Skip to main content

Phospholipid Signaling and Cell Function

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract

Phospholipase D (PLD) is an important member of the phospholipid signaling enzymes, which catalyzes generation of phosphatidic acid (PA), a second messenger, and choline, a precursor of the neurotransmitter acetylcholine (ACh). PA can then be converted to 1,2-diacylglycerol (DAG) by PA phosphohydrolase and to lysoPA (LPA) by phospholipase A2 which act as protein kinase C activator and as an extracellular agonist, respectively. In addition to the role of PA as a signaling mediator, it plays a biophysical role as a membrane perturbant for fusion pore formation in exocytosis. The PLD activation is linked to a wide array of physiological and pathophysiological cell responses, including the rapid responses such as secretion, vesicle trafficking, cytoskeletal rearrangement, and the long-term responses such as proliferation, differentiation, survival, apoptosis, and degenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

acetylcholine

ActD:

ActinomycinD

AD:

Alzheimer’s disease

aPKC:

atypical PKCs

βAPP:

βA precursor protein

cPKC:

conventional PKC

DAG:

1,2-diacylglycerol

dbcAMP:

dibutyryl cyclic AMP

DGK:

DAG kinase

Egr-1:

early growth response-1

ERK:

extracellular signal-regulated kinase

4E-BP1:

4E binding protein1

LPA:

lysoPA

LPC:

lysophosphatidylcholine

MAP:

Mitogen-Activated Protein

MEK:

MAP kinase-ERK kinase

mTOR:

mammalian target of rapamycin

nPKC:

novel PKC

p38MAPK:

p38 MAP kinase

PAP:

phosphatidic acid phosphohydrolase

PA:

phosphatidic acid

PC:

phosphatidylcholine

PH:

pleckstrin homology

PI(4,5)P2 :

phosphatidylinositol 4,5-bisphosphate

PIs:

phosphoinositides

PKC:

protein kinase C

PLC:

phospholipase C

PLD:

Phospholipase D

PTK:

protein tyrosine kinase

PTP:

tyrosine phosphatase

ROCK:

Rho kinase

SCAMP2:

secretory carrier membrane protein2

TGN:

trans-Golgi network

tPA:

tissue plasminogen activator

References

  • Ahn BH, Kim SY, Kim EH, Choi KS, Kwon TK, et al. 2003. Transmodulation between phospholipase D and c-Src enhances cell proliferation. Mol Cell Biol 23: 3103–3115.

    Article  PubMed  CAS  Google Scholar 

  • Andersson L, Bostrom P, Ericson J, Rutberg M, Magnusson B, et al. 2006. PLD1 and ERK2 regulate cytosolic lipid droplet formation. J Cell Sci 119: 2246–2257.

    Article  PubMed  CAS  Google Scholar 

  • Banno Y, Ohguchi K, Matsumoto N, Koda M, Ueda M, et al. 2005. Implication of phospholipase D2 in oxidant-induced phosphoinositide 3-kinase signaling via Pyk2 activation in PC12 cells. J Biol Chem 280: 16319–16324.

    Article  PubMed  CAS  Google Scholar 

  • Banno Y, Wang S, Ito Y, Izumi T, Nakashima S, et al. 2001. Involvement of ERK and p38 MAP kinase in oxidative stress-induced phospholipase D activation in PC12 cells. Neuroreport 12: 2271–2275.

    Article  PubMed  CAS  Google Scholar 

  • Becker KP, Hannun YA. 2005. Protein kinase C and phospholipase D: intimate interactions in intracellular signaling. Cell Mol Life Sci 62: 1448–1461.

    Article  PubMed  CAS  Google Scholar 

  • Bourgoin S, Grinstein S. 1992. Peroxides of vanadate induce activation of phospholipase D in HL-60 cells. Role of tyrosine phosphorylation. J Biol Chem 267: 11908–11916.

    PubMed  CAS  Google Scholar 

  • Cai D, Netzer WJ, Zhong M, Lin Y, Du G, et al. 2006a. Presenilin-1 uses phospholipase D1 as a negative regulator of β-amyloid formation. Proc Natl Acad Sci USA 103: 1941–1946.

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Zhong M, Wang R, Netzer WJ, Shields D, et al. 2006b. Phospholipase D1 corrects impaired βAPP trafficking and neurite outgrowth in familial Alzheimer’s disease-linked presenilin-1 mutant neurons. Proc Natl Acad Sci USA 103: 1936–1940.

    Article  PubMed  CAS  Google Scholar 

  • Cazzolli R, Shemon AN, Fang MQ, Hughes WE. 2006. Phospholipid signalling through phospholipase D and phosphatidic acid. IUBMB Life 58: 457–461.

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Exton JH. 2004. Regulation of phospholipase D2 activity by protein kinase Cα. J Biol Chem 279: 22076–22083.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Rodrik V, Foster DA. 2005. Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene 24: 672–679.

    Article  PubMed  CAS  Google Scholar 

  • Choi WS, Hiragun T, Lee JH, Kim YM, Kim HP, et al. 2004. Activation of RBL-2H3 mast cells is dependent on tyrosine phosphorylation of phospholipase D2 by Fyn and Fgr. Mol Cell Biol 24: 6980–6992.

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S. 2001. Signalling roles of mammalian phospholipase D1 and D2. Cell Mol Life Sci 58: 1674–1687.

    Article  PubMed  CAS  Google Scholar 

  • El Marjou M, Montalescot V, Buzyn A, Geny B. 2000. Modifications in phospholipase D activity and isoform expression occur upon maturation and differentiation in vivo and in vitro in human myeloid cells. Leukemia 14: 2118–2127.

    Article  PubMed  CAS  Google Scholar 

  • Exton JH. 1998. Phospholipase D. Biochim Biophys Acta 1436: 105–115.

    PubMed  CAS  Google Scholar 

  • Exton JH. 2002. Regulation of phospholipase D. FEBS Lett 531: 58–61.

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Park IH, Wu AL, Du G, Huang P, et al. 2003. PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1. Curr Biol 13: 2037–2044.

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Vilella Bach M, Bachmann R, Flanigan A, Chen J. 2001. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294: 1942–1945.

    Article  PubMed  CAS  Google Scholar 

  • Foster DA. 2007. Regulation of mTOR by phosphatidic acid? Cancer Res 67: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Ha SH, Kim DH, Kim IS, Kim JH, Lee MN, et al. 2006. PLD2 forms a functional complex with mTOR/raptor to transduce mitogenic signals. Cell Signal 18: 2283–2291.

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Jenco JM, Nakashima S, Cadwallader K, Gu Q, et al. 1997. Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-α. J Biol Chem 272: 3860–3868.

    Article  PubMed  CAS  Google Scholar 

  • Han JM, Kim JH, Lee BD, Lee SD, Kim Y, et al. 2002. Phosphorylation-dependent regulation of phospholipase D2 by protein kinase Cδ in rat Pheochromocytoma PC12 cells. J Biol Chem 277: 8290–8297.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan DJ, Chaikoff IL. 1947. The phosphorus-containing lipids of the carrot. J Biol Chem 168: 233–240.

    CAS  PubMed  Google Scholar 

  • Hayakawa K, Nakashima S, Ito Y, Mizuta K, Miyata H, et al. 1999. Increased expression of phospholipase D1 mRNA during cAMP- or NGF-induced differentiation in PC12 cells. Neurosci Lett 265: 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Ho WT, Xie Z, Zhao ZJ, Exton JH. 2005. Tyrosine phosphorylation of phospholipase D1 by v-Src does not per se result in activation. Cell Signal 17: 691–699.

    Article  PubMed  CAS  Google Scholar 

  • Hu T, Exton JH. 2003. Mechanisms of regulation of phospholipase D1 by protein kinase Cα. J Biol Chem 278: 2348–2355.

    Article  PubMed  CAS  Google Scholar 

  • Huang P, Altshuller YM, Hou JC, Pessin JE, Frohman MA. 2005. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol Biol Cell 16: 2614–2623.

    Article  PubMed  CAS  Google Scholar 

  • Huang P, Frohman MA. 2003. The role of phospholipase D in Glut-4 translocation. Diabetes Metab Res Rev 19: 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Hui L, Zheng Y, Yan Y, Bargonetti J, Foster DA. 2006. Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene 25: 7305–7310.

    Article  PubMed  CAS  Google Scholar 

  • Humeau Y, Vitale N, Chasserot Golaz S, Dupont JL, Du G, et al. 2001. A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci USA 98: 15300–15305.

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Nakashima S, Kanoh H, Nozawa Y. 1997a. Implication of Ca2+-dependent protein tyrosine phosphorylation in carbachol-induced phospholipase D activation in rat pheochromocytoma PC12 cells. J Neurochem 68: 419–425.

    PubMed  CAS  Google Scholar 

  • Ito Y, Nakashima S, Nozawa Y. 1997b. Hydrogen peroxide-induced phospholipase D activation in rat pheochromocytoma PC12 cells: possible involvement of Ca2+-dependent protein tyrosine kinase. J Neurochem 69: 729–736.

    PubMed  CAS  Google Scholar 

  • Ito Y, Nakashima S, Nozawa Y. 1998. Possible involvement of mitogen-activated protein kinase in phospholipase D activation induced by H2O2, but not by carbachol, in rat pheochromocytoma PC12 cells. J Neurochem 71: 2278–2285.

    PubMed  CAS  Google Scholar 

  • Jenkins GM, Frohman MA. 2005. Phospholipase D: A lipid centric review. Cell Mol Life Sci 62: 2305–2316.

    Article  PubMed  CAS  Google Scholar 

  • Jones JA, Hannun YA. 2002. Tight binding inhibition of protein phosphatase-1 by phosphatidic acid. Specificity of inhibition by the phospholipid. J Biol Chem 277: 15530–15538.

    Article  PubMed  CAS  Google Scholar 

  • Kam Y, Exton JH. 2002. Dimerization of phospholipase d isozymes. Biochem Biophys Res Commun 290: 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Kanfer JN, Hattori H, Orihel D. 1986. Reduced phospholipase D activity in brain tissue samples from Alzheimer’s disease patients. Ann Neurol 20: 265–267.

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Lee YH, Kwon TK, Chang JS, Chung KC, et al. 2006. Phospholipase D prevents etoposide-induced apoptosis by inhibiting the expression of early growth response-1 and phosphatase and tensin homologue deleted on chromosome 10. Cancer Res 66: 784–793.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Han JM, Park JB, Lee SD, Oh YS, et al. 1999. Phosphorylation and activation of phospholipase D1 by protein kinase C in vivo: Determination of multiple phosphorylation sites. Biochemistry 38: 10344–10351.

    Article  PubMed  CAS  Google Scholar 

  • Klein J. 2005. Functions and pathophysiological roles of phospholipase D in the brain. J Neurochem 94: 1473–1487.

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Chalifa V, Liscovitch M, Loffelholz K. 1995. Role of phospholipase D activation in nervous system physiology and pathophysiology. J Neurochem 65: 1445–1455.

    Article  PubMed  CAS  Google Scholar 

  • Kumada T, Miyata H, Nozawa Y. 1993. Involvement of tyrosine phosphorylation in IgE receptor-mediated phospholipase D activation in rat basophilic leukemia (RBL-2H3) cells. Biochem Biophys Res Commun 191: 1363–1368.

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Kim JH, Jang IH, Kim HS, Han JM, et al. 2005. Phosphatidylinositol (3,4,5)-trisphosphate specifically interacts with the phox homology domain of phospholipase D1 and stimulates its activity. J Cell Sci 118: 4405–4413.

    Article  PubMed  CAS  Google Scholar 

  • Lee SD, Lee BD, Han JM, Kim JH, Kim Y, et al. 2000. Phospholipase D2 activity suppresses hydrogen peroxide-induced apoptosis in PC12 cells. J Neurochem 75: 1053–1059.

    Article  PubMed  CAS  Google Scholar 

  • Lehman N, Ledford B, Di Fulvio M, Frondorf K, McPhail LC, et al. 2007. Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. FASEB J 21: 1075–1087.

    Article  PubMed  CAS  Google Scholar 

  • Li F, Malik KU. 2005. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D. J Pharmacol Exp Ther 312: 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Liscovitch M, Czarny M, Fiucci G, Tang X. 2000. Phospholipase D: molecular and cell biology of a novel gene family. Biochem J 345: 401–415.

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Liao H, Castle A, Zhang J, Casanova J, et al. 2005. SCAMP2 interacts with Arf6 and phospholipase D1 and links their function to exocytotic fusion pore formation in PC12 cells. Mol Biol Cell 16: 4463–4472.

    Article  PubMed  CAS  Google Scholar 

  • Marcil J, Harbour D, Naccache PH, Bourgoin S. 1997. Human phospholipase D1 can be tyrosine-phosphorylated in HL-60 granulocytes. J Biol Chem 272: 20660–20664.

    Article  PubMed  CAS  Google Scholar 

  • McDermott M, Wakelam MJ, Morris AJ. 2004. Phospholipase D1,2. Biochem. Cell Biol 82: 225–253.

    Article  PubMed  CAS  Google Scholar 

  • Mehta S, Maglio J, Kobayashi MS, Sipple AM, Horwitz, J. 2003. Activation of phospholipase D is not mediated by direct phosphorylation on tyrosine residues. Biochim Biophys Acta 1631: 246–254.

    PubMed  CAS  Google Scholar 

  • Min DS, Ahn BH, Jo YH. 2001a. Differential tyrosine phosphorylation of phospholipase D isozymes by hydrogen peroxide and the epidermal growth factor in A431 epidermoid carcinoma cells. Mol Cells 11: 369–378.

    PubMed  CAS  Google Scholar 

  • Min DS, Ahn BH, Rhie DJ, Yoon SH, Hahn SJ, et al. 2001b. Expression and regulation of phospholipase D during neuronal differentiation of PC12 cells. Neuropharmacology 41: 384–391.

    Article  PubMed  CAS  Google Scholar 

  • Min DS, Kim EG, Exton JH. 1998. Involvement of tyrosine phosphorylation and protein kinase C in the activation of phospholipase D by H2O2 in Swiss 3T3 fibroblasts. J Biol Chem 273: 29986–29994.

    Article  PubMed  CAS  Google Scholar 

  • Min DS, Shin EY, Kim EG. 2002. The p38 mitogen-activated protein kinase is involved in stress-induced phospholipase D activation in vascular smooth muscle cells. Exp Mol Med 34: 38–46.

    PubMed  CAS  Google Scholar 

  • Muthalif MM, Parmentier JH, Benter IF, Karzoun N, Ahmed A, et al. 2000. Ras/mitogen-activated protein kinase mediates norepinephrine-induced phospholipase D activation in rabbit aortic smooth muscle cells by a phosphorylation-dependent mechanism. J Pharmacol Exp Ther 293: 268–274.

    PubMed  CAS  Google Scholar 

  • Nakashima S, Nozawa Y. 1999. Possible role of phospholipase D in cellular differentiation and apoptosis. Chem Phys Lipids 98: 153–164.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima S, Ohguchi K, Frohman MA, Nozawa Y. 1998. Increased mRNA expression of phospholipase D (PLD) isozymes during granulocytic differentiation of HL60 cells. Biochim Biophys Acta 1389: 173–177.

    PubMed  CAS  Google Scholar 

  • Natarajan V, Scribner WM, Morris AJ, Roy S, Vepa S, et al. 2001. Role of p38 MAP kinase in diperoxovanadate-induced phospholipase D activation in endothelial cells. Am J Physiol Lung Cell Mol Physiol 281: L435–L449.

    PubMed  CAS  Google Scholar 

  • Natarajan V, Vepa S, Verma RS, Scribner WM. 1996. Role of protein tyrosine phosphorylation in H2O2-induced activation of endothelial cell phospholipase D. Am J Physiol 271: L400–L408.

    PubMed  CAS  Google Scholar 

  • Nozawa Y. 2002. Roles of phospholipase D in apoptosis and pro-survival. Biochim Biophys Acta 1585: 77–86.

    PubMed  CAS  Google Scholar 

  • Oh DY, Park SY, Cho JH, Lee KS, Min do S, et al. 2007. Phospholipase D1 activation through Src and Ras is involved in basic fibroblast growth factor-induced neurite outgrowth of H19–7 cells. J Cell Biochem 101: 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Oh SO, Hong JH, Kim YR, Yoo HS, Lee SH, et al. 2000. Regulation of phospholipase D2 by H2O2 in PC12 cells. J Neurochem 75: 2445–2454.

    Article  PubMed  CAS  Google Scholar 

  • Ohguchi K, Banno Y, Akao Y, Nozawa Y. 2004. Involvement of phospholipase D1 in melanogenesis of mouse B16 melanoma cells. J Biol Chem 279: 3408–3412.

    Article  PubMed  CAS  Google Scholar 

  • Ohguchi K, Banno Y, Nakagawa Y, Akao Y, Nozawa Y. 2005. Negative regulation of melanogenesis by phospholipase D1 through mTOR/p70 S6 kinase 1 signaling in mouse B16 melanoma cells. J Cell Physiol 205: 444–451.

    Article  PubMed  CAS  Google Scholar 

  • Ohguchi K, Banno Y, Nakashima S, Nozawa Y. 1996. Regulation of membrane-bound phospholipase D by protein kinase C in HL60 cells. Synergistic action of small GTP-binding protein RhoA. J Biol Chem 271: 4366–4372.

    Article  PubMed  CAS  Google Scholar 

  • Oishi K, Takahashi M, Mukai H, Banno Y, Nakashima S, et al. 2001. PKN regulates phospholipase D1 through direct interaction. J Biol Chem 276: 18096–18101.

    Article  PubMed  CAS  Google Scholar 

  • Oka M, Hitomi T, Okada T, Nakamura Si S, Nagai H, et al. 2002. Dual regulation of phospholipase D1 by protein kinase Cα in vivo. Biochem Biophys Res Commun 294: 1109–1113.

    Article  PubMed  CAS  Google Scholar 

  • Oude Weernink PA, Lopez de Jesus M, Schmidt M. 2007. Phospholipase D signaling: orchestration by PIP2 and small GTPases. Naunyn Schmiedebergs Arch Pharmacol 374: 399–411.

    Article  PubMed  CAS  Google Scholar 

  • Paruch S, El Benna J, Djerdjouri B, Marullo S, Perianin A. 2006. A role of p44/42 mitogen-activated protein kinases in formyl-peptide receptor-mediated phospholipase D activity and oxidant production. FASEB J 20: 142–144.

    PubMed  CAS  Google Scholar 

  • Schmidt M, Huwe SM, Fasselt B, Homann D, Rumenapp U, et al. 1994. Mechanisms of phospholipase D stimulation by m3 muscarinic acetylcholine receptors. Evidence for involvement of tyrosine phosphorylation. Eur J Biochem 225: 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Sciorra VA, Rudge SA, Wang J, McLaughlin S, Engebrecht J, et al. 2002. Dual role for phosphoinositides in regulation of yeast and mammalian phospholipase D enzymes. J Cell Biol 159: 1039–1049.

    Article  PubMed  CAS  Google Scholar 

  • Slaaby R, Jensen T, Hansen HS, Frohman MA, Seedorf K. 1998. PLD2 complexes with the EGF receptor and undergoes tyrosine phosphorylation at a single site upon agonist stimulation. J Biol Chem 273: 33722–33727.

    Article  PubMed  CAS  Google Scholar 

  • Sung JY, Lee SY, Min DS, Eom TY, Ahn YS, et al. 2001. Differential activation of phospholipases by mitogenic EGF and neurogenic PDGF in immortalized hippocampal stem cell lines. J Neurochem 78: 1044–1053.

    Article  PubMed  CAS  Google Scholar 

  • Sung TC, Zhang Y, Morris AJ, Frohman MA. 1999. Structural analysis of human phospholipase D1. J Biol Chem 274: 3659–3666.

    Article  PubMed  CAS  Google Scholar 

  • Vicogne J, Vollenweider D, Smith JR, Huang P, Frohman MA, et al. 2006. Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc Natl Acad Sci USA 103: 14761–14766.

    Article  PubMed  CAS  Google Scholar 

  • Vitale N, Caumont AS, Chasserot Golaz S, Du G, Wu S, et al. 2001. Phospholipase D1: A key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20: 2424–2434.

    Article  PubMed  CAS  Google Scholar 

  • Voss M, Weernink PA, Haupenthal S, Moller U, Cool RH, et al. 1999. Phospholipase D stimulation by receptor tyrosine kinases mediated by protein kinase C and a Ras/Ral signaling cascade. J Biol Chem 274: 34691–34698.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Yamazaki M, Miyazaki H, Arikawa C, Itoh K, et al. 2004a. Phospholipase D2 functions as a downstream signaling molecule of MAP kinase pathway in L1-stimulated neurite outgrowth of cerebellar granule neurons. J Neurochem 89: 142–151.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Yokozeki T, Yamazaki M, Miyazaki H, Sasaki T, et al. 2004b. Essential role for phospholipase D2 activation downstream of ERK MAP kinase in nerve growth factor-stimulated neurite outgrowth from PC12 cells. J Biol Chem 279: 37870–37877.

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Banno Y, Takuwa Y, Koda M, Hara A, et al. 2004. Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signalling pathways in Chinese-hamster ovary cells. Biochem J 378: 649–656.

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa H, Banno Y, Nakashima S, Sawada M, Yamada J, et al. 2000. Increased phospholipase D2 activity during hypoxia-induced death of PC12 cells: its possible anti-apoptotic role. Neuroreport 11: 3647–3650.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura S, Banno Y, Nakashima S, Takenaka K, Sakai H, et al. 1998. Ceramide formation leads to caspase-3 activation during hypoxic PC12 cell death. Inhibitory effects of Bcl-2 on ceramide formation and caspase-3 activation. J Biol Chem 273: 6921–6927.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura S, Nakashima S, Ohguchi K, Sakai H, Shinoda J, et al. 1996. Differential mRNA expression of phospholipase D (PLD) isozymes during cAMP-induced differentiation in C6 glioma cells. Biochem Biophys Res Commun 225: 494–499.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Huang P, Du G, Kanaho Y, Frohman MA, et al. 2004. Increased expression of two phospholipase D isoforms during experimentally induced hippocampal mossy fiber outgrowth. Glia 46: 74–83.

    Article  PubMed  Google Scholar 

  • Zhang Y, Kanaho Y, Frohman MA, Tsirka SE. 2005. Phospholipase D1-promoted release of tissue plasminogen activator facilitates neurite outgrowth. J Neurosci 25: 1797–1805.

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, Frohman MA, Blusztajn JK. 2001. Generation of choline for acetylcholine synthesis by phospholipase D isoforms. BMC Neurosci 2: 16.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Rodrik V, Toschi A, Shi M, Hui L, et al. 2006. Phospholipase D couples survival and migration signals in stress response of human cancer cells. J Biol Chem 281: 15862–15868.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Nozawa, Y. (2009). Phospholipid Signaling and Cell Function. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_15

Download citation

Publish with us

Policies and ethics