Skip to main content

7.1 Proteomics

  • Reference work entry
  • First Online:

Abstract:

Proteomics is the study of the proteome defined as the set of all proteins of a cell, an organ, or the whole organism. Currently, the proteomic approach usually combines two-dimensional (2D) gel electrophoresis and mass spectrometry (MS) as a common and powerful approach. The specific feature of proteomics is the simultaneous detection of many proteins involved in different biochemical pathways. With regard to the brain, this approach has proven to be particularly beneficial for the analysis of energy metabolism and cellular respiration. To gather proteomic information, techniques were developed to handle the large amount of data yielding a comprehensive pattern of protein alignment within brain biochemical pathways. It is expected that in future proteomics will become a routine tool in all aspects of brain cell biology and beyond those of bioenergetics, including cell development, differentiation, and cell death. Proteomics then will complement other approaches to analyze cerebral function and biochemistry under normal and disease conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam GC, Sorensen EJ, Cravatt BF. 2002. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat Biotechnol 20: 805–809.

    PubMed  CAS  Google Scholar 

  • Aebersold R, Mann M. 2003. Mass spectrometry-based proteomics. Nature 422: 198–207.

    PubMed  CAS  Google Scholar 

  • Anderson L, Seilhamer J. 1997. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18: 533–537.

    PubMed  CAS  Google Scholar 

  • Appel RD, Bairoch A, Hochstrasser DF. 1999. 2-D databases on the World Wide Web. Methods Mol Biol 112: 383–391.

    PubMed  CAS  Google Scholar 

  • Appel RD, Bairoch A, Sanchez JC, Vargas JR, Golaz O, et al. 1996. Federated two-dimensional electrophoresis database: A simple means of publishing two-dimensional electrophoresis data. Electrophoresis 17: 540–546.

    PubMed  CAS  Google Scholar 

  • Appel RD, Vargas JR, Palagi PM, Walther D, Hochstrasser DF. 1997. Melanie II—a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms. Electrophoresis 18: 2735–2748.

    PubMed  CAS  Google Scholar 

  • Araki N, Morimasa T, Sakai T, Tokuoh H, Yunoue S, et al. 2000. Comparative analysis of brain proteins from p53-deficient mice by two-dimensional electrophoresis. Electrophoresis 21: 1880–1889.

    PubMed  CAS  Google Scholar 

  • Bajo M, Fruehauf J, Kim SH, Fountoulakis M, Lubec G. 2002. Proteomic evaluation of intermediary metabolism enzyme proteins in fetal Down's syndrome cerebral cortex. Proteomics 2: 1539–1546.

    PubMed  CAS  Google Scholar 

  • Bakhtiar R, Nelson RW. 2001. Mass spectrometry of the proteome. Mol Pharmacol 60: 405–415.

    PubMed  CAS  Google Scholar 

  • Berkelman T, Stenstedt T. 2001. 2-D electrophoresis. Principles and methods. Uppsala: Amersham Biosciences.

    Google Scholar 

  • Blum H, Beier H, Gross HJ. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93–99.

    CAS  Google Scholar 

  • Boguski MS, McIntosh MW. 2003. Biomedical informatics for proteomics. Nature 422: 233–237.

    PubMed  CAS  Google Scholar 

  • Bracco F, Gallo P, Tavolato B, Battistin L. 1985. Two-dimensional electrophoresis of cerebrospinal fluid proteins in normal and pathological conditions. Neurochem Res 10: 1203–1219.

    PubMed  CAS  Google Scholar 

  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

    PubMed  CAS  Google Scholar 

  • Brookes PS, Pinner A, Ramachandran A, Coward L, Barnes S, et al. 2002. High throughput two-dimensional blue-native electrophoresis: A tool for functional proteomics of mitochondria and signaling complexes. Proteomics 2: 969–977.

    PubMed  CAS  Google Scholar 

  • Bussey KJ, Kane D, Sunshine M, Narasimhan S, Nishizuka S, et al. 2003. MatchMiner: A tool for batch navigation among gene and gene product identifiers. Genome Biol 4.

    Google Scholar 

  • Butterfield DA. 2004. Proteomics: A new approach to investigate oxidative stress in Alzheimer's disease brain. Brain Res 1000: 1–7.

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Boyd-Kimball D, Castegna A. 2003. Proteomics in Alzheimer's disease: Insights into potential mechanisms of neurodegeneration. J Neurochem 86: 1313–1327.

    PubMed  CAS  Google Scholar 

  • Camacho-Carvajal MM, Wollscheid B, Aebersold R, Steimle V, Schamel WW. 2004. Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: A proteomics approach. Mol Cell Proteomics 3: 176–182.

    PubMed  CAS  Google Scholar 

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, et al. 2002a. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33: 562–571.

    CAS  Google Scholar 

  • Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, et al. 2002b. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82: 1524–1532.

    CAS  Google Scholar 

  • Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, et al. 2003. Proteomic identification of nitrated proteins in Alzheimer's disease brain. J Neurochem 85: 1394–1401.

    PubMed  CAS  Google Scholar 

  • Chakravarti DN, Chakravarti B, Moutsatsos I. 2002. Informatic tools for proteome profiling. Biotechniques Suppl: 4–10, 12–15.

    Google Scholar 

  • Choe LH, Lee KH. 2003. Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis. Electrophoresis 24: 3500–3507.

    PubMed  CAS  Google Scholar 

  • Choudhary J, Grant SG. 2004. Proteomics in postgenomic neuroscience: The end of the beginning. Nat Neurosci 7: 440–445.

    PubMed  CAS  Google Scholar 

  • Conti A, Sanchez-Ruiz Y, Bachi A, Beretta L, Grandi E, et al. 2004. Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers. J Neurotrauma 21: 854–863.

    PubMed  Google Scholar 

  • Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. 2002. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31: 19–20.

    PubMed  CAS  Google Scholar 

  • Davidsson P, Brinkmalm A, Karlsson G, Persson R, Lindbjer M, et al. 2003. Clinical mass spectrometry in neuroscience. Proteomics and peptidomics. Cell Mol Biol (Noisy-le-grand) 49: 681–688.

    CAS  Google Scholar 

  • Davidsson P, Paulson L, Hesse C, Blennow K, Nilsson CL. 2001. Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry. Proteomics 1: 444–452.

    PubMed  CAS  Google Scholar 

  • Davidsson P, Westman-Brinkmalm A, Nilsson CL, Lindbjer M, Paulson L, et al. 2002. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 13: 611–615.

    PubMed  CAS  Google Scholar 

  • Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, et al. 2003. MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol 4: R7.

    PubMed  Google Scholar 

  • Dowsey AW, Dunn MJ, Yang GZ. 2003. The role of bioinformatics in two-dimensional gel electrophoresis. Proteomics 3: 1567–1596.

    PubMed  CAS  Google Scholar 

  • Dutt MJ, Lee KH. 2000. Proteomic analysis. Curr Opin Biotechnol 11: 176–179.

    PubMed  CAS  Google Scholar 

  • Eckerskorn C, Jungblut P, Mewes W, Klose J, Lottspeich F. 1988. Identification of mouse brain proteins after two-dimensional electrophoresis and electroblotting by microsequence analysis and amino acid composition analysis. Electrophoresis 9: 830–838.

    PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868.

    PubMed  CAS  Google Scholar 

  • Fountoulakis M, Hardmaier R, Schuller E, Lubec G. 2000. Differences in protein level between neonatal and adult brain. Electrophoresis 21: 673–678.

    PubMed  CAS  Google Scholar 

  • Fountoulakis M, Schuller E, Hardmeier R, Berndt P, Lubec G. 1999. Rat brain proteins: Two-dimensional protein database and variations in the expression level. Electrophoresis 20: 3572–3579.

    PubMed  CAS  Google Scholar 

  • Freeman WM, Hemby SE. 2004. Proteomics for protein expression profiling in neuroscience. Neurochem Res 29: 1065–1081.

    PubMed  CAS  Google Scholar 

  • Fung ET, Enderwick C. 2002. ProteinChip clinical proteomics: Computational challenges and solutions. Biotechniques Suppl: 34–38, 40–31.

    Google Scholar 

  • Garrels JI. 1989. The QUEST system for quantitative analysis of two-dimensional gels. J Biol Chem 264: 5269–5282.

    PubMed  CAS  Google Scholar 

  • Gauss C, Kalkum M, Löwe M, Lehrach H, Klose J. 1999. Analysis of the mouse proteome. (I) Brain proteins: Separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 20: 575–600.

    PubMed  CAS  Google Scholar 

  • Gavilondo JV, Larrick JW. 2000. Antibody engineering at the millennium. Biotechniques 29: 128–132, 134–136, 138 passim.

    PubMed  CAS  Google Scholar 

  • Gerner C, Vejda S, Gelbmann D, Bayer E, Gotzmann J, et al. 2002. Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling. Mol Cell Proteomics 1: 528–537.

    PubMed  CAS  Google Scholar 

  • Goldman D, Merril CR, Ebert MH. 1980. Two-dimensional gel electrophoresis of cerebrospinal fluid proteins. Clin Chem 26: 1317–1322.

    PubMed  CAS  Google Scholar 

  • Görg A, Boguth G, Obermaier C, Harder A, Weiss W. 1998. 2-D electrophoresis with immobilized pH gradients using IPGphor isoelectric focussing system. Life Science News 1: 4–6.

    Google Scholar 

  • Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, et al. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21: 1037–1053.

    PubMed  Google Scholar 

  • Görg A, Postel W, Gunther S. 1988. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9: 531–546.

    PubMed  Google Scholar 

  • Gunning P, Weinberger R, Jeffrey P, Hardeman E. 1998. Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 14: 339–372.

    PubMed  CAS  Google Scholar 

  • Guo X, Ying W, Wan J, Hu Z, Qian X, et al. 2001. Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-trans retinoic acid in vitro. Electrophoresis 22: 3067–3075.

    PubMed  CAS  Google Scholar 

  • Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. 2000a. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 97: 9390-9395.

    Google Scholar 

  • Gygi SP, Rist B, Aebersold R. 2000b. Measuring gene expression by quantitative proteome analysis. Curr Opin Biotechnol 11: 396–401.

    CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, et al. 1999a. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17: 994–999.

    CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R. 1999b. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19: 1720–1730.

    CAS  Google Scholar 

  • Hanash S. 2003. Disease proteomics. Nature 422: 226–232.

    PubMed  CAS  Google Scholar 

  • Harrington MG, Merril CR. 1984. Two-dimensional electrophoresis and “ultrasensitive” silver staining of cerebrospinal fluid proteins in neurological diseases. Clin Chem 30: 1933–1937.

    PubMed  CAS  Google Scholar 

  • Harrington MG, Merril CR. 1988. Cerebrospinal fluid protein analysis in diseases of the nervous system. J Chromatogr 429: 345–358.

    PubMed  CAS  Google Scholar 

  • Harrington MG, Merril CR, Goldman D, Xu X, McFarlin DE. 1984. Two-dimensional electrophoresis of cerebrospinal fluid proteins in multiple sclerosis and various neurological diseases. Electrophoresis 5: 236–245.

    CAS  Google Scholar 

  • Hayman MW, Przyborski SA. 2004. Proteomic identification of biomarkers expressed by human pluripotent stem cells. Biochem Biophys Res Commun 316: 918–923.

    PubMed  CAS  Google Scholar 

  • Herbert BR, Harry JL, Packer NH, Gooley AA, Pedersen SK, et al. 2001. What place for polyacrylamide in proteomics? Trends Biotechnol 19: S3–9.

    PubMed  CAS  Google Scholar 

  • Herbert BR, Molloy MP, Gooley AA, Walsh BJ, Bryson WG, et al. 1998. Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19: 845–851.

    PubMed  CAS  Google Scholar 

  • Hiller K, Schobert M, Hundertmark C, Jahn D, Munch R. 2003. JVirGel: Calculation of virtual two-dimensional protein gels. Nucleic Acids Res 31: 3862–3865.

    PubMed  CAS  Google Scholar 

  • Hoogland C, Sanchez JC, Walther D, Baujard V, Baujard O, et al. 1999. Two-dimensional electrophoresis resources available from ExPASy. Electrophoresis 20: 3568–3571.

    PubMed  CAS  Google Scholar 

  • Humphery-Smith I, Cordwell SJ, Blackstock WP. 1997. Proteome research: Complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18: 1217–1242.

    PubMed  CAS  Google Scholar 

  • Jacewicz M, Kiessling M, Pulsinelli WA. 1986. Selective gene expression in focal cerebral ischemia. J Cereb Blood Flow Metab 6: 263–272.

    PubMed  CAS  Google Scholar 

  • Jae-Kyung M, Gulesserian T, Fountoulakis M, Lubec G. 2003. Deranged hypothetical proteins Rik protein, Nit protein 2 and mitochondrial inner membrane protein, Mitofilin, in fetal Down syndrome brain. Cell Mol Biol (Noisy-le-grand) 49: 739–746.

    CAS  Google Scholar 

  • James P. 2002. Chips for proteomics: A new tool or just hype? Biotechniques Suppl: 4–10, 12–13.

    Google Scholar 

  • Jenkins RE, Pennington SR. 2001. Arrays for protein expression profiling: Towards a viable alternative to two-dimensional gel electrophoresis? Proteomics 1: 13–29.

    PubMed  CAS  Google Scholar 

  • Jensen ON, Wilm M, Shevchenko A, Mann M. 1999. Peptide sequencing of 2-DE gel-isolated proteins by nanoelectrospray tandem mass spectrometry. Methods Mol Biol 112: 571–588.

    PubMed  CAS  Google Scholar 

  • Jin K, Mao XO, Greenberg DA. 2004. Proteomic analysis of neuronal hypoxia in vitro. Neurochem Res 29: 1123–1128.

    PubMed  CAS  Google Scholar 

  • Julka S, Regnier F. 2004. Quantification in proteomics through stable isotope coding: A review. J Proteome Res 3: 350–363.

    PubMed  CAS  Google Scholar 

  • Jungblut P, Dzionara M, Klose J, Wittmann-Liebold B. 1992. Identification of tissue proteins by amino acid analysis after purification by two-dimensional electrophoresis. J Protein Chem 11: 603–612.

    PubMed  CAS  Google Scholar 

  • Karlsson K, Cairns N, Lubec G, Fountoulakis M. 1999. Enrichment of human brain proteins by heparin chromatography. Electrophoresis 20: 2970–2976.

    PubMed  CAS  Google Scholar 

  • Kiessling M, Dienel GA, Jacewicz M, Pulsinelli WA. 1986. Protein synthesis in postischemic rat brain: A two-dimensional electrophoretic analysis. J Cereb Blood Flow Metab 6: 642–649.

    PubMed  CAS  Google Scholar 

  • Kim SH, Fountoulakis M, Cairns NJ, Lubec G. 2002. Human brain nucleoside diphosphate kinase activity is decreased in Alzheimer's disease and Down syndrome. Biochem Biophys Res Commun 296: 970–975.

    PubMed  CAS  Google Scholar 

  • Kim SI, Voshol H, van Oostrum J, Hastings TG, Cascio M, et al. 2004. Neuroproteomics: Expression profiling of the brain's proteomes in health and disease. Neurochem Res 29: 1317–1331.

    PubMed  CAS  Google Scholar 

  • Klose J. 1999. Genotypes and phenotypes. Electrophoresis 20: 643–652.

    PubMed  CAS  Google Scholar 

  • Klose J, Nock C, Herrmann M, Stuhler K, Marcus K, et al. 2002. Genetic analysis of the mouse brain proteome. Nat Genet 30: 385–393.

    PubMed  CAS  Google Scholar 

  • Ko IK, Kato K, Iwata H. 2005a. Antibody microarray for correlating cell phenotype with surface marker. Biomaterials 26: 687–696.

    CAS  Google Scholar 

  • Ko IK, Kato K, Iwata H. 2005b. Parallel analysis of multiple surface markers expressed on rat neural stem cells using antibody microarrays. Biomaterials 26: 4882–4891.

    CAS  Google Scholar 

  • Korke R, Gatti Mde L, Lau AL, Lim JW, Seow TK, et al. 2004. Large scale gene expression profiling of metabolic shift of mammalian cells in culture. J Biotechnol 107: 1–17.

    PubMed  CAS  Google Scholar 

  • Krapfenbauer K, Berger M, Friedlein A, Lubec G, Fountoulakis M. 2001. Changes in the levels of low-abundance brain proteins induced by kainic acid. Eur J Biochem 268: 3532–3537.

    PubMed  CAS  Google Scholar 

  • Krapfenbauer K, Fountoulakis M, Lubec G. 2003. A rat brain protein expression map including cytosolic and enriched mitochondrial and microsomal fractions. Electrophoresis 24: 1847–1870.

    PubMed  CAS  Google Scholar 

  • Kusnezow W, Hoheisel JD. 2002. Antibody microarrays: Promises and problems. Biotechniques Suppl: 14–23.

    Google Scholar 

  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    PubMed  CAS  Google Scholar 

  • Langen H, Berndt P, Roder D, Cairns N, Lubec G, et al. 1999. Two-dimensional map of human brain proteins. Electrophoresis 20: 907–916.

    PubMed  CAS  Google Scholar 

  • Lee PS, Shaw LB, Choe LH, Mehra A, Hatzimanikatis V, et al. 2003. Insights into the relation between mRNA and protein expression patterns: II. Experimental observations in Escherichia coli. Biotechnol Bioeng 84: 834–841.

    PubMed  CAS  Google Scholar 

  • Lemkin PF. 1999. Comparing 2-D electrophoretic gels across Internet databases. Methods Mol Biol 112: 393–410.

    PubMed  CAS  Google Scholar 

  • Link AJ. 1999. 2-D Proteome Analysis Protocols. Humana Press, Totowa, NJ.

    Google Scholar 

  • Link AJ, Robison K, Church GM. 1997. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18: 1259–1313.

    PubMed  CAS  Google Scholar 

  • Lopez MF. 1999. Proteome analysis. I. Gene products are where the biological action is. J Chromatogr B Biomed Sci Appl 722: 191–202.

    PubMed  CAS  Google Scholar 

  • Lopez MF, Kristal BS, Chernokalskaya E, Lazarev A, Shestopalov AI, et al. 2000. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis 21: 3427–3440.

    PubMed  CAS  Google Scholar 

  • Lubec G, Krapfenbauer K, Fountoulakis M. 2003. Proteomics in brain research: Potentials and limitations. Prog Neurobiol 69: 193–211.

    PubMed  CAS  Google Scholar 

  • Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, et al. 1999. Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer's disease brain is downregulated at the mRNA and dysregulated at the protein level. J Neural Transm Suppl 57: 161–177.

    PubMed  CAS  Google Scholar 

  • Mac Beath G. 2002. Protein microarrays and proteomics. Nat Genet 32(Suppl): 526–532.

    CAS  Google Scholar 

  • Mahon P, Dupree P. 2001. Quantitative and reproducible two-dimensional gel analysis using Phoretix 2D Full. Electrophoresis 22: 2075–2085.

    PubMed  CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A. 2001. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70: 437–473.

    PubMed  CAS  Google Scholar 

  • Mann M, Jensen ON. 2003. Proteomic analysis of post-translational modifications. Nat Biotechnol 21: 255–261.

    PubMed  CAS  Google Scholar 

  • Marcus K, Schmidt O, Schaefer H, Hamacher M, van Hall A, et al. 2004. Proteomics—application to the brain. Int Rev Neurobiol 61: 285–311.

    PubMed  Google Scholar 

  • Maurer MH. 2004a. The path to enlightenment: Making sense of genomic and proteomic information. Genomics Proteomics Bioinformatics 2: 123–131.

    CAS  Google Scholar 

  • Maurer MH. 2004b. Simple method for three-dimensional representation of 2-DE spots using a spreadsheet program. J Proteome Res 3: 665–666.

    CAS  Google Scholar 

  • Maurer MH, Berger C, Wolf M, Fütterer CD, Feldmann RE Jr, et al. 2003a. The proteome of human brain microdialysate. Proteome Sci 1: 7

    Google Scholar 

  • Maurer MH, Feldmann RE, Fütterer CD, Butlin J, Kuschinsky W. 2004. Comprehensive proteome expression profiling of undifferentiated vs. differentiated neural stem cells from adult rat hippocampus. Neurochem Res 29: 1129–1144.

    PubMed  CAS  Google Scholar 

  • Maurer MH, Feldmann RE Jr, Brömme JO, Kalenka A. 2005. Comparison of statistical approaches for the analysis of proteome expression data of differentiating neural stem cells. J Proteome Res 4: 96–100.

    PubMed  CAS  Google Scholar 

  • Maurer MH, Feldmann RE Jr, Fütterer CD, Kuschinsky W. 2003b. The proteome of neural stem cells from adult rat hippocampus. Proteome Sci 1: 4.

    Google Scholar 

  • Merchant M, Weinberger SR. 2000. Recent advancements in surface-enhanced laser desorption/ionization–time of flight mass spectrometry. Electrophoresis 21: 1164–1177.

    PubMed  CAS  Google Scholar 

  • Merril CR, Goldman D. 1982. Quantitative two-dimensional protein electrophoresis for studies of inborn errors of metabolism. Clin Chem 28: 1015–1020.

    PubMed  CAS  Google Scholar 

  • Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, et al. 2003. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115: 629–640.

    PubMed  CAS  Google Scholar 

  • Morrison RS, Kinoshita Y, Johnson MD, Uo T, Ho JT, et al. 2002. Proteomic analysis in the neurosciences. Mol Cell Proteomics 1: 553–560.

    PubMed  CAS  Google Scholar 

  • O'Connor CD, Adams P, Alefounder P, Farris M, Kinsella N, et al. 2000. The analysis of microbial proteomes: Strategies and data exploitation. Electrophoresis 21: 1178–1186.

    PubMed  Google Scholar 

  • Ohmori O, Hirano H, Mita T 1999. Shifted cytosolic NADP+-dependent isocitrate dehydrogenase on 2-D gel in the brain of genetically epileptic E1 mice. Neurochem Res 24: 365–369.

    PubMed  CAS  Google Scholar 

  • Ong SE, Foster LJ, Mann M. 2003. Mass spectrometric-based approaches in quantitative proteomics. Methods 29: 124–130.

    PubMed  CAS  Google Scholar 

  • Ong SE, Pandey A. 2001. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng 18: 195–205.

    PubMed  CAS  Google Scholar 

  • Pasa-Tolic L, Masselon C, Barry RC, Shen Y, Smith RD. 2004. Proteomic analyses using an accurate mass and time tag strategy. Biotechniques 37: 621–624, 626–633, 636 passim.

    PubMed  CAS  Google Scholar 

  • Patterson SD, Aebersold RH. 2003. Proteomics: The first decade and beyond. Nat Genet 33(Suppl): 311–323.

    PubMed  CAS  Google Scholar 

  • Patton WF. 1999. Proteome analysis. II. Protein subcellular redistribution: Linking physiology to genomics via the proteome and separation technologies involved. J Chromatogr B Biomed Sci Appl 722: 203–223.

    PubMed  CAS  Google Scholar 

  • Patton WF. 2000a. Making blind robots see: The synergy between fluorescent dyes and imaging devices in automated proteomics. Biotechniques 28: 944–948, 950–947.

    CAS  Google Scholar 

  • Patton WF. 2000b. A thousand points of light: The application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21: 1123–1144.

    CAS  Google Scholar 

  • Pearce A, Svendsen CN. 1999. Characterisation of stem cell expression using two-dimensional electrophoresis. Electrophoresis 20: 969–970.

    PubMed  CAS  Google Scholar 

  • Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S. 2003. Protein analysis on a proteomic scale. Nature 422: 208–215.

    PubMed  CAS  Google Scholar 

  • Pirttila T, Mattila K, Frey H. 1991. CSF proteins in neurological disorders analyzed by immobilized PH gradient isoelectric focusing using narrow PH gradients. Acta Neurol Scand 83: 34–40.

    PubMed  CAS  Google Scholar 

  • Pratt JM, Petty J, Riba-Garcia I, Robertson DH, Gaskell SJ, et al. 2002. Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 1: 579–591.

    PubMed  CAS  Google Scholar 

  • Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, et al. 2003. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer's disease. Brain Res Mol Brain Res 118: 140–146.

    PubMed  CAS  Google Scholar 

  • Rabilloud T. 1999. Silver staining of 2-D electrophoresis gels. Methods Mol Biol 112: 297–305.

    PubMed  CAS  Google Scholar 

  • Rabilloud T. 2000. Detecting proteins separated by 2-D gel electrophoresis. Anal Chem 72: 48A–55A.

    PubMed  CAS  Google Scholar 

  • Rabilloud T. 2002. Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics 2: 3–10.

    PubMed  CAS  Google Scholar 

  • Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, et al. 2002. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem 277: 19396–19401.

    PubMed  CAS  Google Scholar 

  • Ramagli LS. 1999. Quantifying protein in 2-D PAGE solubilization buffers. Methods Mol Biol 112: 99–103.

    PubMed  CAS  Google Scholar 

  • Raman B, Cheung A, Marten MR. 2002. Quantitative comparison and evaluation of two commercially available, two-dimensional electrophoresis image analysis software packages, Z3 and Melanie. Electrophoresis 23: 2194–2202.

    PubMed  CAS  Google Scholar 

  • Righetti PG, Campostrini N, Pascali J, Hamdan M, Astner H. 2004. Quantitative proteomics: A review of different methodologies. Eur J Mass Spectrom (Chichester, Eng) 10: 335–348.

    CAS  Google Scholar 

  • Rohlff C. 2000. Proteomics in molecular medicine: Applications in central nervous systems disorders. Electrophoresis 21: 1227–1234.

    PubMed  CAS  Google Scholar 

  • Rosengren AT, Salmi JM, Aittokallio T, Westerholm J, Lahesmaa R, et al. 2003. Comparison of PDQuest and Progenesis software packages in the analysis of two-dimensional electrophoresis gels. Proteomics 3: 1936–1946.

    PubMed  CAS  Google Scholar 

  • Rothe GM. 1994. Electrophoresis of enzymes—laboratory methods. Berlin: Springer.

    Google Scholar 

  • Sadygov RG, Cociorva D, Yates JR III. 2004. Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book. Nat Methods 1: 195–201.

    PubMed  CAS  Google Scholar 

  • Sanchez JC, Appel RD, Golaz O, Pasquali C, Ravier F, et al. 1995. Inside SWISS-2DPAGE database. Electrophoresis 16: 1131–1151.

    PubMed  CAS  Google Scholar 

  • Santoni V, Molloy M, Rabilloud T. 2000. Membrane proteins and proteomics: Un amour impossible? Electrophoresis 21: 1054–1070.

    PubMed  CAS  Google Scholar 

  • Schägger H, Cramer WA, von Jagow G. 1994. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217: 220–230.

    PubMed  Google Scholar 

  • Schägger H, von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379.

    PubMed  Google Scholar 

  • Schägger H, von Jagow G. 1991. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199: 223–231.

    PubMed  Google Scholar 

  • Seillier-Moiseiwitsch F, Trost DC, Moiseiwitsch J. 2002. Statistical methods for proteomics. Methods Mol Biol 184: 51–80.

    PubMed  CAS  Google Scholar 

  • Seow TK, Korke R, Liang RC, Ong SE, Ou K, et al. 2001. Proteomic investigation of metabolic shift in mammalian cell culture. Biotechnol Prog 17: 1137–1144.

    PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858.

    PubMed  CAS  Google Scholar 

  • Shin JH, Gulesserian T, Weitzdoerfer R, Fountoulakis M, Lubec G. 2004a. Derangement of hypothetical proteins in fetal Down's syndrome brain. Neurochem Res 29: 1307–1316.

    CAS  Google Scholar 

  • Shin JH, Yang JW, Le Pecheur M, London J, Hoeger H, et al. Altered expression of hypothetical proteins in hippocampus of transgenic mice overexpressing human Cu/Zn-superoxide dismutase 1. Proteome Sci 2: 2.

    Google Scholar 

  • Sickmann A, Dormeyer W, Wortelkamp S, Woitalla D, Kuhn W, et al. 2000. Identification of proteins from human cerebrospinal fluid, separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 21: 2721–2728.

    PubMed  CAS  Google Scholar 

  • Sickmann A, Dormeyer W, Wortelkamp S, Woitalla D, Kuhn W, et al. 2002. Towards a high resolution separation of human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 771: 167–196.

    PubMed  CAS  Google Scholar 

  • Sirover MA. 1999. New insights into an old protein: The functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432: 159–184.

    PubMed  CAS  Google Scholar 

  • Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. 2001. Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat Med 7: 493–496.

    PubMed  CAS  Google Scholar 

  • Taoka M, Wakamiya A, Nakayama H, Isobe T. 2000. Protein profiling of rat cerebella during development. Electrophoresis 21: 1872–1879.

    PubMed  CAS  Google Scholar 

  • Tilleman K, Stevens I, Spittaels K, Haute CV, Clerens S, et al. 2002. Differential expression of brain proteins in glycogen synthase kinase-3 transgenic mice: A proteomics point of view. Proteomics 2: 94–104.

    PubMed  CAS  Google Scholar 

  • Tsugita A, Kawakami T, Uchida T, Sakai T, Kamo M, et al. 2000. Proteome analysis of mouse brain: Two-dimensional electrophoresis profiles of tissue proteins during the course of aging. Electrophoresis 21: 1853–1871.

    PubMed  CAS  Google Scholar 

  • Tsuji T, Shiozaki A, Kohno R, Yoshizato K, Shimohama S. 2002. Proteomic profiling and neurodegeneration in Alzheimer's disease. Neurochem Res 27: 1245–1253.

    PubMed  CAS  Google Scholar 

  • Tyers M, Mann M. 2003. From genomics to proteomics. Nature 422: 193–197.

    PubMed  CAS  Google Scholar 

  • Ünlü M. 1999. Difference gel electrophoresis. Biochem Soc Trans 27: 547–549.

    PubMed  Google Scholar 

  • Ünlü M, Morgan ME, Minden JS. 1997. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 18: 2071–2077.

    PubMed  Google Scholar 

  • Valle RP, Jendoubi M. 2003. Antibody-based technologies for target discovery. Curr Opin Drug Discov Devel 6: 197–203.

    PubMed  CAS  Google Scholar 

  • Vilo J, Kapushesky M, Kemmeren P, Sarkans U, Brazma A. 2003. Expression profiler. The analysis of gene expression data: Methods and software. Parmigiani G, Garrett ES, Irizarry R, Zeger SL, editors. New York: Springer Verlag.

    Google Scholar 

  • Wallace DC. 1999. Mitochondrial diseases in man and mouse. Science 283: 1482–1488.

    PubMed  CAS  Google Scholar 

  • Walsh MJ, Limos L, Tourtellotte WW. 1984. Two-dimensional electrophoresis of cerebrospinal fluid and ventricular fluid proteins, identification of enriched and unique proteins, and comparison with serum. J Neurochem 43: 1277–1285.

    PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19: 242–247.

    PubMed  CAS  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, et al. 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16: 1090–1094.

    PubMed  CAS  Google Scholar 

  • Wenner BR, Lovell MA, Lynn BC. 2004. Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS. J Proteome Res 3: 97–103.

    PubMed  CAS  Google Scholar 

  • Westermann B, Neupert W. 2003. ‘Omics’ of the mitochondrion. Nat Biotechnol 21: 239–240.

    PubMed  CAS  Google Scholar 

  • Westermeier R. 2001. Electrophoresis in practice. A guide to methods and applications of DNA and protein separations, 3rd ed. Weinheim: Wiley-VCH.

    Google Scholar 

  • Wiederkehr F, Ogilvie A, Vonderschmitt DJ. 1985. Two-dimensional gel electrophoresis of cerebrospinal fluid proteins from patients with various neurological diseases. Clin Chem 31: 1537–1542.

    PubMed  CAS  Google Scholar 

  • Wildenauer DB, Korschenhausen D, Hoechtlen W, Ackenheil M, Kehl M, et al. 1991. Analysis of cerebrospinal fluid from patients with psychiatric and neurological disorders by two-dimensional electrophoresis: Identification of disease-associated polypeptides as fibrin fragments. Electrophoresis 12: 487–492.

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. 1999. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112: 531–552.

    PubMed  CAS  Google Scholar 

  • Wirth PJ, Romano A. 1995. Staining methods in gel electrophoresis, including the use of multiple detection methods. J Chromatogr A 698: 123–143.

    PubMed  CAS  Google Scholar 

  • Yang JW, Czech T, Lubec G. 2004. Proteomic profiling of human hippocampus. Electrophoresis 25: 1169–1174.

    PubMed  CAS  Google Scholar 

  • Young N, Chang Z, Wishart DS. 2004. GelScape: A Web-based server for interactively annotating, manipulating, comparing and archiving 1D and 2D gel images. Bioinformatics 20: 976–978.

    PubMed  CAS  Google Scholar 

  • Yuan X, Russell T, Wood G, Desiderio DM. 2002. Analysis of the human lumbar cerebrospinal fluid proteome. Electrophoresis 23: 1185–1196.

    PubMed  CAS  Google Scholar 

  • Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, et al. 2003. GoMiner: A resource for biological interpretation of genomic and proteomic data. Genome Biol 4: R28.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the German Ministry of Education and Research (BMBF) in the research programs Competence Network Stroke (B2, to WK) and the National Genome Research Network NGFN-2 (N3NV-S19T05, to MHM and WK), as well as by the German Research Foundation DFG (MA 2492/2-2, to MHM and WK).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Maurer, M.H., Kuschinsky, W. (2007). 7.1 Proteomics. In: Lajtha, A., Gibson, G.E., Dienel, G.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30411-3_27

Download citation

Publish with us

Policies and ethics