Skip to main content

The Molecular Basis of Disease

  • Chapter
Book cover PET

Abstract

For as long as man has lived, he has been concerned with health and well being. Much of human history has revolved around uncontrollable diseases; many critical events, wars, and even the fate of many societies have been determined by human health. Medicine is as old as human history and has evolved from mystical and religious beginnings to the scientific discipline of today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webster’s Encyclopedic Unabridged Dictionary of the English Language. New York: Gramercy Books; 1996;564.

    Google Scholar 

  2. Mazziotta JC, Phelps ME. In: Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron Emission Tomography Studies of the Brain in Positron Emission Tomography and Autography. New York: Raven Press; 1986.

    Google Scholar 

  3. Small GW, Ercoli LM, Silverman DHS, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA. 2000; 97: 6037–6042.

    PubMed  CAS  Google Scholar 

  4. Huang S-C, Phelps ME. In: Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron Emission Tomography and Autoradiography: Principles and Applications. New York: Raven Press; 1986; 287–346.

    Google Scholar 

  5. Huang S-C, Barrio JR, Phelps ME. Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J Cereb Blood Flow Metab. 1986; 6: 515–521.

    PubMed  CAS  Google Scholar 

  6. Welch R, ed. The Fluctuating Enzyme. New York: John Wiley and Sons; 1986.

    Google Scholar 

  7. Sokoloff L, Reivich M, Kennedy C, et al. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977; 28: 897–916.

    PubMed  CAS  Google Scholar 

  8. Sokoloff L. In: Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron Emission Tomography and Autoradiography. New York: Raven Press; 1986; 1–72.

    Google Scholar 

  9. Huang S-C, Phelps ME, Hoffman EJ, et al. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 1980; 238: E69 - E82.

    PubMed  CAS  Google Scholar 

  10. Reivich M, Alavi A, Wolf A, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985; 5: 179–192.

    PubMed  CAS  Google Scholar 

  11. Hasselbalch SG, Knudsen GM, Madsen PL, et al. Calculation of the FDG lumped constants by extraction fractions of FDG and glucose. J Cereb Blood Flow Metab. 1997; 17: 5440.

    Google Scholar 

  12. Hasselbalch SG, Madsen PL, Knudsen GM, et al. Calculation of the FDG lumped constant by simultaneous measurements of global glucose and FDG metabolism in humans. J Cereb Blood Flow Metab. 1998; 18: 154–160.

    PubMed  CAS  Google Scholar 

  13. Spence AM, Muzi M, Graham MM, et al. Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. J Nucl Med. 1998; 39: 440–448.

    PubMed  CAS  Google Scholar 

  14. Wu HM, Bergsneider M, Yeh E, et al. XXth International Symposium on Cerebral Blood Flow and Metabolism, Taipei, Taiwan, 2001.

    Google Scholar 

  15. Suda S, Shinohara M, Miyaoka M, et al. Local cerebral glucose utilization in hypoglycemia. J Cereb Blood Flow Metab. 1981; 1: 562.

    Google Scholar 

  16. Siesjo BK. Brain Energy Metabolism. New York: John Wiley zhaohuan Sons; 1978.

    Google Scholar 

  17. Bessell EM, Thomas P. The effect of substitution at C-2 of D-glucose 6-phosphate on the rate of dehydrogenation by glucose 6-phosphate dehydrogenase (from yeast and from rat liver). Biochem J. 1973; 13: 83–89.

    Google Scholar 

  18. Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979; 6: 371–388.

    PubMed  CAS  Google Scholar 

  19. Bessell EM, Foster AB, Westwood JH. The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity. Biochem J. 1972; 128: 199–204.

    PubMed  CAS  Google Scholar 

  20. Walsh C. In: Meister A, ed. Advances in Enzymology. New York: John Wiley zhaohuan Sons; 1983; 55: 197–289.

    Google Scholar 

  21. Sols A, Crane RK. Substrate specificity of brain hexokinase. J Biol Chem. 1954; 210: 581–595.

    PubMed  CAS  Google Scholar 

  22. Langen P, Etzold G, Hintsche R, et al. 3’-deoxy-3’-fluorothymidine, a new selective inhibitor of DNA-synthesis. Acta Biol Med Ger. 1969; 23: 759–766.

    PubMed  CAS  Google Scholar 

  23. Kong X-B, Zhu Q-Y, Vidal PM, et al. Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3’ -fluoro-3’ -deoxythymidine and 3’ -azido-3’ -deoxythymidine. Antimicrob Agents Chemother. 1992; 36: 808–818.

    PubMed  CAS  Google Scholar 

  24. Matthes E, Lehmann CH, Scholz D, et al. Inhibition of HIV-associated reverse transcriptase by sugar-modified derivatives of thymidine 5’-triphosphate in comparison to cellular DNA polymerases alpha and beta. Biochem Biophys Res Commun. 1987; 148: 78–85.

    PubMed  CAS  Google Scholar 

  25. Sundseth R, Joyner SS, Moore JT, et al. The anti-human immunodeficiency virus agent 3’ -fluorothymidine induces DNA damage and apoptosis in human lymphoblastoid cells. Antimicrob Agents Chemother. 1996; 40: 331–335.

    PubMed  CAS  Google Scholar 

  26. Grierson JR, Shields AF. Radiosynthesis of 3’ -deoxy-3’- [(18)F] fluorothymidine: [(18)F] FLT for imaging of cellular proliferation in vivo. Nucl Med Biol. 2000; 27: 143–156.

    PubMed  CAS  Google Scholar 

  27. Shields AF, Grierson JR, Muzik O, et al. Kinetics of 3’-deoxy-3’-[F-18]flurorthymidine uptake and retention in dogs. Mol Imag Biol. 2002; 4: 83–90.

    Google Scholar 

  28. Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F18]FLT and positron emission tomography. Natl Med. 1998; 4: 1334–1336.

    CAS  Google Scholar 

  29. DeGrado TR, Coleman RE, Baldwin SW, et al. [18F]flurocholine (FCH) as an oncologic PET tracer: evaluation in murine prostate cancer xenograft model. JNucl Med. 2000; 41: 231 P.

    Google Scholar 

  30. Friedland RP, Mathis CA, Budinger TF, et al. Labeled choline and phosphorylcholine: body distribution and brain autoradiography: concise communication. J Nucl Med. 1983; 24: 812–815.

    PubMed  CAS  Google Scholar 

  31. Hara T, Kosaka N, Shinoura N, et al. PET imaging of brain tumor with [methyl-11C] choline. J Nucl Med. 1997; 38: 842–847.

    PubMed  CAS  Google Scholar 

  32. Shinoura N, Nishijima M, Hara T, et al. Brain tumors: detection with C-11 choline PET. Radiology. 1997; 202: 497–503.

    PubMed  CAS  Google Scholar 

  33. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998; 39: 990–995.

    PubMed  CAS  Google Scholar 

  34. Kobori O, Kirihara Y, Kosaka N, et al. Positron emission tomography of esophageal carcinoma using (11)C-choline and (18)F-fluorodeoxyglucose: a novel method of preoperative lymph node staging. Cancer. 1999; 86: 1638–1648.

    PubMed  CAS  Google Scholar 

  35. Clary GL, Tsai C-F, Guynn RW. Substrate specificity of choline kinase. Arch Biochem Biophys. 1987; 254: 214–221.

    PubMed  CAS  Google Scholar 

  36. Alcoceba HR, Saniger L, Campos J, et al. Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene. 1997; 15: 2289–2301.

    Google Scholar 

  37. Gambhir SS, Barrio JR, Herschman HR, et al. Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol. 1999; 26: 481–490.

    PubMed  CAS  Google Scholar 

  38. Gambhir SS, Barrio JR, Herschman HR, et al. Imaging gene expression: principles and assays. J Nucl Cardiol. 1999; 6: 219–233.

    PubMed  CAS  Google Scholar 

  39. Gambhir SS, Bauer E, Black ME, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA. 2000; 97: 2785–2790.

    PubMed  CAS  Google Scholar 

  40. Yu Y, Annala AJ, Barrio JR, et al. Quantification of target gene expression by imaging reporter gene expression in living animals. Natl Med. 2000; 6: 933–937.

    CAS  Google Scholar 

  41. MacLaren DC, Toyokuni T, Cherry SR, et al. PET imaging of transgene expression. Biol Psychiatry. 2000; 48: 337–348.

    PubMed  CAS  Google Scholar 

  42. Crooke ST, Lebleu B. Antisense and Application. Ann Arbor: CRC Press; 1993; 579.

    Google Scholar 

  43. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000; 41: 661–681.

    PubMed  CAS  Google Scholar 

  44. Shi N, Boado RJ, Pardridge WM. Antisense imaging of gene expression in the brain in vivo. Proc Natl Acad Sci USA. 2000; 97: 14709–14714.

    PubMed  CAS  Google Scholar 

  45. Fowler JS, MacGregor RR, Wolf AP, et al. Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science. 1987; 235: 481–485.

    PubMed  CAS  Google Scholar 

  46. Abeles RH, Maycock AL. Suicide enzyme inactivators. Acc Chem Res. 1976; 9: 313.

    CAS  Google Scholar 

  47. Trojanowski JQ, Shin R-W, Schmidt ML. Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease. Neurobiol Aging. 1995; 16: 335–340.

    PubMed  CAS  Google Scholar 

  48. Barrio JR, Huang S-C, Cole G, et al. PET imaging of tangles and plaques in Alzheimer’s Disease with a highly hydrophobic probe. J Label Compds Radiopharm. 1997; 42: S194 - S195.

    Google Scholar 

  49. Shoghi-Jadid K, Small G, Agdeppa ED. Localization of neurofibrillary tangles and betaamyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002; 10: 24–35.

    PubMed  Google Scholar 

  50. Agdeppa ED, Kepe V, Shoghi-Jadid K, et al. In vivo and in vitro labeling of plaques and tangles in the brain of an Alzheimer’s Disease patient: a case study. JNucl Med. 2001; 42: 65 P.

    Google Scholar 

  51. Agdeppa ED, Kepe V, Petric A, et al. In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the PET molecular imaging probe [18F] FDDNP. Neuroscience. 2003; 117: 723–730.

    PubMed  CAS  Google Scholar 

  52. Ray P, Bauer E, Iyer M, et al. Monitoring gene therapy with reporter gene imaging. Semin Nucl Med. 2001; 31: 312–320.

    PubMed  CAS  Google Scholar 

  53. Haberkorn U, Oberdorfer F, Gebert J, et al. Monitoring gene therapy with cytosine deaminase: in vitro studies using tritiated-5-fluorocytosine. JNucl Med. 1996; 37: 87–94.

    CAS  Google Scholar 

  54. Stegman LD, Rehemtulla A, Beattie B, et al. Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci USA. 1999; 96: 9821–9826.

    PubMed  CAS  Google Scholar 

  55. Tjuvajev JG, Finn R, Watanabe K, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 1996; 56: 4087–4095.

    PubMed  CAS  Google Scholar 

  56. Tjuvajev JG, Chen SH, Joshi A, et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res. 1999; 59: 5186–5193.

    PubMed  CAS  Google Scholar 

  57. Tjuvajev JG, Joshi A, Callegari J, et al. A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia. 1999; 1: 315–320.

    PubMed  CAS  Google Scholar 

  58. Haubner R, Avril N, Hantzopoulos PA, et al. In vivo imaging of herpes simplex virus type 1 thymidine kinase gene expression: early kinetics of radiolabelled FIAU. Eur J Nucl Med. 2000; 27: 283–291.

    PubMed  CAS  Google Scholar 

  59. Morin KW, Atrazheva ED, Knaus EE, et al. Synthesis and cellular uptake of 2’-substituted analogues of (E)-5-(2-[125I]iodovinyl)-2’-deoxyuridine in tumor cells transduced with the herpes simplex type-1 thymidine kinase gene. Evaluation as probes for monitoring gene therapy. J Med Chem. 1997; 40: 2184–2190.

    PubMed  CAS  Google Scholar 

  60. Wiebe LI, Knaus EE, Morin KW. Radiolabelled pyrimidine nucleosides to monitor the expression of HSV-1 thymidine kinase in gene therapy. Nucleosides Nucleotides. 1999; 18: 1065–1066.

    PubMed  CAS  Google Scholar 

  61. Germann C, Shields AF, Grierson JR, et al. 5-Fluoro-l-(2’-deoxy-2’-fluoro-beta-Dribofuranosyl) uracil trapping in Morris hepatoma cells expressing the herpes simplex virus thymidine kinase gene. J Nucl Med. 1998; 39: 1418–1423.

    PubMed  CAS  Google Scholar 

  62. Gambhir SS, Barrio JR, Wu L, et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med. 1998; 39: 2003–2011.

    PubMed  CAS  Google Scholar 

  63. Haberkorn U, Altmann A, Morr I, et al. Monitoring gene therapy with herpes simplex virus thymidine kinase in hepatoma cells: uptake of specific substrates. J Nucl Med. 1997; 38: 287–294.

    PubMed  CAS  Google Scholar 

  64. Haberkorn U, Khazaie K, Morr I, et al. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase. Nucl Med Biol. 1998; 25: 367–373.

    PubMed  CAS  Google Scholar 

  65. Iyer M, Barrio JR, Namavari M, et al. 8–118F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med. 2001; 42: 96–105.

    PubMed  CAS  Google Scholar 

  66. Alauddin MM, Conti PS, Mazza SM, et al. 9-[(3-[18F]-fluoro-l-hydroxy-2-propoxy)methyl] guanine ([18F]-FHPG): a potential imaging agent of viral infection and gene therapy using PET. Nucl Med Biol. 1996; 23: 787–792.

    PubMed  CAS  Google Scholar 

  67. Alauddin MM, Shahinian A, Kundu RK, et al. Evaluation of 9- [(3–18F -fluoro- 1 -hydroxy2-propoxy)methyl]guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nucl Med Biol. 1999; 26: 371–376.

    PubMed  CAS  Google Scholar 

  68. de Vries EFJ, van Waarde A, Harmsen MC, et al. [(11)C]FMAU and [(18)F]FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections. Nucl Med Biol. 2000; 27: 113–119.

    PubMed  Google Scholar 

  69. Hospers GAP, Calogero A, van Waarde A, et al. Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography. Cancer Res. 2000; 60: 1488–1491.

    PubMed  CAS  Google Scholar 

  70. Hustinx R, Shiue CY, Alavi A, et al. Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumour-bearing rodents using positron emission tomography Eur J Nucl Med. 2001; 28: 5–12.

    PubMed  CAS  Google Scholar 

  71. Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3hydroxymethylbutyl)guanine ([18F] FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol. 1998; 25: 175–180.

    PubMed  CAS  Google Scholar 

  72. Yaghoubi S, Barrio JR, Dahlbom M, et al. Human pharmacokinetic and dosimetry studies of [(18)F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med. 2001; 42: 1225–1234.

    PubMed  CAS  Google Scholar 

  73. Sun X, Annala A, Yaghoubi S, et al. Quantitative imaging of gene induction in living animals. Gene Ther. 2001; 8: 1572–1579.

    PubMed  CAS  Google Scholar 

  74. MacLaren DC, Gambhir SS, Satyamurthy N, et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 1999; 6: 785–791.

    PubMed  CAS  Google Scholar 

  75. Yaghoubi SS, Wu L, Liang Q, et al. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther. 2001; 8: 1072–1080.

    PubMed  CAS  Google Scholar 

  76. Liang Q, Satyamurthy N, Barrio JR, et al. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther. 2001; 8: 1490–1498.

    PubMed  CAS  Google Scholar 

  77. Rogers BE, McLean SF, Kirkman RL, et al. In vivo localization of [(111)In]-DTPA-DPhel-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res. 1999; 5: 383–393.

    PubMed  CAS  Google Scholar 

  78. Buchsbaum DJ, Rogers BE, Khazaeli MB, et al. Targeting strategies for cancer radiotherapy. Clin Cancer Res. 1999; 5: 3048s - 3055s.

    PubMed  CAS  Google Scholar 

  79. Rogers BE, Zinn KR, Buchsbaum DJ. Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99mTc or 188Re. J Nucl Med. 2000; 41: 887–895.

    PubMed  Google Scholar 

  80. Zinn KR, Buchsbaum DJ, Chaudhuri TR, et al. Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99mTc or 188Re. J Nucl Med. 2000; 41: 887–895.

    PubMed  CAS  Google Scholar 

  81. Bogdanov A Jr., Petherick P, Marecos E, et al. In vivo localization of diglycylcysteinebearing synthetic peptides by nuclear imaging of oxotechnetate transchelation. Nucl Med Biol. 1997; 24: 739–742.

    PubMed  CAS  Google Scholar 

  82. Bogdanov A Jr., Simonova M, Weissleder R. Design of metal-binding green fluorescent protein variants. Biochim Biophys Acta. 1998; 1397: 56–64.

    PubMed  CAS  Google Scholar 

  83. Baidoo KE, Scheffel U, Stathis M, et al. High-affinity no-carrier-added 99mTc-labeled chemotactic peptides for studies of inflammation in vivo. Bioconjug Chem. 1998; 9: 208–217.

    PubMed  CAS  Google Scholar 

  84. Rogers BE, Curiel DT, Mayo MS, et al. Tumor localization of a radiolabeled bombesin analogue in mice bearing human ovarian tumors induced to express the gastrin-releasing peptide receptor by an adenoviral vector. Cancer. 1997; 80: 2419–2424.

    PubMed  CAS  Google Scholar 

  85. Rogers BE, Rosenfeld ME, Khazaeli MB, et al. Localization of iodine-125-mIP-Des-Met14bombesin (7–13)NH2 in ovarian carcinoma induced to express the gastrin releasing peptide receptor by adenoviral vector-mediated gene transfer. J Nucl Med. 1997; 38: 1221–1229.

    PubMed  CAS  Google Scholar 

  86. Rosenfeld ME, Rogers BE, Khazaeli MB, et al. Adenoviral-mediated delivery of gastrin-releasing peptide receptor results in specific tumor localization of a bombesin analogue in vivo. Clin Cancer Res. 1997; 3: 1187–1194.

    PubMed  CAS  Google Scholar 

  87. Boland A, Ricard M, Opolon, P, et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res. 2000; 60: 3484–3492.

    PubMed  CAS  Google Scholar 

  88. Haberkorn U, Henze M, Altmann A, et al. Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med. 2001; 42: 317–325.

    PubMed  CAS  Google Scholar 

  89. Enochs WS, Petherick P, Bogdanova A, et al. Paramagnetic metal scavenging by melanin: MR imaging. Radiology. 1997; 204: 417–423.

    PubMed  CAS  Google Scholar 

  90. Weissleder R, Simonova M, Bogdanova A, et al. MR imaging and scintigraphy of gene expression through melanin induction. Radiology. 1997; 204: 425–429.

    PubMed  CAS  Google Scholar 

  91. Hasgawa S, Yang M, Chishima T, et al. In vivo tumor delivery of the green fluorescent protein gene to report future occurrence of metastasis. Cancer Gene Ther. 2000; 7: 1336–1340.

    Google Scholar 

  92. Pfeifer A, Kessler T, Yang M, et al. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol Ther. 2001; 3: 319–322.

    PubMed  CAS  Google Scholar 

  93. Yang M, Baranov E, Jiang P, et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA. 2000; 97: 1206–1211.

    PubMed  CAS  Google Scholar 

  94. Yang M, Baranov E, Li XM, et al. Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci USA. 2001; 98: 2616–2621.

    PubMed  CAS  Google Scholar 

  95. Yang M, Hasegawa S, Jiang P, et al. Visualizing gene expression by whole-body fluorescence imaging. Proc Natl Acad Sci USA. 2000; 97: 12278–12282.

    PubMed  CAS  Google Scholar 

  96. Yang M, Hasegawa S, Jiang P, et al. Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res. 1998; 58: 4217–4221.

    PubMed  CAS  Google Scholar 

  97. Yang M, Jiang P, Sun FX, et al. A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res. 1999; 59: 781–786.

    PubMed  CAS  Google Scholar 

  98. Contag CH, Spilman SD, Contag PR, et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol. 1997; 66: 523–531.

    PubMed  CAS  Google Scholar 

  99. Contag PR, Olomu IN, Stevenson DK, et al. Bioluminescent indicators in living mammals. Natl Med. 1998; 4: 245–247.

    CAS  Google Scholar 

  100. Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA. 2002; 99: 377–382.

    PubMed  CAS  Google Scholar 

  101. Tung CH, Bredow S, Mahmood U, et al. Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjug Chem. 1999; 10: 892–896.

    PubMed  CAS  Google Scholar 

  102. Tung CH, Mahmood U, Bredow S, et al. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 2000; 60: 4953–4958.

    PubMed  CAS  Google Scholar 

  103. Weissleder R, Tung CH, Mahmood U, et al. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999; 17: 375–378.

    PubMed  CAS  Google Scholar 

  104. Louie AY, Huber MM, Ahrens ET, et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol. 2000; 18: 321–325.

    PubMed  CAS  Google Scholar 

  105. Weissleder R, Moore A, Mahmood U, et al. In vivo magnetic resonance imaging of transgene expression. Natl Med. 2000; 6: 351–355.

    CAS  Google Scholar 

  106. Shand M, Weber F, Mariani L, et al. A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Human Gene Ther. 1999; 10: 2325–2335.

    CAS  Google Scholar 

  107. Aghi M, Ting CC, Suling K, et al. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res. 1999; 59: 3861–3865.

    PubMed  CAS  Google Scholar 

  108. Engelmann C, Panis Y, Bolard J, et al. Liposomal encapsulation of ganciclovir enhances the efficacy of herpes simplex virus type 1 thymidine kinase suicide gene therapy against hepatic tumors in rats. Human Gene Ther. 1999; 10: 1545–1551.

    CAS  Google Scholar 

  109. Kim B, Loeb LA. A screen in Escherichia coli for nucleoside analogs that target human immunodeficiency virus (HIV) reverse transcriptase: coexpression of HIV reverse transcriptase and herpes simplex virus thymidine kinase. J Virol. 1995; 69: 6563–6566.

    PubMed  CAS  Google Scholar 

  110. Caruso M, Salomon B, Zhang S, et al. Expression of a Tat-inducible herpes simplex virus-thymidine kinase gene protects acyclovir-treated CD4 cells from HIV-1 spread by conditional suicide and inhibition of reverse transcription. Virology. 1995; 206: 495–503.

    PubMed  CAS  Google Scholar 

  111. Bradshaw HD Jr., Deininger PL. Human thymidine kinase gene: molecular cloning and nucleotide sequence of a cDNA expressible in mammalian cells. Mol Cell Biol. 1984; 4: 2316–2320.

    PubMed  CAS  Google Scholar 

  112. Pilger BD, Perozzo R, Albers F, et al. Substrate diversity of herpes simplex virus thymidine kinase. Impact of the kinematics of the enzyme. J Biol Chem. 1999; 274: 31967–31973.

    PubMed  CAS  Google Scholar 

  113. Champness JN, Bennett MS, Wien F, et al. Exploring the active site of herpes simplex virus type-1 thymidine kinase by X-ray crystallography of complexes with aciclovir and other ligands. Proteins. 1998; 32: 350–361.

    PubMed  CAS  Google Scholar 

  114. Alauddin MM, Conti PS, Mazza SM, et al. Synthesis of F-18 9-[(3-fluoro-1-hydroxy2-propoxy)-methyl]-guanine (FHPG) for in vivo imaging of viral infection and gene therapy with PET. J Nucl Med. 1996; 37: 193 P.

    Google Scholar 

  115. Barrio JR, Huang S-C, Yu D-C, et al. Radiofluorinated L-m-tyrosines: new in-vivo probes for central dopamine biochemistry. J Cereb Blood Flow Metab. 1996; 16: 667–678.

    PubMed  CAS  Google Scholar 

  116. Herschman HR, Barrio JR, Satyamurthy N, et al. In: Curiel DR, Douglas JT, eds. Monitoring Gene Therapy by Positron Emission Tomography. New York: Wiley-Liss, Inc. 2002; 661–689.

    Google Scholar 

  117. Pike VW, Halldin C, Wikstrom H, et al. Radioligands for the study of brain 5-HT(1A) receptors in vivo-development of some new analogues of way. Nucl Med Biol. 2000; 27: 449–455.

    PubMed  CAS  Google Scholar 

  118. Barrio JR, Huang S-C, Phelps ME. Biological imaging and the molecular basis of dopaminergic diseases. Biochem Pharmacol. 1997; 54: 341–348.

    PubMed  CAS  Google Scholar 

  119. Michael AC, Justice JB Jr., Neill DB. In vivo voltammetric determination of the kinetics of dopamine metabolism in the rat. Neurosci Lett. 1985; 56: 365–369.

    PubMed  CAS  Google Scholar 

  120. Wood PL, Kim HS, Stocklin K, et al. Dynamics of the striatal 3-MT pool in rat and mouse: species differences as assessed by steady-state measurements and intracerebral dialysis. Life Sci. 1988; 42: 2275–2281.

    PubMed  CAS  Google Scholar 

  121. Shoghi-Jadid K, Huang S-C, Stout DB, et al. Striatal kinetic modeling of FDOPA with a cerebellar-derived constraint on the distribution of volume of 30MFD: a PET investigation using non-human primates. J Cereb Blood Flow Metab. 2000; 20: 1134–1148.

    PubMed  CAS  Google Scholar 

  122. Nissbrandt H, Carlsson A. Turnover of dopamine and dopamine metabolites in rat brain: comparison between striatum and substantia nigra. JNeurochem. 1987; 49: 959–967.

    CAS  Google Scholar 

  123. Yee RE, Huang S-C, Stout DB, et al. Nigrostriatal reduction of aromatic L-amino acid decarboxylase activity in MPTP-treated squirrel monkeys: in vivo and in vitro investigations. J Neurochem. 2000; 74: 1147–1157.

    PubMed  CAS  Google Scholar 

  124. Gjedde A, Reith J, Dyne S, et al. Dopa decarboxylase activity of the living human brain. Proc Natl Acad Sci USA. 1991; 88: 2721–2725.

    PubMed  CAS  Google Scholar 

  125. Huang S-C, Yu D-C, Barrio JR, et al. Kinetics and modeling of L-6- [18F] fluoro-dopa in human positron emission tomographic studies. J Cereb Blood Flow Metab. 1991; 11: 898–913.

    PubMed  CAS  Google Scholar 

  126. Hoshi H, Kuwabara H, Leger G, et al. 6-[18F]fluoro-L-dopa metabolism in living human brain: a comparison of six analytical methods. J Cereb Blood Flow Metab. 1993; 13: 57–69.

    PubMed  CAS  Google Scholar 

  127. Ishikawa T, Dhawan V, Chaly T, et al. Clinical significance of striatal DOPA decarboxylase activity in Parkinson’s disease. J Nucl Med. 1996; 37: 216–222.

    PubMed  CAS  Google Scholar 

  128. Kuwabara H, Cumming P, Yasuhara Y, et al. Regional striatal DOPA transport and de-carboxylase activity in Parkinson’s disease. J Nucl Med. 1995; 36: 1226–1231.

    PubMed  CAS  Google Scholar 

  129. Wahl L, Nahmias C. Modeling of fluorine-18–6-fluoro-L-dopa in humans. J Noel Med. 1996; 37: 432–437.

    CAS  Google Scholar 

  130. Nahmias C, Wahl L, Chirakal R, et al. A probe for intracerebral aromatic amino-acid decarboxylase activity: distribution and kinetics of [18F]6-fluoro-L-m-tyrosine in the human brain. Mov Disord. 1995; 10: 298–304.

    PubMed  CAS  Google Scholar 

  131. Barrio JR, Huang S-C, Melega WP, et al. 6-[18F]fluoro-L-dopa probes dopamine turnover rates in central dopaminergic structures. J Neurosci Res. 1990; 27: 487–93.

    PubMed  CAS  Google Scholar 

  132. Hartvig P, Tedroff J, Lindner KJ, et al. Positron emission tomographic studies on aromatic L-amino acid decarboxylase activity in vivo for L-dopa and 5-hydroxy-L-tryptophan in the monkey brain. J Neural Transm Gen Sect. 1993; 94: 127–135.

    PubMed  CAS  Google Scholar 

  133. Tsukada H, Lindner KJ, Hartvig P, et al. Effect of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin and infusion of L-tyrosine on the in vivo L-[beta-11C] DOPA disposition in the monkey brain. Brain Res. 1996; 713: 92–98.

    PubMed  CAS  Google Scholar 

  134. Reith J, Dvye S, Kuwabara H, et al. Blood-brain transfer and metabolism of 6-[18F]fluoro-L-dopa in rat. J Cereb Blood Flow Metab. 1990; 10: 707–719.

    PubMed  CAS  Google Scholar 

  135. Cumming P, Kuwabara H, Ase A, et al. Regulation of DOPA decarboxylase activity in brain of living rat. J Neurochem. 1995; 65: 1381–1390.

    PubMed  CAS  Google Scholar 

  136. Cumming P, Kuwabara H, Gjedde A. A kinetic analysis of 6-[18F]fluoro-L-dihydroxyphenylalanine metabolism in the rat. J Neurochem. 1994; 63: 1675–1682.

    PubMed  CAS  Google Scholar 

  137. Kuntzman R, Shore PA, Bogdanshi D, et al. Microanalytical procedures for fluoro-metric assay if brain dopa-5HTP decarboxylase, norepinephrine, and seratonin, and a detailed mapping of decarboxylase activity in brain. J Neurochem. 1961; 6: 226–232.

    CAS  Google Scholar 

  138. Mackay AVP, Davis P, Dewar AJ, et al. Regional distribution of enzymes associated with neurotransmission by monoamines, acetylcholine and GABA in the human brain. J Neurochem. 1978; 30: 827–839.

    PubMed  CAS  Google Scholar 

  139. Goldstein M, Anagnoste B, Battista AF, et al. Studies of amines in the striatum in monkeys with nigral lesions. The disposition, biosynthesis and metabolites of [3H] dopamine and [14C]serotonin in the striatum. JNeurochem. 1969; 16: 645–653.

    CAS  Google Scholar 

  140. Rahman MK, Nagatsu T, Kato T. Aromatic L-amino acid decarboxylase activity in central and peripheral tissues and serum of rats with L-DOPA and L-5-hydroxytryptophan as substrates. Biochem Pharmacol. 1981; 30: 645–649.

    PubMed  CAS  Google Scholar 

  141. Broch OJ Jr., Fonnum F. The regional and subcellular distribution of catechol-O-methyl transferase in the rat brain. J Neurochem. 1972; 19: 2049–2055.

    PubMed  CAS  Google Scholar 

  142. Awapara J, Saine S. Fluctuations in DOPA decarboxylase activity with age. J Neurochem. 1975; 24: 817–818.

    PubMed  CAS  Google Scholar 

  143. Hefti F, Melamed E, Wurtman RJ. Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res. 1980; 195: 123–137.

    PubMed  CAS  Google Scholar 

  144. McCaman RE, McCaman MW, Hunt JM, et al. Microdetermination of monamine oxidase and 5HTP decarboxylase activity in nervous tissue. J Neurochem. 1965; 12: 15–23.

    PubMed  CAS  Google Scholar 

  145. Cumming P, Gjedde A. Compartmental analysis of dopa decarboxylation in living brain from dynamic positron emission tomograms. Synapse. 1998; 29: 37–61.

    PubMed  CAS  Google Scholar 

  146. Arai R, Karasawa N, Geffard M, et al. Immunohistochemical evidence that central serotonin neurons produce dopamine from exogenous L-DOPA in the rat, with reference to the involvement of aromatic L-amino acid decarboxylase. Brain Res. 1994; 667: 295–299.

    PubMed  CAS  Google Scholar 

  147. Mura A, Jackson D, Manley MS, et al. Aromatic L-amino acid decarboxylase immunoreactive cells in the rat striatum: a possible site for the conversion of exogenous L-DOPA to dopamine. Brain Res. 1995; 704: 51–60.

    PubMed  CAS  Google Scholar 

  148. Melamed E, Hefti F, Pettibone DJ, et al. Aromatic L-amino acid decarboxylase in rat corpus striatum: implications for action of L-dopa in parkinsonism. Neurology. 1981; 31: 651–655.

    PubMed  CAS  Google Scholar 

  149. Bowsher RR, Henry DP. In: Bowlton AA, Baker JB, and Yu PH, eds. Neuromethods. Series 1: Neurochemistry, Neurotransmitter Enzymes. Clifton, NJ: Humana Press; 1986; 33–77.

    Google Scholar 

  150. Neff NH, Hadjiconstantinou M. Aromatic L-amino acid decarboxylase modulation and Parkinson’s disease. Prog Brain Res. 1995; 106: 91–97.

    PubMed  CAS  Google Scholar 

  151. Doteuchi M, Wang C, Costa E. Compartmentation of dopamine in rat striatum. Mol Pharmacol. 1974; 10: 225–234.

    PubMed  CAS  Google Scholar 

  152. Groppetti A, Algeri S, Cattabeni F, et al. Changes in specific activity of dopamine metabolites as evidence of a multiple compartmentation of dopamine in striatal neurons. J Neurochem. 1977; 28: 193–197.

    PubMed  CAS  Google Scholar 

  153. Farde L. The advantage of using positron emission tomography in drug research. Trends Neuroscience. 1996; 19: 211–214.

    CAS  Google Scholar 

  154. Burns HD, Hamill TG, Eng W, et al. Positron emission tomography neuroreceptor imaging as a tool in drug discovery, research and development. Curr Opin Chem Biol. 1999; 3: 388–394.

    PubMed  CAS  Google Scholar 

  155. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997; 23: 3–25.

    CAS  Google Scholar 

  156. McGregor MJ, Muskal SM. Pharmacophore fingerprinting. 1. application to QSAR and focused library design. J Chem Inform Comp Sci. 1999; 39: 569–574.

    CAS  Google Scholar 

  157. Food and Drug Administration Modernization Act of 1997. Public Law 105–115-Nov. 21, 1997.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Barrio, J.R. (2004). The Molecular Basis of Disease. In: PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22529-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22529-6_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2332-5

  • Online ISBN: 978-0-387-22529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics