Skip to main content

Electron Flow Through Molecular Structures

  • Chapter
Scanning Probe Microscopy

Abstract

In this chapter, a perspective is given on some aspects of electron flow through molecular bridges. The advent of molecular electronics, drive to understand charge transfer in biological systems, and functioning of devices such as organic lightemitting diodes and dye-sensitized solar cells all require deeper understanding of this topic. Application of SPM to such studies has opened the possibility of true single—molecule measurements, but has also introduced a number of artifacts and complications into the work, notably perturbations due to the force and local electric field applied by the tip. Additional chapters in this book provide specific studies of electron flow in thiolated hydrocarbons and of electrical and electromechanical measurements on biomolecules. Here, SPM measurements on two specific systems—electron flow through DNA, and STM measurements of isolated molecules on a semiconductor surface, are developed in detail. These studies are presented in the general context of electron flow measurements through single molecules, and are compared with parallel, non-SPM techniques. The strength of SPM to combine imaging with the electrical measurement is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Jortner and M. Ratner, ed., Molecular Electronics (Blackwell Science, Oxford, 1997).

    Google Scholar 

  2. J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-Beyerle, Proc. Nat. Acad. Sci., 95, 12759–12765 (1998).

    Article  CAS  Google Scholar 

  3. X.-Y. Zhu, J. Phys. Chem. 108, 8778 (2004).

    CAS  Google Scholar 

  4. A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V.B. Engelkes, and C.D. Frisbie, Adv. Mater. 15, 1 (2004).

    Google Scholar 

  5. S.N. Patitsas, G.P. Lopinski, O. Hul’ko, D.J. Moffatt and R.A. Wolkow, Surface Science Letters 457, L425 (2000).

    Article  CAS  Google Scholar 

  6. C. Joachim and M.A. Ratner, Nanotechnology 15, 1065 (2004).

    Article  CAS  Google Scholar 

  7. W. Wang. T. Lee, and M.A. Reed, J. Phys. Chem. B 108, 18398 (2004).

    Article  CAS  Google Scholar 

  8. A. Nitzan, Ann. Rev. Phys. Chem. 52, 681 (2001).

    Article  CAS  Google Scholar 

  9. R.A. Marcus, and N. Sutin, Biochim. Biophys. Acta 265, 811 (1985).

    Google Scholar 

  10. S. Priyadarshy, S. M. Risser, and D.N. Beratan Phys. Chem. 100, 17678 (1996).

    Article  CAS  Google Scholar 

  11. E._M. Conwell and S. V. Rakmanova, Proc. Nat. Acad. Sci. 97, 4556–60 (2000).

    Article  CAS  Google Scholar 

  12. P.T. Henderson, D. Jones, G. Hampikian, Y. Kan, and G.B. Schuster, Proc. Natl. Acad. Sci. USA 96, 8353 (1999).

    Article  CAS  Google Scholar 

  13. J.R. Heath, M.A. Ratner, Physics Today, 43 (May, 2003).

    Google Scholar 

  14. C.A.M. Seidel, A. Schulz, and H.M. Sauer, J. Phys. Chem. 100, 5541 (1996).

    Article  CAS  Google Scholar 

  15. M. Olson, Phys. Chem. B 102, 941 (1998).

    Article  CAS  Google Scholar 

  16. C. Joachim, J.K. Gimzewski, and A. Aviram, Nature 408, 541 (2000).

    Article  CAS  Google Scholar 

  17. M. Magoga and C. Joachim, Phys. Rev. B 59, 16011 (1997).

    Article  Google Scholar 

  18. H. Yamamoto and D.H. Waldeck, J. Phys. Chem. B 106, 7469 (2002).

    Article  CAS  Google Scholar 

  19. M. Magoga and C. Joachim, Phys. Rev. B 56, 4722 (1997).

    Article  CAS  Google Scholar 

  20. M.D. Ventra, S.T. Pantelides, and N.D. Lang, Phys. Rev. Lett. 84, 979 (2000).

    Article  Google Scholar 

  21. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour, Science 278, 252 (1997).

    Article  CAS  Google Scholar 

  22. J.M. Seminario, C.E. De La Cruz, and P.A. Derosa, J. Am Chem. Soc.123, 5616–17 (2001).

    Article  CAS  Google Scholar 

  23. S.N. Yaliraki, M. Kemp, and M.A. Ratner, J. Am. Chem. Soc. 121, 3428–3434 (1999)

    Article  CAS  Google Scholar 

  24. N.D. Lang and Ph. Avouris, Phys. Rev. Lett. 81, 3515–18 (1996).

    Article  Google Scholar 

  25. N.A. Burnham, D.D. Dominguez, R.L. Mowery, and R.J. Colton, Phys. Rev. Lett. 64, 1931 (1990).

    Article  CAS  Google Scholar 

  26. S.R. Cohen, Ultramicroscopy 42, 66, (1992).

    Article  Google Scholar 

  27. D. Tabor, J. Coll. Int. Sci. 58, 2 (1977).

    Article  CAS  Google Scholar 

  28. M.D. Pashley, J.B. Pethica, and D. Tabor, Wear 100, 7 (1984).

    Article  CAS  Google Scholar 

  29. K. L Johnson, K. Kendal, and A.D. Roberts, Proc. R. Soc. Lond. A 324, 301 (1971).

    Article  CAS  Google Scholar 

  30. T. P. Weihs, Z. Nawaz, S. P. Jarvis, and J. B. Pethica, Appl. Phys. Lett. 59, 3536 (1991).

    Article  CAS  Google Scholar 

  31. U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Science 248, 454–61 (1990).

    Article  CAS  Google Scholar 

  32. R.C. Thomas, J.E. Houston, T.A. Michalske, and R.M. Crooks, Science 259, 1883 (1993).

    Article  CAS  Google Scholar 

  33. M.P. Samanta, W. Tian, S. Datta, J.I. Henderson, and C.P. Kubiak, Phys. Rev. B 53, R7626 (1996).

    Article  CAS  Google Scholar 

  34. A. Vilan, J. Ghabboun, and D. Cahen, J. Phys. Chem. B 107, 6360 (2003).

    Article  CAS  Google Scholar 

  35. N. Koch, et al., Appl. Phys. Lett. 82, 70 (2003).

    Article  CAS  Google Scholar 

  36. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).

    Article  CAS  Google Scholar 

  37. D. Cahen and A. Kahn, Adv. Mater. 15, 271 (2003).

    Article  CAS  Google Scholar 

  38. E.G. Hill, A.J. Mäkinen, and Z.H. Kafafi, J. Appl. Phys. 88, 889 (2000).

    Article  CAS  Google Scholar 

  39. E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts. Monographs in Electronics and Electrical Engineering, volume 19 (Oxford, 1988).

    Google Scholar 

  40. Y. Xue, S. Datta, M.A. Ratner, J. Chem. Phys. 115, 4292 (2001).

    Article  CAS  Google Scholar 

  41. S. Kubatkin et al, Nature 425, 698 (2003).

    Article  CAS  Google Scholar 

  42. A. Nitzan and M.A. Ratner, Science 300, 1384 (2003).

    Article  CAS  Google Scholar 

  43. R.M. Feenstra and J.A. Stroscio, J. Vac. Sci. Technol. B 5, 923 (1987).

    Article  CAS  Google Scholar 

  44. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak, Phys. Rev. Lett. 79, 2530 (1997).

    Article  CAS  Google Scholar 

  45. M. Di Ventra, S.T. Pantelides, and N.D. Lang, Phys. Rev. Lett. 84, 979 (2000).

    Article  Google Scholar 

  46. X.d.l. Broise, C. Delerue, M. Lannoo, B. Grandidier, and D. Stievenard, Phys. Rev. B 61 (2000) 2138.

    Article  Google Scholar 

  47. D. Stievenard, Mater. Sci. Eng. B 71, 120 (2000).

    Article  Google Scholar 

  48. J. Reichert, R. Ochs, D. Beckmann, H.B. Weber, M. Mayor, and H.v. Löhneysen, Phys. Rev. Lett. 88, 176804–1 (2002).

    Article  CAS  Google Scholar 

  49. J.G. Kushmeric, D.B. Holt, J.C. Yang, J. Naciri, M.H. Moore, and R. Shashidhar, Phys. Rev. Lett. 89, 086802 (2002).

    Article  CAS  Google Scholar 

  50. J.N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1985).

    Google Scholar 

  51. D. Tabor, J. Coll. Int. Sci, 58, 2 (1977).

    Article  CAS  Google Scholar 

  52. T. Lee, W. Wang, and M.A. Reed, Ann. Nat. Acad. Sci. 1006, 21 (2003).

    Article  CAS  Google Scholar 

  53. N. B. Zhitenev, H. Meng, and Z. Bao, Phys. Rev. Lett. 88, 226801 (2002).

    Article  CAS  Google Scholar 

  54. A. Bezryadin and C. Dekker, J. Vac. Sci. Technol. B 15, 793 (1997).

    Article  CAS  Google Scholar 

  55. R.E. Holmlin, et al, J. Am. Chem. Soc. 123, 5075 (2001).

    Article  CAS  Google Scholar 

  56. Y. Selzer, A. Salomon, and D. Cahen, J. Phys. Chem. B 106, 10432 (2002).

    Article  CAS  Google Scholar 

  57. K. Slowinski, R. V. Chamberlain, C. J. Miller, and M. Majda, J. Amer. Chem. Soc. 119, 11910 (1997).

    Article  CAS  Google Scholar 

  58. T. Chasse, C.-I. Wu, I.G. Hill, and A. Kahn, J. Appl. Phys. 85 6589 (1999).

    Article  CAS  Google Scholar 

  59. H. Cohen, Appl. Phys. Lett. 85, 1271 (2004).

    Article  CAS  Google Scholar 

  60. W. Haiss, et al, J. Am. Chem. Soc. 125, 15294 (2003).

    Article  CAS  Google Scholar 

  61. B. Xu and N.J. Tao, Science 301, 1221–23 (2003).

    Article  CAS  Google Scholar 

  62. L.A. Bumm, J.J. Arnold, T.D. Dunbar, D.l. Allara, and P.S. Weiss, J. Phys. Chem. B 103, 8122 (1999).

    Article  CAS  Google Scholar 

  63. K.-A. Son, H.I. Kimk and J.E. Houston, Phys. Rev. Lett. 86, 5357 (2001).

    Article  CAS  Google Scholar 

  64. U. Dürig, O. Züger, B. Michel, L Häussling, and H. Ringsdorf, Phys. Rev. B, 48 1711 (1993).

    Article  Google Scholar 

  65. F.-R.F. Fan, Y. Yao, L. Cai, L. Cheng, J. Tour, and A.J. Bard, J. Am. Chem. Soc. 126, 4035 (2004).

    Article  CAS  Google Scholar 

  66. M. Salmeron, G. Neubauer, A. Folch, M. Tomitori, D.F. Ogletree, and P. Sautet, Langmuir 9 3600 (1993).

    Article  CAS  Google Scholar 

  67. A. Lio, C. Morant, D.F. Ogletree, and M. Salmeron J. Phys. Chem. B 101, 4767 (1997).

    Article  CAS  Google Scholar 

  68. D.J. Wold and C.D. Frisbie, J. Am. Chem. Soc. 123, 5549 (2001).

    Article  CAS  Google Scholar 

  69. S. Morita, R. Wiesendanger, and E. Meyer ed., Noncontact Atomic Force Microscopy (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  70. S.R. Cohen, G. Neubauer, and G.M. McClelland, J. Vac. Sci. Technol. A 8, 3449 (1990).

    Article  CAS  Google Scholar 

  71. X.D. Cui, et al., Science 294, 571 (2001).

    Article  CAS  Google Scholar 

  72. X.D. Cui, et al., J. Phys. Chem. B 106, 8609 (2002).

    Article  CAS  Google Scholar 

  73. V.B. Engelkes, J.M. Beebe, and C. D. Frisbie, J. Amer. Chem. Soc. 126, 14287 (2004).

    Article  CAS  Google Scholar 

  74. D.J. Wold, R. Haag, M.A. Rampi, C. D. Frisbie, J. Phys. Chem. B 106, 2813 (2002).

    Article  CAS  Google Scholar 

  75. J.E. Beebe, V.B. Engelkes, L.L. Miller, and C.D. Frisbie, J. Am. Chem. Soc. 124, 11268 (2002).

    Article  CAS  Google Scholar 

  76. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph Nature 391, 775 (1998).

    Article  CAS  Google Scholar 

  77. P.J. de Pablo, et al., Phys. Rev. Lett. 85, 4992 (2000).

    Article  Google Scholar 

  78. A.J. Storm, J. van Noort, S. de Vries S, C. Dekker Appl. Phys. Lett. 79, 3881 (2001).

    Article  CAS  Google Scholar 

  79. D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Nature 403, 635 (2000).

    Article  CAS  Google Scholar 

  80. A.Y. Kasumov, et al., Science 291, 280 (2001).

    Article  CAS  Google Scholar 

  81. H.-W. Fink and D. Schönenberger, Nature 398, 407 (1999).

    Article  CAS  Google Scholar 

  82. H. Watanabe, C. Manabe, T. Shigematsu, K. Shimotani, and M. Shimizu, Appl. Phys. Lett. 79, 2462 (2001); T. Shigematsu, K. Shimotani, C. Manabe, H. Watanabe, and M. Shimizu, J. Chem. Phys. 118, 4245 (2003).

    Article  CAS  Google Scholar 

  83. L. Cai, H. Tabata, and T. Kawai, Appl. Phys. Lett. 77, 3105 (2000).

    Article  CAS  Google Scholar 

  84. B. Xu, P. Zhang, X. Lik and N. Tao, Nanoletters 4, 1105 (2004).

    CAS  Google Scholar 

  85. C. Nogues, S.R. Cohen, S.S. Daube, and R. Naaman, Phys. Chem. Chem. Phys. 6, 4459 (2004).

    Article  CAS  Google Scholar 

  86. D. Porath, G. Cuniberti, R. Di Felice, Top. Curr. Chem. 237, 183 (2004).

    CAS  Google Scholar 

  87. S.G. Swarts, M. D. Sevlla, D. Becker, C.J. Tokar, and K.T. Wheeler, Radiat. Res. 129, 333 (1992).

    Article  CAS  Google Scholar 

  88. D.D. Eley and D.I. Spivey, Trans. Faraday Soc. 12, 245 (1962).

    Google Scholar 

  89. S.M. Iqbal, G. Balasundaram, S. Ghosh, D.E. Bergstrom, and R. Bashir, Appl. Phys. Lett. 86, 153901 (2005).

    Article  CAS  Google Scholar 

  90. D.E. Brown, D.J. Moffatt, R.A. Wolkow, Science 279, 542 (1998).

    Article  CAS  Google Scholar 

  91. S. Renisch, R. Schuster, J. Wintterlin, and G. Ertl, Phys. Rev. Lett 82, 3839 (1999).

    Article  CAS  Google Scholar 

  92. S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder, Phys. Rev. Lett. 85, 2777 (2000).

    Article  CAS  Google Scholar 

  93. R. Cohen, et al., J. Am. Chem. Soc. 121, 10545 (1999).

    Article  CAS  Google Scholar 

  94. J.S. Hovis, H. Liu, and R.J. Hamers, Appl. Phys. A 66 (1998) S553; L. Liu, J. Yu, N.O.L.Viernes, J.S. Moore, and J.W. Lyding, Surf. Sci. 516 (2002) 118; R.A.Wolkow, Ann. Rev. Phys. Chem. 50 413 (1999).

    Article  CAS  Google Scholar 

  95. S.G. Davison, Z.L. Miskovic, F.O. Goodman, and R.A. English, Prog. Surf. Sci. 59, 225 (1998).

    Article  CAS  Google Scholar 

  96. M.-S. Liao and S. Scheiner, J. Chem. Phys. 114, 9780 (2001).

    Article  CAS  Google Scholar 

  97. I. Nevo and S. Cohen, Surf. Sci. 583, 297 (2005).

    CAS  Google Scholar 

  98. A. Nitzan, M. Galperin, G. L. Ingold, and H. Grabert, J. Chem. Phys. 117, 10837 (2002).

    Article  CAS  Google Scholar 

  99. M. Kanai, T. Kawai, K. Motai, X.D. Wang, T. Hashizurne, T. Sakura, Surf. Sci. 329, L619 (1995).

    Article  CAS  Google Scholar 

  100. R.J. Hamers and K. Markert, Phys. Rev. Lett., 64, 1051 (1990); Y. Kuk, R.S. Becker, R.J. Silverman and G.P. Kochanski, Phys. Rev. Lett. 65, 456 (1990).

    Article  CAS  Google Scholar 

  101. M. McEllistrem, G. Haase, D. Chen, and R.J. Hamers, Phys. Rev. Lett., 70, 2471 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cohen, S.R. (2007). Electron Flow Through Molecular Structures. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_27

Download citation

Publish with us

Policies and ethics