO2 von Gasen und Flüssigkeiten. Z. Naturforsch. 30C:532–533

    Google Scholar 

  7. Wolfbeis OS (1991) Fiber optic chemical sensors and biosensors. CRC Press, Boca Raton

    Google Scholar 

  8. Brecht A, Gauglitz G (1995) Optical probes and transducers. Biosensors and Bioelectronics 10:923–936

    Article  CAS  Google Scholar 

  9. Gauglitz G (1996) Opto-chemical and opto-immuno sensors, Sensor Update vol. 1, VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  10. Boisde G, Harmer A (1996) Chemical and biochemical sensing with optical fibers and waveguides. Artech House, Boston

    Google Scholar 

  11. Blyth DJ, Poynter SJ, Russell DA (1996) Calcium biosensing with a sol–gel immobilized photoprotein. Analyst 121:1975–1978

    Article  CAS  Google Scholar 

  12. Zhao J, Jedlicka SS, Lannu JD, Bhunia AK, Rickus JL (2006) Liposome-doped nanocomposites as artificial-cell-based biosensors: Detection of listeriolysin O. Biotechnology Progress 22:32–37

    Article  CAS  Google Scholar 

  13. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology 19:631–635

    Article  CAS  Google Scholar 

  14. Tyagi S, Kramer FR (1996) Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology 14:303–308

    Article  CAS  Google Scholar 

  15. Tyagi S, Bratu DP, Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nature Biotechnology 16:49–53

    Article  CAS  Google Scholar 

  16. Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, Alland D (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nature Biotechnology 16:359–363

    Article  CAS  Google Scholar 

  17. Kostrikis LG, Huang Y, Moore JP, Wolinsky SM, Zhang L, Guo Y, Deutsch L, Phair J, Neumann AU, Ho DD (1998) A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nature Medicine 4:350–353

    Article  CAS  Google Scholar 

  18. Kostrikis LG, Tyagi S, Mhlanga MM, Ho DD, Kramer FR (1998) Spectral genotyping of human alleles. Science 279:1228–1229

    Article  CAS  Google Scholar 

  19. Fang X, Liu X, Schuster S, Tan W (1999) Designing a novel molecular beacon for surface-immobilized dna hybridization studies. Journal of the American Chemical Society 121:2921–2922

    Article  CAS  Google Scholar 

  20. Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society 124:9606–9612

    Article  CAS  Google Scholar 

  21. Giesendorf BAJ, Vet JAM, Tyagi S, Mensink EJMG, Trijbels FJM, Blom HJ (1998) Molecular beacons: A new approach for semi-automated mutation analysis. Clinical Chemistry 44:482–486

    CAS  Google Scholar 

  22. Ehricht R, Kirner T, Ellinger T, Foerster P, McCaskill JS (1997) Monitoring the amplification of CATCH, a 3SR based cooperatively coupled isothermal amplification system, by fluorimetric methods. Nucleic Acids Research. 25:4697–4699

    Article  CAS  Google Scholar 

  23. Gao W, Tyagi S, Kramer FR, Goldman E (1997) Messenger RNA release from ribosomes during 5¢-translational blockage by consecutive low-usage arginine but not leucine codons in Escherichia coli. Molecular Microbiology 25:707–716

    Article  CAS  Google Scholar 

  24. Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R (2003) Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Analytical Chemistry 75:3784–3791

    Article  CAS  Google Scholar 

  25. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  CAS  Google Scholar 

  26. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for infracellular gene regulation. Science 312:1027–1030

    Article  CAS  Google Scholar 

  27. Bergen JM, Pun SH (2005) Peptide-enhanced nucleic acid delivery. MRS Bulletin 30:663–667

    Article  CAS  Google Scholar 

  28. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnology 23:1418–1423

    Article  CAS  Google Scholar 

  29. Pockrand I, Swalen JD, Gordon JG, Philpott MR (1978) Surface plasmon spectroscopy of organic monolayer assemblies. Surface Science 74:237–244

    Article  CAS  Google Scholar 

  30. Gordon II JG, Ernst S (1980) Surface plasmons as a probe of the electrochemical interface. Surface Science 101:499–506

    Article  CAS  Google Scholar 

  31. Lukosz W (1991) Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing. Biosensors and Bioelectronics 6:215–225

    Article  Google Scholar 

  32. Homola J (2003) Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry 377:528–539

    Article  CAS  Google Scholar 

  33. Abel AP, Weller MG, Duveneck GL, Ehrat M, Widmer HM (1996) Fiber-optic evanescent wave biosensor for the detection of oligonucleotides. Analytical Chemistry 68:2905–2912

    Article  CAS  Google Scholar 

  34. Liu X, Tan W (1999) A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Analytical Chemistry 71:5054–5059

    Article  CAS  Google Scholar 

  35. Buckle PE, Davies RJ, Kinning T, Yeung D, Edwards PR, Pollard-Knight D (1993) The resonant mirror: A novel optical sensor for direct sensing of biomolecular interactions. Part II: Applications. Biosensors and Bioelectronics 8:355–363

    Article  CAS  Google Scholar 

  36. Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ (1993) The resonant mirror: A novel optical biosensor for direct sensing of biomolecular interactions. Part I: Principle of operation and associated instrumentation. Biosensors and Bioelectronics 8:347–353

    Article  CAS  Google Scholar 

  37. Liedberg B, Nylander C, Lundstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 4:299–304

    Article  CAS  Google Scholar 

  38. Johnsson B, Lofas S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Analytical Biochemistry 198:268–277

    Article  CAS  Google Scholar 

  39. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society 120:1959–1964

    Article  CAS  Google Scholar 

  40. Zhao J, Das A, Zhang X, Schatz GC, Sligar SG, VanDuyne RP (2006) Resonance surface plasmon spectroscopy: Low molecular weight substrate binding to cytochrome P450. Journal of the American Chemical Society 128:11004–11005

    Article  CAS  Google Scholar 

  41. Lyandres O, Shah NC, Yonzon CR, Walsh JR. JT, Glucksberg MR, Van Duyne RP (2005) Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Analytical Chemistry 77:6134–6139

    Article  CAS  Google Scholar 

  42. Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. Journal of the American Chemical Society 127:4484–4489

    Article  CAS  Google Scholar 

  43. Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society 127:2264–2271

    Article  CAS  Google Scholar 

  44. Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004) A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease. Nano Letters 4:1029–1034

    Article  CAS  Google Scholar 

  45. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. Journal of Physical Chemistry B 108:6961–6968

    Article  CAS  Google Scholar 

  46. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society 124:10596–10604

    Article  CAS  Google Scholar 

  47. Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Van Duyne RP (2003) A Nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle Adhesion. Journal of Physical Chemistry B 107:1772–1780

    Article  CAS  Google Scholar 

  48. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, VanDuyne RP (2004) A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. Journal of the American Chemical Society 126:12669–12676

    Article  CAS  Google Scholar 

  49. Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. Journal of the American Chemical Society 127:5043–5048

    Article  CAS  Google Scholar 

  50. Haes AJ, Zou S, Zhao J, Schatz GC, VanDuyne RP (2006) Localized surface plasmon resonance spectroscopy near molecular resonances. Journal of the American Chemical Society 128:10905–10914

    Article  CAS  Google Scholar 

  51. Wang J (1995) Electroanalysis and biosensors. Analytical Chemistry 67:487R–492R

    Google Scholar 

  52. Wang J (1999) Sol–gel materials for electrochemical biosensors. Analytica Chimica Acta 399:21–27

    Article  CAS  Google Scholar 

  53. Walcarius A (2001) Electrochemical applications of silica-based organic–inorganic hybrid materials. Chemistry of Materials 13:3351–3372

    Article  CAS  Google Scholar 

  54. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angewandte Chemie – International Edition 43:6042–6108

    Article  CAS  Google Scholar 

  55. Wang J (2005) Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  56. Luo XL, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    Google Scholar 

  57. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nature Biotechnology 21:1192–1199

    Article  CAS  Google Scholar 

  58. Wang J (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1:1036–1043

    Article  CAS  Google Scholar 

  59. Degani Y, Heller A (1988) Direct electrical communication between chemically modified enzymes and metal-electrodes. 2. Methods for bonding electron-transfer relays to glucose-oxidase and D-amino-acid oxidase. Journal of the American Chemical Society 110:2615–2620

    Article  CAS  Google Scholar 

  60. Willner I, Riklin A, Shoham B, Rivenzon D, Katz E (1993) Development of novel biosensor enzyme electrodes – Glucose-oxidase multilayer arrays immobilized onto self-assembled monolayers electrodes. Advanced Materials 5:912–915

    Article  CAS  Google Scholar 

  61. Emr SA, Yacynych AM (1995) Use of polymer-films in amperometric biosensors. Electroanalysis 7:913–923

    Article  CAS  Google Scholar 

  62. Raitman OA, Katz E, Buckmann AF, Willner I (2002) Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. Journal of the American Chemical Society 124:6487–6496

    Article  CAS  Google Scholar 

  63. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) Plugging into enzymes: Nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881

    Article  CAS  Google Scholar 

  64. Liu T, Zhong J, Gan X, Fan C, Li G, Matsuda N (2003) Wiring electrons of cytochrome c with silver nanoparticles in layered films. ChemPhysChem 4:1364–1366

    Article  CAS  Google Scholar 

  65. Gan X, Liu T, Zhu X, Li G (2004) An electrochemical biosensor for nitric oxide based on silver nanoparticles and hemoglobin. Analytical Sciences 20:1271–1275

    Article  CAS  Google Scholar 

  66. Zhou H, Gan X, Liu T, Yang QL, Li GX (2005) Effect of nano cadmium sulfide on the electron transfer reactivity and peroxidase activity of hemoglobin. Journal of Biochemical and Biophysical Methods 64:38–45

    Article  CAS  Google Scholar 

  67. Pardo-Yissar V, Katz E, Wasserman J, Willner I (2003) Acetylcholine esterase-labeled CdS nanoparticles on electrodes: Photoelectrochemical sensing of the enzyme inhibitors. Journal of the American Chemical Society 125:622–623

    Article  CAS  Google Scholar 

  68. Dequaire M, Degrand C, Limoges B (2000) An electrochemical metalloimmunoassay based on a colloidal gold label. Analytical Chemistry 72:5521–5528

    Article  CAS  Google Scholar 

  69. Authier L, Grossiord C, Brossier P, Limoges B (2001) Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Analytical Chemistry 73:4450–4456

    Article  CAS  Google Scholar 

  70. Wang J, Xu DK, Kawde AN, Polsky R (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Analytical Chemistry 73:5576–5581

    Article  CAS  Google Scholar 

  71. Wang J, Polsky R, Xu DK (2001) Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir 17:5739–5741

    Article  CAS  Google Scholar 

  72. Cai H, Wang YQ, He PG, Fang YH (2002) Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica Acta 469:165–172

    Article  CAS  Google Scholar 

  73. Wang J, Xu DK, Polsky R (2002) Magnetically-induced solid-state electrochemical detection of DNA hybridization. Journal of the American Chemical Society 124:4208–4209

    Article  CAS  Google Scholar 

  74. Kawde AN, Wang J (2004) Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis 16:101–107

    Article  CAS  Google Scholar 

  75. Wang J, Polsky R, Merkoci A, Turner KL (2003) "Electroactive beads" for ultrasensitive DNA detection. Langmuir 19:989–991

    Article  CAS  Google Scholar 

  76. Mak WC, Cheung KY, Trau D, Warsinke A, Scheller F, Renneberg R (2005) Electrochemical bioassay utilizing encapsulated electrochemical active microcrystal biolabels. Analytical Chemistry 77:2835–2841

    Article  CAS  Google Scholar 

  77. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Article  CAS  Google Scholar 

  78. Merkoci A, Aldavert M, Marin S, Alegret S (2005) New materials for electrochemical sensing V: Nanoparticles for DNA labelling. Trac-Trends in Analytical Chemistry 24:341–349

    Article  CAS  Google Scholar 

  79. Willner I, Patolsky F, Wasserman J (2001) Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angewandte Chemie – International Edition 40:1861–1864

    Article  CAS  Google Scholar 

  80. Wang J, Liu GD, Merkoci A (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society 125:3214–3215

    Article  CAS  Google Scholar 

  81. Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506

    Article  CAS  Google Scholar 

  82. Maalouf R, Soldatkin A, Vittori O, Sigaud M, Saikali Y, Chebib H, Loir AS, Garrelie F, Donnet C, Jaffrezic-Renault N (2006) Study of different carbon materials for amperometric enzyme biosensor development. Materials Science and Engineering: C 26:564–567

    Article  CAS  Google Scholar 

  83. Wu J, Zou Y, Li X, Liu H, Shen G, Yu R (2005a) A biosensor monitoring DNA hybridization based on polyaniline intercalated graphite oxide nanocomposite. Sensors and Actuators, B: Chemical 104:43–49

    Article  CAS  Google Scholar 

  84. Wu L, Yuan X, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. Journal of Membrane Science 250:167–173

    Article  CAS  Google Scholar 

  85. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  86. Sun YP, Fu KF, Lin Y, Huang WJ (2002) Functionalized carbon nanotubes: Properties and applications. Accounts of Chemical Research 35:1096–1104

    Article  CAS  Google Scholar 

  87. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes - the route toward applications. Science 297:787–792

    Google Scholar 

  88. Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Letters 2:285–288

    Article  CAS  Google Scholar 

  89. Lin Y, Lu F, Tu Y, Ren Z (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters 4:191–195

    Article  CAS  Google Scholar 

  90. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angewandte Chemie – International Edition 41:1853–1859

    Article  CAS  Google Scholar 

  91. Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochemistry Communications 5:689–694

    Article  CAS  Google Scholar 

  92. Wang J, Musameh M (2003) Carbon nanotube/Teflon composite electrochemical sensors and biosensors. Analytical Chemistry 75:2075–2079

    Article  CAS  Google Scholar 

  93. Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications 4:743–746

    Article  CAS  Google Scholar 

  94. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society 125:2408–2409

    Article  CAS  Google Scholar 

  95. Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical Chemistry 76:1083–1088

    Article  CAS  Google Scholar 

  96. Joshi PP, Merchant SA, Wang Y, Schmidtke DW (2005) Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Analytical Chemistry 77:3183–3188

    Article  CAS  Google Scholar 

  97. Gooding JJ, Wibowo R, Liu J, Yang W, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. Journal of the American Chemical Society 125:9006–9007

    Article  CAS  Google Scholar 

  98. Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angewandte Chemie – International Edition 43:2113–2117

    Article  CAS  Google Scholar 

  99. Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events. Journal of the American Chemical Society 126:3010–3011

    Article  CAS  Google Scholar 

  100. Zhu N, Cai H, He P, Fang Y (2003) Tris(2,2'-bipyridyl)cobalt(III)-doped silica nanoparticle DNA probe for the electrochemical detection of DNA hybridization. Analytica Chimica Acta 481:181–189

    Article  CAS  Google Scholar 

  101. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol–gel materials. Chemistry of Materials 6:1605–1614

    Article  CAS  Google Scholar 

  102. Wang J, Pamidi PVA, Rogers KR (1998) Sol–Gel-Derived Thick-Film Amperometric Immunosensors. Analytical Chemistry 70:1171–1175

    Article  CAS  Google Scholar 

  103. Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol–gel derived materials. Analytica Chimica Acta 461:1–36

    Article  CAS  Google Scholar 

  104. Sampath S, Lev O (1996) Renewable, reagentless glucose sensor based on a redox modified enzyme and carbon-silica composite. Electroanalysis 8:1112–1116

    Article  CAS  Google Scholar 

  105. Narang U, Prasad PN, Bright FV, Ramanathan K, Kumar ND, Malhotra BD, Kamalasanan MN, Chandra S (1994) Glucose biosensor based on a sol–gel-derived platform. Analytical Chemistry 66:3139–3144

    Article  CAS  Google Scholar 

  106. Prieto AP, Ahrentorp F, Johansson C, Larsson K, Krozer A (2004) Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles. Biosensors Bioelectronics 19:945–951

    Article  CAS  Google Scholar 

  107. Tartaj P (2006) Nanomagnets-From fundamental physics to biomedicine. Current Nanoscience 2:43–53

    Article  CAS  Google Scholar 

  108. Weitschies W, Kötitz R, Bunte T, Trahms L (1997) Determination of relaxing or remanent nanoparticle magnetization provides a novel binding-specific technique for the evaluation of immunoassays. Pharmaceutical and Pharmacological Letters 7:5–8

    CAS  Google Scholar 

  109. Rheinländer T, Kötitz R, Weitschies W, Semmler W (2000) Magnetic fractionation of magnetic fluids. Journal Magnetism Magnetic Materials 219:219–228

    Article  Google Scholar 

  110. Street R, Woolley JC (1949) A study of magnetic viscosity. Proceedings Physical Society A 62:562–572

    Article  Google Scholar 

  111. Frenkel J (1955) The Kinetic Theory of Liquids. Dover, New York

    Google Scholar 

  112. Kötitz R, Weitschies W, Trahms L, Brewer W, Semmler W (1999) Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. Journal Magnetism Magnetic Materials 194:62–68

    Article  Google Scholar 

  113. Fannin PC, Scaife BKP, Charles SW (1993) Relaxation and resonance in ferrofluids. Journal Magnetism Magnetic Materials 122:159–163

    Article  CAS  Google Scholar 

  114. Hanson M, Johansson C (1991) Interaction effects in the dynamic response of magnetic liquids. Journal Magnetism Magnetic Materials 101:45–46

    Article  CAS  Google Scholar 

  115. Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton R (1998) A biosensor based on magnetoresistance technology. Biosensors Bioelectronics 13:731–739

    Article  CAS  Google Scholar 

  116. Miller MM, Prinz GA, Cheng SF, Bounnak S (2002) Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. Applied Physics Letters 81:2211–2213

    Article  CAS  Google Scholar 

  117. Kurlyandskaya G, Levit V (2005) Magnetic dynabeads® detection by sensitive element based on giant magnetoimpedance. Biosensors Bioelectronics 20:1611–1616

    Article  CAS  Google Scholar 

  118. Grancharov SG, Zeng H, Sun S, Wang SX, O'Brien S, Murray CB, Kirtley JR, Held GA (2005) Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. Journal Physical Chemistry B 109:13030–13035

    Article  CAS  Google Scholar 

  119. Weinmann HJ, Ebert W, Misselvitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. European Journal of Radiology 46:33–44

    Article  Google Scholar 

  120. Shapiro MG, Atanasijevic T, Faas H, Westmeyer GG, Jasanoff A (2006) Dynamic imaging with MRI contrast agents: quantitative considerations. Magnetic Resonance Imaging 24:449–462

    Article  CAS  Google Scholar 

  121. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chemical Review 87:901–927

    Article  CAS  Google Scholar 

  122. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). Journal Magnetic Resonance 143:79–87

    Article  CAS  Google Scholar 

  123. Bloch F, Hanson WW and Packard M (1948), Phys Rev 70:474

    Google Scholar 

  124. Lauterbur PC, Mendoca-Dias MH, Rudin AM (1978) Frontier of Biological Energetics. Dutton PL, Leigh LS, Scarpa A, Eds. Academic, New York

    Google Scholar 

  125. Allen M, Bulte JWM, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T (2005) Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magnetic Resonance Medicine 54:807–812

    Article  CAS  Google Scholar 

  126. Anderson EA, Isaacman S, Peabody DS, Wang EY, Canary JW, Kirshenbaum K (2006) Viral nanoparticles donning a paramagnetic coat: Conjugation of MRI contrast agents to the MS2 capsid. Nanoletters 6:1160–1164

    Article  CAS  Google Scholar 

  127. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications – reflections on the field. Advanced Drug Delivery Reviews 57:2106–2129

    Article  CAS  Google Scholar 

  128. Aulenta F, Hayes W, Rannard S (2003) Dendrimers: a new class of nanoscopic containers and delivery devices. European Polymer Journal 39:1741–1771

    Article  CAS  Google Scholar 

  129. Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. Journal American Chemical Society 120:4877–4878

    Article  CAS  Google Scholar 

  130. Talanov VS, Regino CAS, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nanoletters 6:1459–1463

    Article  CAS  Google Scholar 

  131. Rieter WJ, Taylor KML, An H, Lin W, Lin WB (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. Journal American Chemical Society 128:9024–9025

    Article  CAS  Google Scholar 

  132. Mendonca MH, Lauterbur PC (1986) Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen. Magnetic Resonance Medicine 3:328–330

    Article  Google Scholar 

  133. Olsson MBE, Persson BRB, Salford LG, Schröder U (1986) Magnetic resonance imaging. Ferromagnetic particles as contrast agent in T2 NMR imaging. Magnetic Resonance Imaging 4:437–440

    Google Scholar 

  134. Renshaw PF, Owen CS, Maclaughlin AC, Frey TG, Leigh JS (1986) Ferromagnetic contrast agents: A new approach. Magnetic Resonance Medicine 3:217–225

    Article  CAS  Google Scholar 

  135. Tartaj P, Morales MP, Gonzalez-Carreño T, Veintemillas-Verdaguer S, Serna CJ (2006) Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook of Magnetic Materials, Vol. 16, Ed. K.H.J. Buschow. Elsevier, Amsterdam, Chap. 5, pp. 403–482

    Google Scholar 

  136. Roberts PL, Chuang N, Roberts HC (2000) Neuroimaging: Do we really need new contrast agents for MRI. European Journal Radiology 34:166–178

    Article  CAS  Google Scholar 

  137. Zavaljevski A, Holland SK, Dhawan AP (1999) Multilevel computed hemodynamic parameter maps from dynamic perfusion MRI. IEEE Transactions on Instrumentation and Measurement 48:711–720

    Article  Google Scholar 

  138. Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging: Physicochemical characteristics and clinical applications. A review. Journal Drug Targeting 6:167–174

    Article  CAS  Google Scholar 

  139. Weissleder R, Heautot JF, Schaffer BK, Nossif N, Papisov A, Bogdanov A, Brady TJ (1994) MR lymphography: Study of a high-efficiency lymphotrophic agent. Radiology 191:225–230

    CAS  Google Scholar 

  140. Clement O, Guimaraes R, de Kerviler E, Frija G (1994) Magnetic resonance lymphography: Enhancement patterns using superparamagnetic nanoparticles. Investigative Radiology 29:S226–S228

    Article  Google Scholar 

  141. Laconte L, Mitin N, Bao G (2005) Magnetic nanoparticle probes. Nanotoday 1:32–38

    Google Scholar 

  142. Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY, Read EJ, Frank JA (2004) Efficient magnetic cell labelling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223

    Article  CAS  Google Scholar 

  143. Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labelling and in vivo tracking of stem cells. Nature Biotechnology 19:1141–1147

    Article  CAS  Google Scholar 

  144. Bomati-Miguel O, Morales MP, Tartaj P, Ruiz-Cabello J, Bonville P, Santos M, Zhao XQ, Veintemillas-Verdaguer S (2005) Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials 26:5695–5703

    Article  CAS  Google Scholar 

  145. Li Z, Wei L, Gao M, Lei H (2005) One-pot reaction to synthesize biocompatible magnetite nanoparticles. Advanced Materials 17:1001–1005

    Article  CAS  Google Scholar 

  146. Jun Y, Hou Y, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Su JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. Journal American Chemical Society 127:5732–5733

    Article  CAS  Google Scholar 

  147. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. Journal Materials Chemistry 14:2161–2175

    Article  CAS  Google Scholar 

  148. Mahato RI (2005) Water insoluble and soluble lipids for gene delivery. Advanced Drug Delivery Reviews 57: 699–712

    Article  CAS  Google Scholar 

  149. Kostarelos K (2003) Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Advanced Colloid Interface Science 106: 147–168

    Article  CAS  Google Scholar 

  150. Lavan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nature Biotechnology 21:1184–1191

    Article  CAS  Google Scholar 

  151. Steinberg-Yfrach G, Liddell PA, Hung S-C, Moore AL, Gust D, Moore TA (1997) Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385:239–241

    Article  CAS  Google Scholar 

  152. Steinberg-Yfrach G, Rigaud J-L, Durantini EN, Moore AL, Gust D, Moore TA (1998) Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392:479–482

    Article  CAS  Google Scholar 

  153. Gokel GW, De Wall SL (1999) Redox control of aggregation in synthetic vesicles. Advances in Supramolecular Chemistry 5:203–235

    CAS  Google Scholar 

  154. Westmark PR, Gardiner SJ, Smith BD (1996) Selective monosaccharide transport through lipid bilayers using boronic acid carriers. Journal of the American Chemical Society 118:11093–11100

    Article  CAS  Google Scholar 

  155. Boon JM, Smith BD (1999) Facilitated phospholipid translocation across vesicle membranes using low-molecular-weight synthetic flippases. Journal of the American Chemical Society 121:11924–11925

    Article  CAS  Google Scholar 

  156. Boon JM, Smith BD (2001) Facilitated phosphatidylcholine flip-flop across erythrocyte membranes using low molecular weight synthetic translocases. Journal of the American Chemical Society 123:6221–6226

    Article  CAS  Google Scholar 

  157. Vandenburg YR, Zhang Z-Y, Fishkind DJ, Smith BD (2000) Enhanced cell binding using liposomes containing an artificial carbohydrate-binding receptor. Chemical Communications:149–150

    Google Scholar 

  158. Lasic DD (1993) Liposomes: From Physics to Applications. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  159. Gregoriadis G (Editor) (1993) Liposome Technology. CRC Press, Boca Raton, FL (USA)

    Google Scholar 

  160. Vamvakaki V, Fournier D, Chaniotakis NA (2005) Fluorescence detection of enzymatic activity within a liposome based nano-biosensor. Biosensors and Bioelectronics 21:384–388

    Article  CAS  Google Scholar 

  161. Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202:1290–1293

    Article  CAS  Google Scholar 

  162. Matsui K, Sando S, Sera T, Aoyama Y, Sasaki Y, Komatsu T, Terashima T, Kikuchi J-I (2006) Cerasome as an infusible, cell-friendly, and serum-compatible transfection agent in a viral size. Journal of the American Chemical Society 128:3114–3115

    Article  CAS  Google Scholar 

  163. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America 84:7413–7417

    Article  CAS  Google Scholar 

  164. Kabanov AV, Felgner PL, Seymour LW(Eds.) (1998) Self-Assembling Complexes for Gene Delivery: From Laboratory to Clinical Trial. Wiley, Chichester

    Google Scholar 

  165. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr J-P (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America 92:7297–7301

    Article  CAS  Google Scholar 

  166. Rensen PCN, Sliedregt LAJM, Ferns M, Kieviet E, Van Rossenberg SMW, Van Leeuwen SH, Van Berkel TJC, Biessen EAL (2001) Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytes in vitro and in vivo. Journal of Biological Chemistry 276:37577–37584

    Article  CAS  Google Scholar 

  167. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. Journal of the American Chemical Society 126:6520–6521

    Article  CAS  Google Scholar 

  168. Zhang YP, Sekirov L, Saravolac EG, Wheeler JJ, Tardi P, Clow K, Leng E, Sun R, Cullis PR, Scherrer P (1999) Stabilized plasmid-lipid particles for regional gene therapy: Formulation and transfection properties. Gene Therapy 6:1438–1447

    Article  CAS  Google Scholar 

  169. Bettinger T, Remy J-S, Erbacher P (1999) Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjugate Chemistry 10:558–561

    Article  CAS  Google Scholar 

  170. Dauty E, Remy J-S, Blessing T, Behr J-P (2001) Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. Journal of the American Chemical Society 123:9227–9234

    Article  CAS  Google Scholar 

  171. Zuber G, Zammut-Italiano L, Dauty E, Behr J-P (2003) Targeted gene delivery to cancer cells: Directed assembly of nanometric DNA particles coated with folic acid. Angewandte Chemie – International Edition 42:2666–2669

    Article  CAS  Google Scholar 

  172. Keller M, Harbottle RP, Perouzel E, Colin M, Shah I, Rahim A, Vaysse L, Bergau A, Moritz S, Brahimi-Horn C, Coutelle C, Miller AD (2003) Nuclear localisation sequence templated nonviral gene delivery vectors: Investigation of intracellular trafficking events of LMD and LD vector systems. ChemBioChem 4:286–298

    Article  CAS  Google Scholar 

  173. Perouzel E, Jorgensen MR, Keller M, Miller AD (2003) Synthesis and formulation of neoglycolipids for the functionalization of liposomes and lipoplexes. Bioconjugate Chemistry 14:884–898

    Article  CAS  Google Scholar 

  174. Nakai T, Kanamori T, Sando S, Aoyama Y (2003) Remarkably size-regulated cell invasion by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. Journal of the American Chemical Society 125:8465–8475

    Article  CAS  Google Scholar 

  175. Katagiri K, Hamasaki R, Ariga K, Kikuchi J-I (2002) Layered paving of vesicular nanoparticles formed with cerasome as a bioinspired organic–inorganic hybrid. Journal of the American Chemical Society 124:7892–7893

    Article  CAS  Google Scholar 

  176. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release 65:271–284

    Article  CAS  Google Scholar 

  177. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835

    Article  Google Scholar 

  178. Decher G (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  179. Sukhorukov GB, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov VI, Möhwald H (1998) Stepwise polyelectrolyte assembly on particle surfaces: A novel approach to colloid design. Polymers for Advanced Technologies 9:759–767

    Article  CAS  Google Scholar 

  180. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angewandte Chemie – International Edition 37:2202–2205

    Article  CAS  Google Scholar 

  181. Shchukin DG, Sukhorukov GB (2003) Selective YF3 nanoparticle formation in polyelectrolyte capsules as microcontainers for yttrium recovery from aqueous solutions. Langmuir 19:4427–4431

    Article  CAS  Google Scholar 

  182. Farhat TR, Schlenoff JB (2003) Doping-controlled ion diffusion in polyelectrolyte multilayers: Mass transport in reluctant exchangers. Journal of the American Chemical Society 125:4627–4636

    Article  CAS  Google Scholar 

  183. Antipov AA, Sukhorukov GB, Möhwald H (2003) Influence of the ionic strength on the polyelectrolyte multilayers' permeability. Langmuir 19:2444–2448

    Article  CAS  Google Scholar 

  184. Sukhorukov GB, Brumen M, Donath E, Möhwald H (1999) Hollow polyelectrolyte shells: Exclusion of polymers and donnan equilibrium. Journal of Physical Chemistry B 103:6434–6440

    Article  CAS  Google Scholar 

  185. Ai H, Jones SA, De Villiers MM, Lvov YM (2003) Nano-encapsulation of furosemide microcrystals for controlled drug release. Journal of Controlled Release 86:59–68

    Article  CAS  Google Scholar 

  186. Antipov AA, Sukhorukov GB, Leporatti S, Radtchenko IL, Donath E, Möhwald H. (2002) Polyelectrolyte multilayer capsule permeability control. Colloids and Surfaces A: Physicochemical and Engineering Aspects 198–200:535–541

    Article  Google Scholar 

  187. Shchukin DG, Radtchenko IL, Sukhorukov GB (2003) Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside. Materials Letters 57:1743–1747

    Article  CAS  Google Scholar 

  188. Gaponik N, Radtchenko IL, Sukhorukov GB, Weller H, Rogach AL (2002) Toward encoding combinatorial libraries: Charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR. Advanced Materials 14:879–882

    Article  CAS  Google Scholar 

  189. Shchukin DG, Shutava T, Shchukina E, Sukhorukov GB, Lvov YM (2004) Modified polyelectrolyte microcapsules as smart defense systems. Chemistry of Materials 16:3446–3451

    Article  CAS  Google Scholar 

  190. Katagiri K, Caruso F (2004) Functionalization of colloids with robust inorganic–based lipid coatings. Macromolecules 37:9947–9953

    Article  CAS  Google Scholar 

  191. Vallet-Regí M, Rámila A, Del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: Drug delivery system. Chemistry of Materials 13:308–311

    Article  CAS  Google Scholar 

  192. Rámila A, Muñoz B, Pérez-Pariente J, Vallet-Regí M (2003) Mesoporous MCM-41 as drug host system. Journal of Sol–Gel Science and Technology 26:1199–1202

    Article  Google Scholar 

  193. Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M (2003) MCM-41 organic modification as drug delivery rate regulator. Chemistry of Materials 15:500–503

    Article  CAS  Google Scholar 

  194. Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regí M (2004) Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous and Mesoporous Materials 68:105–109

    Article  CAS  Google Scholar 

  195. Doadrio AL, Sousa EMB, Doadrio JC, Pérez Pariente J, Izquierdo-Barba I, Vallet-Regí M (2004) Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. Journal of Controlled Release 97:125–132

    Article  CAS  Google Scholar 

  196. Tourné-Péteilh C, Lerner DA, Charnay C, Nicole L, Bégu S, Devoisselle J-M (2003) The potential of ordered mesoporous silica for the storage of drugs: The example of a pentapeptide encapsulated in a MSU-Tween 80. ChemPhysChem 4:281–286

    Article  Google Scholar 

  197. Fisher KA, Huddersman KD, Taylor MJ (2003) Comparison of micro- and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues. Chemistry – A European Journal 9:5873–5878

    Article  CAS  Google Scholar 

  198. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K (1999) Adsorption of taxol into ordered mesoporous silicas with various pore diameters. Chemistry of Materials 11:1110–1119

    Article  CAS  Google Scholar 

  199. Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS-Y (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 125:4451–4459

    Article  CAS  Google Scholar 

  200. Mal NK, Fujiwara M, Tanaka Y (2003) Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421:350–353

    Article  CAS  Google Scholar 

  201. Li Y, Shi J, Chen H, Hua Z, Zhang L, Ruan M, Yan J, Yan D (2003) One-step synthesis of hydrothermally stable cubic mesoporous aluminosilicates with a novel particle structure. Microporous and Mesoporous Materials 60:51–56

    Article  CAS  Google Scholar 

  202. Li Y, Shi J, Hua Z, Chen H, Ruan M, Yan D (2003) Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. Nano Letters 3:609–612

    Article  CAS  Google Scholar 

  203. Zhu Y, Shi J, Shen W, Dong X, Feng J, Ruan M, Li Y (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angewandte Chemie – International Edition 44:5083–5087

    Article  CAS  Google Scholar 

  204. Schacht S, Huo Q, Voigt-Martin IG, Stucky GD, Schuth F (1996) Oil-water interface templating of mesoporous macroscale structures. Science 273:768–771

    Article  CAS  Google Scholar 

  205. Tanev PT, Pinnavaia TJ (1996) Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science 271:1267–1269

    Article  CAS  Google Scholar 

  206. Kim SS, Zhang W, Pinnavaia TJ (1998) Ultrastable mesostructured silica vesicles. Science 282:1302–1305

    Article  CAS  Google Scholar 

  207. Katagiri K, Ariga K, Kikuchi J-I (1999) Preparation of organic–inorganic hybrid vesicle "Cerasome" derived from artificial lipid with alkoxysilyl head. Chemistry Letters 28:661–662

    Article  Google Scholar 

  208. Emmerich O, Hugenberg N, Schmidt M, Sheiko SS, Baumann F, Deubzer B, Weis J, Ebenhoch J (1999) Molecular boxes based on hollow organosilicon micronetworks. Advanced Materials 11:1299–1303

    Article  CAS  Google Scholar 

  209. Jungmann N, Schmidt M, Maskos M, Weis J, Ebenhoch J (2002) Synthesis of amphiphilic poly(organosiloxane) nanospheres with different core-shell architectures. Macromolecules 35:6851–6857

    Article  CAS  Google Scholar 

  210. Jungmann N, Schmidt M, Ebenhoch J, Weis J, Maskos M (2003) Dye Loading of Amphiphilic Poly(organosiloxane) Nanoparticles. Angewandte Chemie International Edition 42:1713–1717

    Article  CAS  Google Scholar 

  211. Lu Y, McLellan J, Xia Y (2004) Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir 20:3464–3470

    Article  CAS  Google Scholar 

  212. Koh K, Ohno K, Tsujii Y, Fukuda T (2003) Precision synthesis of organic/inorganic hybrid nanocapsules with a silanol-functionalized micelle template. Angewandte Chemie – International Edition 42:4194–4197

    Article  CAS  Google Scholar 

  213. Du J, Chen Y, Zhang Y, Han CC, Fischer K, Schmidt M (2003) Organic/Inorganic hybrid vesicles based on a reactive block copolymer. Journal of the American Chemical Society 125:14710–14711

    Article  CAS  Google Scholar 

  214. Du J, Chen Y (2004) Preparation of organic/inorganic hybrid hollow particles based on gelation of polymer vesicles. Macromolecules 37:5710–5716

    Article  CAS  Google Scholar 

  215. Freeman MW, Arrot A, Watson HHL (1960) Magnetism in medicine. Journal Applied Physics 31: S404–S405

    Article  Google Scholar 

  216. Lübbe AS, Bergemann C, Riess H (1996) Clinical experiences with magnetic drag targeting: A phase I study with 4¢-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Research 56:4686–4693

    Google Scholar 

  217. Joubert JC (1997) Magnetic microcomposites as vectors for bioactive agents: The state of art. Anales de Quimica 93:S70–S76

    Google Scholar 

  218. Tanaka H, Sugita T, Yasunaga Y, Shimose S, Deie M, Kubo T, Murakami T, Ochi M (2005) Efficiency of magnetic liposomal transforming growth factor-beta 1 in the repair of articular cartilage defects in a rabbit model. Journal Biomedical Materials Research A73:255–263

    Article  CAS  Google Scholar 

  219. Berry CC (2005) Possible exploitation of magnetic nanoparticle–cell interaction for biomedical applications. Journal Materials Chemistry 15:543–547

    Article  CAS  Google Scholar 

  220. Ferrari S, Gedes DM, Alton EWF (2002) Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Advanced Drug Delivery Reviews 54:1373–1393

    Article  CAS  Google Scholar 

  221. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  222. Van der Zee J (2002) Heating the patient: A promising approach. Annals Oncology 13: 1173–1184

    Article  CAS  Google Scholar 

  223. Hilger I, Hergt R, Kaiser WA (2005) Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proceedings Nanobiotechnology 152:33–39

    Article  CAS  Google Scholar 

  224. Everts M, Saini V, Leddon JL, Kok RJ, Stoff-Khalili M, Preuss MA, Millican CL, Perkins G, Brown JM, Bagaria H, Nikles DE, Johnson DT, Zharov VP, Curiel DT (2006) Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nanoletters 6: 587–591

    Article  CAS  Google Scholar 

  225. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Annals Surgery 146:596–606

    Article  CAS  Google Scholar 

  226. Wada S, Tazawa K, Furuta I, Nagae H (2003) Antitumor effect of new local hyperthermia using dextran magnetite complex in hamster tongue carcinoma. Oral Diseases 9:218–223

    Article  CAS  Google Scholar 

  227. Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Therapy 8:649–654

    Article  CAS  Google Scholar 

  228. Gu H, Xu K, Yang Z, Chang CK, Xu B (2005) Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles – a potential candidate for bimodal anticancer therapy. Chemical Communications, 4270–4272

    Google Scholar 

  229. Derycke ASL, de Witte PAM (2004) Liposomes for photodynamic therapy. Advanced Drug Delivery Reviews 56:17–30

    Article  CAS  Google Scholar 

  230. Gorman A, Killoran J, O'Shea C, Kenna T, Gallagher WM, O'Shea DF (2004) In vitro demonstration of the heavy-atom effect for photodynamic therapy. Journal of the American Chemical Society 126:10619–10631

    Article  CAS  Google Scholar 

  231. Gübitz G, Künssberg E, Van Zoonen P, Jansen H, Gooijer C, Velthorst NH, Fei RW (1988) Chemically Modified Surfaces in Science and Industry. Vol. 2. Leyden DE, Collins WT, Eds. Gordon and Breach, London

    Google Scholar 

  232. Gorton L, Marko-Varga G, Domínguez E, Emneus J (1994) Analytical Applications of Immobilized Enzyme Reactors. Lam S, Malikin G, Eds. Blackie Academic & Professional, New York

    Google Scholar 

  233. Horbett TA, Brash JL (1995) Proteins at interfaces II. Fundamentals and applications, ACS symposium series 602, American Chemical Society, Washington, US

    Book  Google Scholar 

  234. Rosevear A, Kennedy JF, Cabral JMS(Eds.) (1987) Immobilized Enzymes and Cells. Adam Higler, Bristol and Philadelphia

    Google Scholar 

  235. Yoshinaga K, Kito T, Yamaye M (1990) Effective immobilization of protein linked with polyethylene glycol on silica via hydrogels using silica sol. Journal of Applied Polymer Science 41:1443–1450

    Article  CAS  Google Scholar 

  236. Tiberg F, Brink C, Hellsten M, Holmberg K (1992) Immobilization of protein to surface-grafted PEO/PPO block copolymers. Colloid and Polymer Science 270:1188–1193

    Article  CAS  Google Scholar 

  237. Miksa B, Slomkowski S (1995) Polypyrrole core/polyacrolein shell latex for protein immobilization. Colloid and Polymer Science 273:47–52

    Article  CAS  Google Scholar 

  238. Yoshinaga K, Kondo K, Kondo A (1995) Efficient immobilization of protein on monodispersed colloidal silica particles modified by copolymers of maleic-anhydride and styrene or methyl-methacrylate. Polymer Journal 27:98–100

    Article  CAS  Google Scholar 

  239. Shabat D, Grynszpan F, Saphier S, Turniansky A, Avnir D, Keinan E (1997) An efficient Sol Gel reactor for antibody-catalyzed transformations. Chemistry of Materials 9:2258–2260

    Article  CAS  Google Scholar 

  240. Fang J, Knobler CM (1996) Phase-separated two-component self-assembled organosilane monolayers and their use in selective adsorption of a protein. Langmuir 12:1368–1374

    Article  CAS  Google Scholar 

  241. Hamachi I, Fujita A, Kunitake T (1994) Enhanced N-demethylase activity of cytochrome c bound to a phosphate-bearing synthetic bilayer membrane. Journal of the American Chemical Society 116:8811–8812

    Google Scholar 

  242. Fujita A, Senzu H, Kunitake T, Hamachi I (1994) Enhanced peroxidase activity of cytochrome c by phosphate bilayer membrane. Chemical Letters:1219–1222

    Google Scholar 

  243. Koilpillai L, Gadre RA, Bhatnagar S, Rajan CR, Ponrathnam S, Kumar KK, Ambekar GR, Shewale JG (1990) Immobilization of penicillin G acylase on methacrylate polymers. Journal of Chemical Technology and Biotechnology 49:173–182

    CAS  Google Scholar 

  244. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. Journal of the American Chemical Society 124:11864–11865

    Article  CAS  Google Scholar 

  245. Mukhopadhyay K, Phadtare S, Vinod VP, Kumar A, Rao M, Chaudhari RV, Sastry M (2003) Gold nanoparticles assembled on amine-functionalized Na - Y zeolite: A biocompatible surface for enzyme immobilization. Langmuir 19:3858–3863

    Article  CAS  Google Scholar 

  246. Kumar CV, McLendon GL (1997) Nanoencapsulation of Cytochrome c and horseradish peroxidase at the galleries of α-zirconium phosphate. Chemistry of Materials 9:863–870

    Article  CAS  Google Scholar 

  247. He J, Li X, Evans DG, Duan X, Li C (2000) A new support for the immobilization of penicillin acylase. Journal of Molecular Catalysis – B Enzymatic 11:45–53

    Article  Google Scholar 

  248. Wang Y, Caruso F (2005) Mesoporous silica spheres as supports for enzyme immobilization and encapsulation. Chemistry of Materials 17:953–961

    Article  CAS  Google Scholar 

  249. Hamachi I, Fujita A, Kunitake T (1994) Enhanced N-demethylase activity of cytochrome c bound to a phosphate-bearing synthetic bilayer membrane. Journal of the American Chemical Society 116:8811–8812

    Article  CAS  Google Scholar 

  250. Chen X, Hu N, Zeng Y, Rusling JF, Yang J (1999) Ordered electrochemically active films of hemoglobin, didodecyldimethylammonium ions, and clay. Langmuir 15:7022–7030

    Article  CAS  Google Scholar 

  251. Mrksich M, Sigal GB, Whitesides GM (1995) Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold. Langmuir 11:4383–4385

    Article  CAS  Google Scholar 

  252. Nicolini C, Erokhin V, Antolini F, Catasti P, Facci P (1993) Thermal stability of protein secondary structure in Langmuir-Blodgett films. Biochimica et Biophysica Acta – General Subjects 1158:273–278

    Article  CAS  Google Scholar 

  253. Boussaad S, Dziri L, Arechabaleta R, Tao NJ, Leblanc RM (1998) Electron-transfer properties of cytochrome c Langmuir-Blodgett films and interactions of cytochrome c with lipids. Langmuir 14:6215–6219

    Article  CAS  Google Scholar 

  254. Yang Z, Mesiano AJ, Venkatasubramanian S, Gross SH, Harris JM, Russell AJ (1995) Activity and stability of enzymes incorporated into acrylic polymers. Journal of the American Chemical Society 117:4843–4850

    Article  CAS  Google Scholar 

  255. Franchina JG, Lackowski WM, Dermody DL, Crooks RM, Bergbreiter DE, Sirkar K, Russell RJ, Pishko MV (1999) Electrostatic immobilization of glucose oxidase in a weak acid, polyelectrolyte hyperbranched ultrathin film on gold: Fabrication, characterization, and enzymatic activity. Analytical Chemistry 71:3133–3139

    Article  CAS  Google Scholar 

  256. Sastry M (2002) Entrapment of proteins and DNA in thermally evaporated lipid films. Trends in Biotechnology 20:185–188

    Article  CAS  Google Scholar 

  257. Sastry M, Rao M, Ganesh KN (2002) Electrostatic assembly of nanoparticles and biomacromolecules. Accounts of Chemical Research 35:847–855

    Article  CAS  Google Scholar 

  258. Daubresse C, Grandfils C, Jérome R, Teyssié P (1996) Enzyme immobilization in reactive nanoparticles produced by inverse microemulsion polymerization. Colloid and Polymer Science 274:482–489

    Article  CAS  Google Scholar 

  259. Martins MBF, Simões SID, Cruz MEM, Gaspar R (1996) Development of enzyme-loaded nanoparticles: Effect of pH. Journal of Materials Science: Materials in Medicine 7:413–414

    Article  CAS  Google Scholar 

  260. Caruso F, Schüler C (2000) Enzyme multilayers on colloid particles: Assembly, stability, and enzymatic activity. Langmuir 16:9595–9603

    Article  CAS  Google Scholar 

  261. Liao M-H, Chen D-H (2001) Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnology Letters 23:1723–1727

    Article  CAS  Google Scholar 

  262. Jia H, Zhu G, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: The effect of particle mobility. Biotechnology and Bioengineering 84:406–414

    Article  CAS  Google Scholar 

  263. Crumbliss AL, Perine SC, Stonehuerner J, Tubergen KR, Zhao J, Henkens RW (1992) Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnology and Bioengineering 40:483–490

    Article  CAS  Google Scholar 

  264. Stonehuerner J, Zhao J, O'Daly JP, Crumbliss AL, Henkens RW (1992) Comparison of colloidal gold electrode fabrication methods: The preparation of a horseradish peroxidase enzyme electrode. Biosensors and Bioelectronics 7:421–428

    Article  CAS  Google Scholar 

  265. Zhao J, O'Daly JP, Henkens RW, Stonehuerner J, Crumbliss AL (1996) A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications. Biosensors and Bioelectronics 11:493–502

    Article  CAS  Google Scholar 

  266. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  267. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez Jr MP, Schultz PG (1996) Organization of 'nanocrystal molecules' using DNA. Nature 382: 609–611

    Article  CAS  Google Scholar 

  268. Shenton W, Davis SA, Mann S (1999) Directed self-assembly of nanoparticles into macroscopic materials using antibody-antigen recognition. Advanced Materials 11:449–452

    Article  CAS  Google Scholar 

  269. Connolly S, Fitzmaurice D (1999) Programmed assembly of gold nanocrystals in aqueous solution. Advanced Materials 11:1202–1205

    Article  CAS  Google Scholar 

  270. Patel DS, Aithal RK, Krishna G, Lvov YM, Tien M, Kuila D (2005) Nano-assembly of manganese peroxidase and lignin peroxidase from P. chrysosporium for biocatalysis in aqueous and non-aqueous media. Colloids and Surfaces B: Biointerfaces 43:13–19

    Google Scholar 

  271. Caruso F, Möhwald H (1999) Protein multilayer formation on colloids through a stepwise self-assembly technique. Journal of the American Chemical Society 121:6039–6046

    Article  CAS  Google Scholar 

  272. Caruso F, Fiedler H, Haage K (2000) Assembly of β-glucosidase multilayers on spherical colloidal particles and their use as active catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects 169:287–293

    Article  CAS  Google Scholar 

  273. Schüler C, Caruso F (2000) Preparation of enzyme multilayers on colloids for biocatalysis. Macromolecular Rapid Communications 21:750–753

    Article  Google Scholar 

  274. Caruso F, Niikura K, Furlong DN, Okahata Y (1997) Part 2. Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir 13:3427–3433

    Article  CAS  Google Scholar 

  275. Jordan CE, Frutos AG, Thiel AJ, Corn RM (1997) Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically-modified gold surfaces. Analytical Chemistry 69:4939–4947

    Article  CAS  Google Scholar 

  276. Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J (1994) New nanocomposite films for biosensors: Layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosensors and Bioelectronics 9:677–684

    Article  CAS  Google Scholar 

  277. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  278. Fang X, Reneker DH (1997) DNA fibers by electrospinning. Journal of Macromolecular Science – Physics 36:169–173

    Article  Google Scholar 

  279. Norris ID, Shaker MM, Ko FK, MacDiarmid AG (2000) Electrostatic fabrication of ultrafine conducting fibers: Polyaniline/polyethylene oxide blends. Synthetic Metals 114:109–114

    Article  CAS  Google Scholar 

  280. MacDiarmid AG, JonesJr WE, Norris ID, Gao J, Johnson ATJr, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M (2001) Electrostatically-generated nanofibers of electronic polymers. Synthetic Metals 119: 27–30

    Article  CAS  Google Scholar 

  281. Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–8466

    Article  CAS  Google Scholar 

  282. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science 8:64–75

    Article  CAS  Google Scholar 

  283. Li D, Wang Y, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters 3:1167–1171

    Article  CAS  Google Scholar 

  284. Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Electrospinning of nanofiber fibrinogen structures. Nano Letters 3:213–216

    Article  CAS  Google Scholar 

  285. Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Advanced Materials 16:361–366

    Article  CAS  Google Scholar 

  286. Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters 4:933–938

    Article  CAS  Google Scholar 

  287. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnology Progress 18:1027–1032

    Article  CAS  Google Scholar 

  288. Smith D, Kataphinan W, Reneker D, Dabney S (2002) Preservation of biological materials using fiber-forming techniques. WO 2002100628

    Google Scholar 

  289. Al-Sheheri HA. The use of electrospinning technology in enzymes preservation and chemical warfare protective clothing applications. The University of Akron, Dissertation, 2003

    Google Scholar 

  290. Wang Y, Hsieh Y-L (2003) Polymer Preparation. (American Chemical Society, Division of Polymer Chemistry) 44: 1212–1213

    CAS  Google Scholar 

  291. Xie J, Hsieh Y-L (2003) Ultra-high surface fibrous membranes from electrospinning of natural proteins: Casein and lipase enzyme. Journal of Materials Science 38:2125–2133

    Article  CAS  Google Scholar 

  292. Zeng ZSJ, Hou H, Kissel T, Wendorff JH, Greiner A (2003) Functional polymer nanofibers and nanotubes via electrospinning: chemical modifications for selected applications. Polym Prep (American Chemical Society, Division of Polymer Chemistry) 44:76–77

    CAS  Google Scholar 

  293. Bruno FF, Drew C, Nagarajan R, Wang X, Kumar J, Samuelson LA (2004) Conductive polymer complexes from macromolecule inspired biocatalysis. Polymeric Materials: Science and Engineering 90:234–235

    CAS  Google Scholar 

  294. Gouma P, Simon S, Jha PK, Sawicka K (2004) Bio-composite oxides for resistive detection of pathogens. Chemical Senses 20:72–73

    CAS  Google Scholar 

  295. Hsieh Y-L, Xie JB, Wang YH, Chen H, Li L, Zhang LF (2004) Generation of polymer-based nano-porous fibers and protein or enzyme membrane compositions. PCT International Application WO 2004044281

    Google Scholar 

  296. Wang Y, Hsieh Y-L (2004) Enzyme immobilization to ultra-fine cellulose fibers via amphiphilic polyethylene glycol spacers. Journal of Polymer Science, Part A: Polymer Chemistry 42:4289–4299

    Article  CAS  Google Scholar 

  297. Zeng J, Chen X, Liang Q, Xu X, Jing X (2004) Enzymatic degradation of poly(L-lactide) and poly(β-caprolactone) electrospun fibers. Macromolecular Bioscience 4:1118–1125

    Article  CAS  Google Scholar 

  298. Chua K-N, Lim W-S, Zhang P, Lu H, Wen J, Ramakrishna S, Leong KW, Mao H-Q (2005) Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 26:2537–2547

    Article  CAS  Google Scholar 

  299. Kim J (2005) Enzyme-polymer composites with high biocatalytic activity and stability. Polymer Material: Science Engineering 92:552–553

    CAS  Google Scholar 

  300. Kim BC, Nair S, Kim J, Kwak JH, Grate JW, Kim SH, Gu MB (2005) Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology 16:S382–S388

    Article  CAS  Google Scholar 

  301. Kim J, Jia H, Wang P (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances 24:296–308

    Article  CAS  Google Scholar 

  302. Rege K, Raravikar NR, Kim D-Y, Schadler LS, Ajayan PM, Dordick JS (2003) Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films. Nano Letters 3:829–832

    Article  CAS  Google Scholar 

  303. Martin CR (1994) Nanomaterials: A membrane-based synthetic approach. Science 266:1961–1966

    Article  CAS  Google Scholar 

  304. Miller SA, Young VY, Martin CR (2001) Electro-osmotic flow in template-prepared carbon nanotube membranes. Journal of the American Chemical Society 123:12335–12342

    Article  CAS  Google Scholar 

  305. Cepak VM, Martin CR (1999) Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chemistry of Materials 11:1363–1367

    Article  CAS  Google Scholar 

  306. Steinle ED, Mitchell DT, Wirtz M, Lee SB, Young VY, Martin CR (2002) Ion channel mimetic micropore and nanotube membrane sensors. Analytical Chemistry 74:2416–2422

    Article  CAS  Google Scholar 

  307. Hornyak GL, Patrissi CJ, Martin CR (1997) Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: The non-scattering Maxwell-Garnett limit. Journal of Physical Chemistry B 101:1548–1555

    Article  CAS  Google Scholar 

  308. Bellezza F, Cipiciani A, Costantino U, Elena Negozio M (2002) Zirconium phosphate and modified zirconium phosphates as supports of lipase. Preparation of the composites and activity of the supported enzyme. Langmuir 18:8737–8742

    Article  CAS  Google Scholar 

  309. Bellezza F, Cipiciani A, Costantino U (2003) Esterase activity of biocomposites constituted by lipases adsorbed on layered zirconium phosphate and phosphonates: Selective adsorption of different enzyme isoforms. Journal of Molecular Catalysis B: Enzymatic 26:47–56

    Article  CAS  Google Scholar 

  310. Bellezza F, Cipiciani A, Costantino U, Nicolis S (2004) Catalytic activity of myoglobin immobilized on zirconium phosphonates. Langmuir 20:5019–5025

    Article  CAS  Google Scholar 

  311. Schafer WA, Carr PW, Funkenbusch EF, Parson KA (1991) Physical and chemical characterization of a porous phosphate-modified zirconia substrate. Journal of Chromatography 587:137–147

    Article  CAS  Google Scholar 

  312. Randon J, Blanc P, Paterson R (1995) Modification of ceramic membrane surfaces using phosphoric acid and alkyl phosphonic acids and its effects on ultrafiltration of BSA protein. Journal of Membrane Science 98:119–129

    Article  CAS  Google Scholar 

  313. Gao W, Dickinson L, Grozinger C, Morin FG, Reven L (1996) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12:6429–6435

    Article  CAS  Google Scholar 

  314. Clausen AM, Carr PW (1998) Chromatographic Characterization of Phosphonate Analog EDTA-Modified Zirconia Support for Biochromatographic Applications. Analytical Chemistry 70:378–385

    Article  CAS  Google Scholar 

  315. Carrière D, Moreau M, Barboux P, Boilot J-P, Spalla O (2004) Modification of the surface properties of porous nanometric zirconia particles by covalent grafting. Langmuir 20:3449–3455

    Article  CAS  Google Scholar 

  316. Bellezza F, Cipiciani A, Quotadamo MA (2005) Immobilization of myoglobin on phosphate and phosphonate grafted-zirconia nanoparticles. Langmuir 21:11099–11104

    Article  CAS  Google Scholar 

  317. Yu A, Wang Y, Barlow E, Caruso F (2005) Mesoporous silica particles as templates for preparing enzyme-loaded biocompatible microcapsules. Advanced Materials 17:1737–1741

    Article  CAS  Google Scholar 

  318. Wang Y, Caruso F (2006) Nanoporous protein particles through templating mesoporous silica spheres. Advanced Materials 18:795–800

    Article  CAS  Google Scholar 

  319. Li W, Huang Z, MacKay JA, Grube S, Szoka Jr. FC (2005) Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: Effects of PEG chain length, lipid composition and assembly conditions on gene delivery. Journal of Gene Medicine 7:67–79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of MEC (MAT2006–02394), CM (S-0505/PPQ-0316), and CSIC-PIF (200660F0111) and MAT2008-03224/NAN are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María C. Gutierrez or Francisco del Monte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gutierrez, M. ., Ferrer, M.L., Tartaj, P., Monte, F. (2009). Biomedical Applications of Organic–Inorganic Hybrid Nanoparticles. In: Merhari, L. (eds) Hybrid Nanocomposites for Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30428-1_15

Download citation

Publish with us

Policies and ethics