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Preface 

As I glance out my window in the early morning, I can see beads of droplets 
gracing a spider web. The film of dew that has settled on the threads 
is unstable and breaks up spontaneously into droplets. This phenomenon 
has implications for the treatment of textile fibers (the process known as 
"oiling"), glass, and carbon. It is no less important when applying mascara! 

I take my morning shower. The moment I step out, I dry off by way of 
evaporation (which makes me feel cold) and by dewetting (the process by 
which dry areas form spontaneously and expand on my skin). 

As I rush into my car under a pelting rain, my attention is caught by 
small drops stuck on my windshield. I also notice larger drops rolling down 
and others larger still that, like snails, leave behind them a trail of water. 
I ask myself what the difference is between these rolling drops and grains 
of sand tumbling down an incline. I wonder why the smallest drops remain 
stuck. The answers to such questions do help car manufacturers treat the 
surface of glass and adjust the tilt of windshields. 

The traffic light suddenly turns red. I slam on the brakes and the car 
skids before finally coming to a halt. A firm grip on the road hinges on 
eliminating the film of water between tires and pavement. The car will 
stop only if direct contact can be established between the rubber and the 
asphalt, all in a matter of a few milliseconds. 

The rain finally stops and I hear the squeaking sound of the windshield 
wipers rubbing against the glass. Friction between the rubber and the dry 
glass now opposes the movement of the wipers. Clever treatments of the 
glass can minimize that friction. 

The sun is now shining and I hurry back to my garden to spray a fungicide 
onto a cluster of leaves covered with mildew. Unfortunately, drops falloff 
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like so many beads, and only a small fraction of the product remains in place 
to perform its intended function. Is there a way to prevent the fungicide film 
from dewetting? Conversely, can one treat concrete (or the stones of historic 
monuments) to prevent them from soaking up water every time it rains? 

These few examples illustrate the need to understand and tame the phe
nomenon of wetting. How can one turn a hydrophilic surface into one that 
is hydrophobic, and vice versa? We will describe a few solutions. Some rely 
on chemical treatments, such as coating a surface with a molecular layer 
of the right material. Others are rooted in physics, for instance, altering 
the surface roughness. We will also examine the dynamics of the wetting 
process. Drops spread spontaneously at a rate that slows with time. It may 
take years for a small drop to form a thin film covering a large surface area. 
In practice, films can be tricked by forcing them to spread suddenly. We 
will describe a few of their many-faceted dynamical properties. 

When the word bubble is mentioned, most of us think of soap bubbles. 
Special additives are required for water to foam. The reason that a soap 
film can be made to stretch is just now beginning to be understood. Foams 
are desirable in a shampoo but can be a nuisance in a dishwasher detergent. 
Antifoam agents have been developed and have become commonplace, but 
how do they work? It is also possible to generate bubbles and foams without 
the help of surfactants, for example, in very viscous liquids such as glycerin, 
molten glass, and polymers. As we will see, the laws governing draining and 
bursting then turn out to be quite different from the conventional ones. 

A child tosses a stone into a lake. He delights in watching capillary waves 
propagate by forming circular ripples on the water's surface. All of us have 
heard the sonic boom produced by an aircraft crossing the sound barrier. 
But how many of us are aware that we can also observe shock waves of 
capillary origin every day when we turn our kitchen faucet on: on the 
bottom of the sink water flows outward as a thin film. But a few centimeters 
away from the center, we see a hydraulic jump~very similar to a shock! 

Our hope is that this book will enable the reader to understand in sim
ple terms such mundane questions affecting our daily lives~questions that 
have often come to the fore during our many interactions with industry. 
Our methodology will consist in simplifying systems that often prove quite 
complex so as to isolate and study a particular physical phenomenon. In the 
course of developing models, detailed descriptions requiring advanced nu
merical techniques will often be replaced by an "impressionistic" approach 
based on more qualitative arguments. This strategy may at times sacrifice 
scientific rigor, but it makes it possible to grasp things more clearly and to 
dream up novel situations. Such is the spirit in which we wrote this book. 

Paris, France Pierre-Gilles de Gennes 
Franc;oise Brochard-Wyart 

David Quere 
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Introd uction 

Years ago, Henri Bouasse wrote a classic French text on the topic of cap
illarity.l Bouasse has long been something of a celebrity in his field, not 
just on the strength of his technical writings but also because of his biting 
prefaces, in which he excoriated some of his colleagues. He was particularly 
intolerant of the professors at the College de France, who were not burdened 
by heavy teaching loads and devoted much of their time to such esoteric 
topics as the then nascent quantum physics. Bouasse failed to understand 
the physics revolution of the 20th century; yet he contributed with his leg
endary flair a number of enduring advances in classical physics, notably in 
his book on surface phenomena. 

Eighty years later, capillarity continues to be a science in development. 
The Russian school led by Derjaguin worked on capillarity problems for 
50 years. 2 In 1959, Mysels, Shinoda, and Frankel published their famous 
text on soap films. 3 Zisman, motivated by applied research on the lubri
cation of the clockwork of timepieces, elucidated the criteria for wetting.4 

Tanner, an aeronautics engineer, and Hoffman, a chemist, determined the 
experimental laws governing the spreading of liquids.5 Many new concepts 
have emerged. Hence our incentive to write a new book. 

We wanted to do it in the Bouasse tradition, that is to say, by aiming 
at an audience of students. What we offer here is not a comprehensive 
account of the latest research but rather a compendium of principles. Also 
following in Bouasse's footsteps, we do not claim to provide a detailed, 
up-to-date bibliography. All through these chapters, we suggest but a few 
major references with little regard for historical chronology. 



xiv Introduction 

We have endeavored to maintain as simple a presentation as possible. Our 
treatment is even less mathematical than was Bouasse's with its cycloids 
and other analytical tricks. Our goal is to illustrate concepts rather than to 
delve into detailed quantitative derivations. Even within this framework, 
we had to exercise restraint and be selective. For instance, we do not treat 
Cahn's problem of wetting transitions, fascinating as the subject may be.6 

We rely on physical chemistry more than on statistical physics. In the same 
vein, we have elected not to cover the following topics: 

• Superfluids, which are systems of exquisite elegance, but require of stu
dents the kind of technical maturity that only comes with experience 

• Certain recent developments of a purely hydrodynamic nature, such as 
the inertial behavior of drops hitting a surface 

• Wetting by volatile fluids 
• The dynamic behavior of wetting in the presence of surfactants 

Our task was not easy. Fortunately, we operated in marvelously stimulat
ing environments, both at the College de France and at the Institut Curie, 
where several generations of experimenters and theorists had already done 
pioneering research on wetting. To mention but some of the founding mem
bers, we owe much to A. M. Cazabat, J. M. di Meglio, H. Hervet, F. Heslot, 
J. F. Joanny, L. Leger, T. Ondan;uhu, E. Raphael, and F. Rondelez. We 
are also grateful to our outside friends, notably P. Pincus, Y. Pomeau, T. 
Witten, and M. Shanahan. They did not always embrace our views, but 
they did force us to think. We realize this book is far from perfect. But we 
did try to convey the sense of curiosity and joy that infused the members 
of our various research teams as they grappled for the past 20 years with 
drops large and small. 

Acknowledgments: We owe a special debt of gratitude to our capable 
proofreaders, Christian Counillon, Annick Lesne, and Emilie Echalier, and 
to our "electronic editors," Florence Bonamy, Yvette Heffer, and Pierre
Henri Puech, assisted by Nicole Blandeau. Their willingness to invest so 
much of their time and energy in this project is enormously appreciated. 
Without the discipline they wisely imposed on us, this book would never 
have seen the light of day. 
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