Skip to main content

HIV Infection and Diabetes

  • Chapter
  • First Online:
Principles of Diabetes Mellitus

Abstract

Since the introduction of highly active antiretroviral therapy (HAART) more than a decade ago, there has been a dramatic improvement in the morbidity and mortality associated with human immunodeficiency virus (HIV) infection and AIDS. As survival has improved, a constellation of metabolic and morphologic abnormalities, often referred to as the HIV-associated lipodystrophy syndrome, has become increasingly evident. Features of this syndrome include abnormal glucose metabolism, dyslipidemia, and alterations in body fat distribution including peripheral lipoatrophy and central adiposity. In this chapter, we will focus primarily on the abnormalities of glucose metabolism in patients with HIV/AIDS, including insulin resistance, impaired glucose tolerance, and frank diabetes mellitus. After first considering the effects of HIV infection per se, we will examine the mechanisms by which antiretroviral (ARV) medications are purported to disrupt glucose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barre-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–871.

    Article  PubMed  CAS  Google Scholar 

  2. Gallo RC, Salahuddin SZ, Popovic M, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984;224(4648):500–503.

    Article  PubMed  CAS  Google Scholar 

  3. Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984;224(4648):497–500.

    Article  PubMed  CAS  Google Scholar 

  4. Brook I. Approval of zidovudine (AZT) for acquired immunodeficiency syndrome. A challenge to the medical and pharmaceutical communities. J Am Med Assoc. 1987;258(11):1517.

    Article  CAS  Google Scholar 

  5. Moyle GJ, Nelson MR, Hawkins D, Gazzard BG. The use and toxicity of didanosine (ddI) in HIV antibody-positive individuals intolerant to zidovudine (AZT. Q J Med. 1993;86(3):155–163.

    PubMed  CAS  Google Scholar 

  6. Munshi MN, Martin RE, Fonseca VA. Hyperosmolar nonketotic diabetic syndrome following treatment of human immunodeficiency virus infection with didanosine. Diabetes Care. 1994;17(4):316–317.

    Article  PubMed  CAS  Google Scholar 

  7. Vittecoq D, Zucman D, Auperin I, Passeron J. Transient insulin-dependent diabetes mellitus in an HIV-infected patient receiving didanosine. AIDS. 1994;8(9):1351.

    Article  PubMed  CAS  Google Scholar 

  8. Palella FJ Jr., Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853–860.

    Article  PubMed  Google Scholar 

  9. Dube MP, Johnson DL, Currier JS, Leedom JM. Protease inhibitor-associated hyperglycaemia. Lancet. 1997;350:713–714.

    Article  PubMed  CAS  Google Scholar 

  10. Lo JC, Mulligan K, Tai VW, Algren H, Schambelan M. "Buffalo hump" in men with HIV-1 infection. Lancet. 1998;351:867–870.

    Article  PubMed  CAS  Google Scholar 

  11. Miller KD, Jones E, Yanovski JA, Shankar R, Feuerstein I, Falloon J. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet. 1998;351:871–875.

    Article  PubMed  CAS  Google Scholar 

  12. Miller KK, Daly PA, Sentochnik D, et al. Pseudo-Cushing’s syndrome in human immunodeficiency virus-infected patients. Clin Infect Dis. 1998;27:68–72.

    Article  PubMed  CAS  Google Scholar 

  13. Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS. 1998;12:F51–F58.

    Article  PubMed  CAS  Google Scholar 

  14. Saint-Marc T, Partisani M, Poizot-Martin I, et al. A syndrome of peripheral fat wasting (lipodystrophy) in patients receiving long-term nucleoside analogue therapy. AIDS. 1999;13:1659–1667.

    Article  Google Scholar 

  15. Carr A, Samaras K, Chisholm DJ, Cooper DA. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidemia, and insulin resistance. Lancet. 1998;351:1881–1883.

    Article  PubMed  CAS  Google Scholar 

  16. Tsiodras S, Mantzoros C, Hammer S, Samore M. Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy: A 5-year cohort study. Arch Intern Med. 2000;160(13):2050-2056.

    Article  PubMed  CAS  Google Scholar 

  17. Brown TT, Cole SR, Li X, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–1184.

    Article  PubMed  Google Scholar 

  18. Ledergerber B, Furrer H, Rickenbach M, et al. Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected participants in the Swiss HIV Cohort Study. Clin Infect Dis. 2007;45(1):111–119.

    Article  PubMed  Google Scholar 

  19. Tien PC, Schneider MF, Cole SR, et al. Antiretroviral therapy exposure and incidence of diabetes mellitus in the Women’s Interagency HIV Study. AIDS. 2007;21(13):1739–1745.

    Article  PubMed  CAS  Google Scholar 

  20. Danoff A, Shi Q, Justman J, et al. Oral glucose tolerance and insulin sensitivity are unaffected by HIV infection or antiretroviral therapy in overweight women. J Acquir Immune Defic Syndr. 2005;39(1):55–62.

    Article  PubMed  Google Scholar 

  21. Mulligan K, Anastos K, Justman J, et al. Fat distribution in HIV-infected women in the United States: DEXA substudy in the Women’s Interagency HIV Study. J Acquir Immune Defic Syndr. 2005;38(1):18–22.

    Article  PubMed  Google Scholar 

  22. Howard AA, Floris-Moore M, Arnsten JH, et al. Disorders of glucose metabolism among HIV-infected women. Clin Infect Dis. 2005;40(10):1492–1499.

    Article  PubMed  CAS  Google Scholar 

  23. Marti C, Pena JM, Bates I, et al. Obstetric and perinatal complications in HIV-infected women. Analysis of a cohort of 167 pregnancies between 1997 and 2003. Acta Obstet Gynecol Scand. 2007;86(4):409–415.

    Article  PubMed  Google Scholar 

  24. Hitti J, Andersen J, McComsey G, et al. Protease inhibitor-based antiretroviral therapy and glucose tolerance in pregnancy: AIDS Clinical Trials Group A5084. Am J Obstet Gynecol. 2007;196(4):331–337.

    Article  PubMed  CAS  Google Scholar 

  25. Watts DH, Balasubramanian R, Maupin RT Jr., et al. Maternal toxicity and pregnancy complications in human immunodeficiency virus-infected women receiving antiretroviral therapy: PACTG 316. Am J Obstet Gynecol. 2004;190(2):506–516.

    Article  PubMed  CAS  Google Scholar 

  26. Hadigan C, Meigs JB, Corcoran C, et al. Metabolic abnormalities and cardiovascular disease risk factors in adults with human immunodeficiency vires infection and lipodystrophy. Clin Infect Dis. 2001;32:130–139.

    Article  PubMed  CAS  Google Scholar 

  27. Carr A, Samaras K, Thorisdottir A, Kaufmann GR, Chisholm DJ, Cooper DA. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet. 1999;353:2093–2099.

    Article  PubMed  CAS  Google Scholar 

  28. Saves M, Chene G, Dellamonica P, et al. Incidence of lipodystrophy and glucose and lipid abnormalities during the follow-up of a cohort of HIV-infected patients started on a protease inhibitor (PI)-containing regimen. 9th Conference on Retroviruses and Opportunistic Infections, 302. 2002.

    Google Scholar 

  29. Noor MA, Lo JC, Mulligan K, et al. Metabolic effects of indinavir in healthy HIV-seronegative men. AIDS. 2001;15(7):F11–F18.

    Article  PubMed  CAS  Google Scholar 

  30. Mehta SH, Moore RD, Thomas DL, Chaisson RE, Sulkowski MS. The effect of HAART and HCV infection on the development of hyperglycemia among HIV-infected persons. J Acquir Immune Defic Syndr. 2003;33(5):577–584.

    Article  PubMed  CAS  Google Scholar 

  31. Howard AA, Lo Y, Floris-Moore M, Klein RS, Fleischer N, Schoenbaum EE. Hepatitis C virus infection is associated with insulin resistance among older adults with or at risk of HIV infection. AIDS. 2007;21(5):633–641.

    Article  PubMed  CAS  Google Scholar 

  32. Hommes MJT, Romijn JA, Endert E, Eeftinck-Schattenkerk JKM, Sauerwein HP. Insulin sensitivity and insulin clearance in human immunodeficiency virus-infected men. Metabolism. 1991;40:651–656.

    Article  PubMed  CAS  Google Scholar 

  33. Heyligenberg R, Romijn JA, Hommes MJT, Endert E, Eeftinck Schattenkerk MKM, Sauerwein HP. Non-insulin-mediated glucose uptake in human immunodeficiency virus-infected men. Clin Sci. 1993;84:209–216.

    PubMed  CAS  Google Scholar 

  34. Stein TP, Nutinsky C, Condoluci D, Schluter MD, Leskiw MJ. Protein and energy substrate metabolism in AIDS patients. Metabolism. 1990;39:876–881.

    Article  PubMed  CAS  Google Scholar 

  35. U.S. Department of Health and Human Services HIV/AIDS Guidelines, http://aidsinfo.nih.gov. 12-1-2007.

  36. Lo JC, Kazemi MR, Hsue PY, et al. The impact of nucleoside reverse transcriptase inhibitor treatment duration and insulin resistance on fasting arterialized lactate levels in patients with HIV infection. Clin Infect Dis. 2005;41:1335–1340.

    Article  PubMed  CAS  Google Scholar 

  37. Blumer RM, van Vonderen MG, Sutinen J, et al. Zidovudine/lamivudine contributes to insulin resistance within 3 months of starting combination antiretroviral therapy. AIDS. 2008;22(2):227–236.

    Article  PubMed  CAS  Google Scholar 

  38. Walli R, Herfort O, Michl GM, et al. Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1-infected patients. AIDS. 1998;12:F167–F173.

    Article  PubMed  CAS  Google Scholar 

  39. Walli R, Goebel FD, Demant T. Impaired glucose tolerance and protease inhibitors. Ann Intern Med. 1998;129(10):837–838.

    PubMed  CAS  Google Scholar 

  40. Mulligan K, Grunfeld C, Tai VW, et al. Hyperlipidemia and insulin resistance are induced by protease inhibitors independent of changes in body composition in patients with HIV infection. J Acquir Immune Defic Syndr. 2000;23:35–43.

    Article  PubMed  CAS  Google Scholar 

  41. Visnegarwala F, Darcourt J, Sajja P, et al. Changes in metabolic profile among antiretroviral-naive patients initiating protease inhibitor versus non-protease inhibitor containing HAART regimens. J Acquir Immune Defic Syndr. 2003;33(5):653–655.

    Article  PubMed  Google Scholar 

  42. Dube MP, Edmundson-Melancon H, Qian D, Aqeel R, Johnson D, Buchanan TA. Prospective evaluation of the effect of initiating indinavir-based therapy on insulin sensitivity and B-cell function in HIV-infected patients. J Acquire Immune Defic Syndr. 2001;27:130–134.

    CAS  Google Scholar 

  43. Noor MA, Seneviratne T, Aweeka FT, et al. Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS. 2002;16:F1–F8.

    Article  PubMed  Google Scholar 

  44. Shankar SS, Considine RV, Gorski JC, Steinberg HO. Insulin sensitivity is preserved despite disrupted endothelial function. Am J Physiol Endocrinol Metab. 2006;291(4):E691–E696.

    Article  PubMed  CAS  Google Scholar 

  45. Murata H, Hruz PW, Mueckler M. Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS. 2002;16(6):859–863.

    Article  PubMed  CAS  Google Scholar 

  46. Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000;275(27):20251–20254.

    Article  PubMed  CAS  Google Scholar 

  47. Nolte LA, Yarasheski KE, Kawanaka K, Fisher J, Le N, Holloszy JO. The HIV protease inhibitor indinavir decreases insulin- and contraction- stimulated glucose transport in skeletal muscle. Diabetes. 2001;50(6):1397–1401.

    Article  PubMed  CAS  Google Scholar 

  48. Hruz PW, Murata H, Qiu H, Mueckler M. Indinavir induces acute and reversible peripheral insulin resistance in rats. Diabetes. 2002;51(4):937–942.

    Article  PubMed  CAS  Google Scholar 

  49. Lee GA, Seneviratne T, Noor MA, et al. The metabolic effects of lopinavir/ritonavir in HIV-negative men. AIDS. 2004;18:641–649.

    Article  PubMed  CAS  Google Scholar 

  50. Lee GA, Lo JC, Aweeka F, et al. Single-dose lopinavir-ritonavir acutely inhibits insulin-mediated glucose disposal in healthy volunteers. Clin Infect Dis. 2006;43(5):658–660.

    Article  PubMed  CAS  Google Scholar 

  51. Noor MA, Parker RA, O‘Mara E, et al. The effects of HIV protease inhibitors atazanavir and lopinavir/ritonavir on insulin sensitivity in HIV-seronegative healthy adults. AIDS. 2004;18(16):2137–2144.

    Article  PubMed  CAS  Google Scholar 

  52. Martinez E, Domingo P, Galindo MJ, et al. Risk of metabolic abnormalities in patients infected with HIV receiving antiretroviral therapy that contains lopinavir-ritonavir. Clin Infect Dis. 2004;38(7):1017–1023.

    Article  PubMed  CAS  Google Scholar 

  53. Lafeuillade A, Hittinger G, Philip G, Lambry V, Jolly P, Poggi C. Metabolic evaluation of HIV-infected patients receiving a regimen containing lopinavir/ritonavir (Kaletra. HIV Clin Trials. 2004;5(6):392–398.

    Article  PubMed  Google Scholar 

  54. Yan Q, Hruz PW. Direct comparison of the acute in vivo effects of HIV protease inhibitors on peripheral glucose disposal. J Acquir Immune Defic Syndr. 2005;40(4):398–403.

    Article  PubMed  CAS  Google Scholar 

  55. Noor MA, Flint OP, Maa JF, Parker RA. Effects of atazanavir/ritonavir and lopinavir/ritonavir on glucose uptake and insulin sensitivity: demonstrable differences in vitro and clinically. AIDS. 2006;20(14):1813–1821.

    Article  PubMed  CAS  Google Scholar 

  56. Guffanti M, Caumo A, Galli L, et al. Switching to unboosted atazanavir improves glucose tolerance in highly pretreated HIV-1 infected subjects. Eur J Endocrinol. 2007;156(4):503–509.

    Article  PubMed  CAS  Google Scholar 

  57. Lee GA, Rao M, Mulligan K, et al. Effects of ritonavir and amprenavir on insulin sensitivity in healthy volunteers. AIDS. 2007;21(16):2183–2190.

    Article  PubMed  CAS  Google Scholar 

  58. Dube MP, Qian D, Edmondson-Melancon H, et al. Prospective, intensive study of metabolic changes associated with 48 weeks of amprenavir-based antiretroviral therapy. Clin Infect Dis. 2002;35(4):475–481.

    Article  PubMed  CAS  Google Scholar 

  59. Fisac C, Virgili N, Ferrer E, et al. A comparison of the effects of nevirapine and nelfinavir on metabolism and body habitus in antiretroviral-naive human immunodeficiency virus-infected patients: a randomized controlled study. J Clin Endocrinol Metab. 2003;88(11):5186–5192.

    Article  PubMed  CAS  Google Scholar 

  60. Dube MP, Parker RA, Tebas P, et al. Glucose metabolism, lipid, and body fat changes in antiretroviral-naive subjects randomized to nelfinavir or efavirenz plus dual nucleosides. AIDS. 2005;19(16):1807–1818.

    Article  PubMed  CAS  Google Scholar 

  61. Hruz PW, Yan Q. Tipranavir without ritonavir does not acutely induce peripheral insulin resistance in a rodent model. J Acquir Immune Defic Syndr. 2006;43(5):624–625.

    Article  PubMed  Google Scholar 

  62. Anderson PL, Brundage RC, Bushman L, Kakuda TN, Remmel RP, Fletcher CV. Indinavir plasma protein binding in HIV-1-infected adults. AIDS. 2000;14(15):2293–2297.

    Article  PubMed  CAS  Google Scholar 

  63. Brown TT, Li X, Cole SR, et al. Cumulative exposure to nucleoside analogue reverse transcriptase inhibitors is associated with insulin resistance markers in the Multicenter AIDS Cohort Study. AIDS. 2005;19(13):1375–1383.

    Article  PubMed  CAS  Google Scholar 

  64. Fleischman A, Johnsen S, Systrom DM, et al. Effects of a nucleoside reverse transcriptase inhibitor, stavudine, on glucose disposal and mitochondrial function in muscle of healthy adults. Am J Physiol Endocrinol Metab. 2007;292(6):E1666–E1673.

    Article  PubMed  CAS  Google Scholar 

  65. Pace CS, Martin AM, Hammond EL, Mamotte CD, Nolan DA, Mallal SA. Mitochondrial proliferation, DNA depletion and adipocyte differentiation in subcutaneous adipose tissue of HIV-positive HAART recipients. Antivir Ther. 2003;8(4):323–331.

    PubMed  CAS  Google Scholar 

  66. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–671.

    Article  PubMed  CAS  Google Scholar 

  67. Garcia-Benayas T, Rendon AL, Rodriguez-Novoa S, et al. Higher risk of hyperglycemia in HIV-infected patients treated with didanosine plus tenofovir. AIDS Res Hum Retroviruses. 2006;22(4):333–337.

    Article  PubMed  CAS  Google Scholar 

  68. Martinez E, Garcia-Viejo MA, Blanco JL, et al. Impact of switching from human immunodeficiency virus type 1 protease inhibitors to efavirenz in successfully treated adults with lipodystrophy. Clin Infect Dis. 2000;31:1266–1273.

    Article  PubMed  CAS  Google Scholar 

  69. Martinez E, Conget I, Lozano L, Casamitjana R, Gatell JM. Reversion of metabolic abnormalities after switching from HIV-1 protease inhibitors to nevirapine. AIDS. 1999;13:805–810.

    Article  PubMed  CAS  Google Scholar 

  70. Petit JM, Duong M, Masson D, et al. Serum adiponectin and metabolic parameters in HIV-1-infected patients after substitution of nevirapine for protease inhibitors. Eur J Clin Invest. 2004;34(8):569–575.

    Article  PubMed  CAS  Google Scholar 

  71. Estrada V, De Villar NG, Larrad MT, Lopez AG, Fernandez C, Serrano-Rios M. Long-term metabolic consequences of switching from protease inhibitors to efavirenz in therapy for human immunodeficiency virus-infected patients with lipoatrophy. Clin Infect Dis. 2002;35(1):69–76.

    Article  PubMed  CAS  Google Scholar 

  72. Fisac C, Fumero E, Crespo M, et al. Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS. 2005;19(9):917–925.

    Article  PubMed  CAS  Google Scholar 

  73. Seelmeier S, Schmidt H, Turk V, von der HK. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci USA. 1988;85(18):6612–6616.

    Article  PubMed  CAS  Google Scholar 

  74. Kohl NE, Diehl RE, Rands E, et al. Expression of active human immunodeficiency virus type 1 protease by noninfectious chimeric virus particles. J Virol. 1991;65(6):3007–3014.

    PubMed  CAS  Google Scholar 

  75. DiIanni CL, Davis LJ, Holloway MK, et al. Characterization of an active single polypeptide form of the human immunodeficiency virus type 1 protease. J Biol Chem. 1990;265(28):17348–17354.

    PubMed  CAS  Google Scholar 

  76. Mackin RB. Proinsulin: recent observations and controversies. Cell Mol Life Sci. 1998;54(7):696–702.

    Article  PubMed  CAS  Google Scholar 

  77. Behrens G, Dejam A, Schmidt H, et al. Impaired glucose tolerance, beta cell function and lipid metabolism in HIV patients under treatment with protease inhibitors. AIDS. 1999;13:F63–F70.

    Article  PubMed  CAS  Google Scholar 

  78. Woerle HJ, Mariuz PR, Meyer C, et al. Mechanisms for the deterioration in glucose tolerance associated with HIV protease inhibitor regimens. Diabetes. 2003;52:918–925.

    Article  PubMed  CAS  Google Scholar 

  79. Danoff A, Ling WL. Protease inhibitors do not interfere with prohormone processing. Ann Intern Med. 2000;132(4):330.

    PubMed  CAS  Google Scholar 

  80. Koster JC, Remedi MS, Qiu H, Nichols CG, Hruz PW. HIV protease inhibitors acutely impair glucose-stimulated insulin release. Diabetes. 2003;52(7):1695–1700.

    Article  PubMed  CAS  Google Scholar 

  81. Haugaard SB, Andersen O, Halsall I, Iversen J, Hales CN, Madsbad S. Impaired proinsulin secretion before and during oral glucose stimulation in HIV-infected patients who display fat redistribution. Metabolism. 2007;56(7):939–946.

    Article  PubMed  CAS  Google Scholar 

  82. Schwarz JM, Lee GA, Park S, et al. Indinavir increases glucose production in healthy HIV-negative men. AIDS. 2004;18(13):1852–1854.

    Article  PubMed  Google Scholar 

  83. Lee GA, Schwarz JM, Patzek S, et al. The acute effects of HIV protease inhibitors on glucose production in healthy HIV-negative men. AntivirTher. 2007;12(Suppl 2):L46.

    Google Scholar 

  84. Sekhar RV, Jahoor F, White AC, et al. Metabolic basis of HIV-lipodystrophy syndrome. Am J Physiol Endocrinol Metab. 2002;283(2):E332–E337.

    PubMed  CAS  Google Scholar 

  85. Hadigan C, Borgonha S, Rabe J, Young V, Grinspoon S. Increased rates of lipolysis among human immunodeficiency virus-infected men receiving highly active antiretroviral therapy. Metabolism. 2002;51(9):1143–1147.

    Article  PubMed  CAS  Google Scholar 

  86. Reeds DN, Mittendorfer B, Patterson BW, Powderly WG, Yarasheski KE, Klein S. Alterations in lipid kinetics in men with HIV-dyslipidemia. Am J Physiol Endocrinol Metab. 2003;285(3):E490–E497.

    PubMed  CAS  Google Scholar 

  87. Hadigan C, Rabe J, Meininger G, Aliabadi N, Breu J, Grinspoon S. Inhibition of lipolysis improves insulin sensitivity in protease inhibitor-treated HIV-infected men with fat redistribution. Am J Clin Nutr. 2003;77(2):490–494.

    PubMed  CAS  Google Scholar 

  88. Hadigan C, Liebau J, Torriani M, Andersen R, Grinspoon S. Improved triglycerides and insulin sensitivity with 3 months of acipimox in human immunodeficiency virus-infected patients with hypertriglyceridemia. J Clin Endocrinol Metab. 2006;91(11):4438–4444.

    Article  PubMed  CAS  Google Scholar 

  89. Lindegaard B, Frosig C, Petersen AM, et al. Inhibition of lipolysis stimulates peripheral glucose uptake but has no effect on endogenous glucose production in HIV lipodystrophy. Diabetes. 2007;56(8):2070–2077.

    Article  PubMed  CAS  Google Scholar 

  90. Seltzer HS. Drug-induced hypoglycemia. A review of 1418 cases. Endocrinol Metab Clin North Am. 1989;18(1):163-183.

    PubMed  CAS  Google Scholar 

  91. Abourizk NN, Lyons RW, Madden GM. Transient state of NIDDM in a patient with AIDS. Diabetes Care. 1993;16(6):931–933.

    Article  PubMed  CAS  Google Scholar 

  92. Nasti G, Zanette G, Inchiostro S, Donadon V, Tirelli U. Diabetes mellitus following intravenous pentamidine administration in a patient with HIV infection. Arch Intern Med. 1995;155(6):645–646.

    Article  PubMed  CAS  Google Scholar 

  93. Coyle P, Carr AD, Depczynski BB, Chisholm DJ. Diabetes mellitus associated with pentamidine use in HIV-infected patients. Med J Aust. 1996;165(10):587–588.

    PubMed  CAS  Google Scholar 

  94. Uzzan B, Bentata M, Campos J, et al. Effects of aerosolized pentamidine on glucose homeostasis and insulin secretion in HIV-positive patients: a controlled study. AIDS. 1995;9:901–907.

    Article  PubMed  CAS  Google Scholar 

  95. Jain P, Girardi L, Sherman L, Berelowicz M, Smith L. Insulin resistance and development of diabetes mellitus associated with megestrol acetate therapy. Postgrad Med J. 1996;72:365–367.

    Article  PubMed  CAS  Google Scholar 

  96. Kilby JM, Tabereaux PB. Severe hyperglycemia in an HIV clinic: preexisting versus drug-associated diabetes mellitus. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(1):46–50.

    Article  PubMed  CAS  Google Scholar 

  97. Gonzalezd V, Herrero AA, Martinez HP, Garcia DB, Jimenez CE. Hyperglycemia induced by megestrol acetate in a patient with AIDS. Ann Pharmacother. 1996;30(10):1113–1114.

    Google Scholar 

  98. Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. N Engl J Med. 2005;352(1):48–62.

    Article  PubMed  CAS  Google Scholar 

  99. Blanch J, Rousaud A, Martinez E, et al. Factors associated with severe impact of lipodystrophy on the quality of life of patients infected with HIV-1. Clin Infect Dis. 2004;38(10):1464–1470.

    Article  PubMed  Google Scholar 

  100. Ammassari A, Antinori A, Cozzi-Lepri A, et al. Relationship between HAART adherence and adipose tissue alterations. J Acquir Immune Defic Syndr. 2002;31(Suppl 3):S140–S144.

    PubMed  Google Scholar 

  101. Martinez E, Mocroft A, Garcia-Viejo MA, et al. Risk of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective cohort study. Lancet. 2001;357(9256):592–598.

    Article  PubMed  CAS  Google Scholar 

  102. Heath KV, Singer J, O‘Shaughnessy MV, Montaner JS, Hogg RS. Intentional nonadherence due to adverse symptoms associated with antiretroviral therapy. J Acquir Immune Defic Syndr. 2002;31(2):211–217.

    Article  PubMed  CAS  Google Scholar 

  103. Galli M, Cozzi-Lepri A, Ridolfo AL, et al. Incidence of adipose tissue alterations in first-line antiretroviral therapy: the LipoICoNa Study. Arch Intern Med. 2002;162(22):2621–2628.

    Article  PubMed  Google Scholar 

  104. Saves M, Raffi F, Capeau J, et al. Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis. 2002;34(10):1396–1405.

    Article  PubMed  CAS  Google Scholar 

  105. Bacchetti P, Gripshover B, Grunfeld C, et al. Fat distribution in men with HIV infection. J Acquir Immune Defic Syndr. 2005;40(2):121–131.

    Article  PubMed  Google Scholar 

  106. Carr A, Emery S, Law M, Puls R, Lundgren JD, Powderly WG. An objective case definition of lipodystrophy in HIV-infected adults: a case-control study. Lancet. 2003;361(9359):726–735.

    Article  PubMed  CAS  Google Scholar 

  107. Lichtenstein KA, Ward DJ, Moorman AC, et al. Clinical assessment of HIV-associated lipodystrophy in an ambulatory population. AIDS. 2001;15:1389–1398.

    Article  PubMed  CAS  Google Scholar 

  108. Kotler DP, Rosenbaum K, Wang J, Pierson RN. Studies of body composition and fat distribution in HIV-infected and control subjects. J Acquir Immune Defic Syndr Hum Retrovirol. 1999;20:228–237.

    Article  PubMed  CAS  Google Scholar 

  109. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401:73–76.

    Article  PubMed  CAS  Google Scholar 

  110. Gavrilova O, Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–278.

    Article  PubMed  CAS  Google Scholar 

  111. Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004;350(12):1220–1234.

    Article  PubMed  CAS  Google Scholar 

  112. Heath KV, Hogg RS, Singer J, Chan KJ, O‘Shaughnessy MV, Montaner JS. Antiretroviral treatment patterns and incident HIV-associated morphologic and lipid abnormalities in a population-based chort. J Acquir Immune Defic Syndr. 2002;30(4):440–447.

    PubMed  CAS  Google Scholar 

  113. Mallal SA, John M, Moore CB, James IR, McKinnon EJ. Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS. 2000;14(10):1309–1316.

    Article  PubMed  CAS  Google Scholar 

  114. Shlay JC, Visnegarwala F, Bartsch G, et al. Body composition and metabolic changes in antiretroviral-naive patients randomized to didanosine and stavudine vs. abacavir and lamivudine. J Acquir Immune Defic Syndr. 2005;38(2):147–155.

    Article  PubMed  CAS  Google Scholar 

  115. Brown TT, Chu H, Wang Z, et al. Longitudinal increases in waist circumference are associated with HIV-serostatus, independent of antiretroviral therapy. AIDS. 2007;21(13):1731–1738.

    Article  PubMed  CAS  Google Scholar 

  116. Mulligan K, Parker RA, Komarow L, et al. Mixed patterns of changes in central and peripheral fat following initiation of antiretroviral therapy in a randomized trial. J Acquir Immune Defic Syndr. 2006;41(5):590–597.

    Article  PubMed  CAS  Google Scholar 

  117. Domingo P, Matias-Guiu X, Pujol RM, et al. Subcutaneous adipocyte apoptosis in HIV-1 protease inhibitor-associated lipodystrophy. AIDS. 1999;13:2261–2267.

    Article  PubMed  CAS  Google Scholar 

  118. Bastard JP, Caron M, Vidal H, et al. Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet. 2002;359(9311):1026–1031.

    Article  PubMed  CAS  Google Scholar 

  119. Dowell P, Flexner C, Kwiterovich PO, Lane MD. Suppression of preadipocyte differentiation and promotion of adipocyte death by HIV protease inhibitors. J Biol Chem. 2000;275(52):41325–41332.

    Article  PubMed  CAS  Google Scholar 

  120. Caron M, Auclair M, Vigouroux C, Glorian M, Forest C, Capeau J. The HIV protease inhibitor indinavir impairs sterol regulatory element- binding protein-1 intranuclear localization, inhibits preadipocyte differentiation, and induces insulin resistance. Diabetes. 2001;50(6):1378–1388.

    Article  PubMed  CAS  Google Scholar 

  121. Caron M, Auclair M, Sterlingot H, Kornprobst M, Capeau J. Some HIV protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear localization and adipocyte differentiation. AIDS. 2003;17(17):2437–2444.

    Article  PubMed  CAS  Google Scholar 

  122. Roche R, Poizot-Martin I, Yazidi CM, et al. Effects of antiretroviral drug combinations on the differentiation of adipocytes. AIDS. 2002;16(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  123. Nolan D, Hammond E, Martin A, et al. Mitochondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy. AIDS. 2003;17(9):1329–1338.

    Article  PubMed  CAS  Google Scholar 

  124. Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med. 1995;1(5):417–422.

    Article  PubMed  CAS  Google Scholar 

  125. Dalakas MC, Illa I, Pezeshkpour GH, Laukaitis JP, Cohen B, Griffin JL. Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med. 1990;322(16):1098–1105.

    Article  PubMed  CAS  Google Scholar 

  126. Lewis W, Simpson JF, Meyer RR. Cardiac mitochondrial DNA polymerase-gamma is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ Res. 1994;74(2):344–348.

    PubMed  CAS  Google Scholar 

  127. Mallon PW, Miller J, Cooper DA, Carr A. Prospective evaluation of the effects of antiretroviral therapy on body composition in HIV-1-infected men starting therapy. AIDS. 2003;17(7):971–979.

    Article  PubMed  CAS  Google Scholar 

  128. van Der Valk M, Gisolf EH, Reiss P, et al. Increased risk of lipodystrophy when nucleoside analogue reverse transcriptase inhibitors are included with protease inhibitors in the treatment of HIV-1 infection. AIDS. 2001;15(7):847–855.

    Article  PubMed  Google Scholar 

  129. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–946.

    Article  PubMed  CAS  Google Scholar 

  130. Haque WA, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395.

    Article  PubMed  CAS  Google Scholar 

  131. Estrada V, Martinez-Larrad MT, Gonzalez-Sanchez JL, et al. Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metabolism. 2006;55(7):940–945.

    Article  PubMed  CAS  Google Scholar 

  132. Verkauskiene R, Dollfus C, Levine M, et al. Serum adiponectin and leptin concentrations in HIV-infected children with fat redistribution syndrome. Pediatr Res. 2006;60(2):225–230.

    Article  PubMed  CAS  Google Scholar 

  133. Kosmiski LA, Bacchetti P, Kotler DP, et al. Relationship of fat distribution with adipokines in human immunodeficiency virus infection. J Clin Endocrinol Metab. 2008;93(1):216–224.

    Article  PubMed  CAS  Google Scholar 

  134. Addy CL, Gavrila A, Tsiodras S, Brodovicz K, Karchmer AW, Mantzoros CS. Hypoadiponectinemia is associated with insulin resistance, hypertriglyceridemia, and fat redistribution in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy. J Clin Endocrinol Metab. 2003;88(2):627–636.

    Article  PubMed  CAS  Google Scholar 

  135. Reeds DN, Yarasheski KE, Fontana L, et al. Alterations in liver, muscle, and adipose tissue insulin sensitivity in men with HIV infection and dyslipidemia. Am J Physiol Endocrinol Metab. 2006;290(1):E47–E53.

    Article  PubMed  CAS  Google Scholar 

  136. Lee GA, Mafong DD, Noor MA, et al. HIV protease inhibitors increase adiponectin levels in HIV-negative men. J Acquir Immune Defic Syndr. 2004;36(1):645–647.

    Article  PubMed  Google Scholar 

  137. Chen D, Misra A, Garg A. Clinical review 153: lipodystrophy in human immunodeficiency virus-infected patients. J Clin Endocrinol Metab. 2002;87(11):4845–4856.

    Article  PubMed  CAS  Google Scholar 

  138. Yanovski JA, Miller KD, Kino T, et al. Endocrine and metabolic evaluation of human immunodeficiency virus-infected patients with evidence of protease inhibitor-associated lipodystrophy. J Clin Endocrinol Metab. 1999;84:1925–1931.

    Google Scholar 

  139. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect "Cushing’s" disease of the omentum? Lancet. 1997;349:1210–1213.

    Article  PubMed  CAS  Google Scholar 

  140. Sutinen J, Kannisto K, Korsheninnikova E, et al. In the lipodystrophy associated with highly active antiretroviral therapy, pseudo-Cushing’s syndrome is associated with increased regeneration of cortisol by 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue. Diabetologia. 2004;47(10):1668–1671.

    Article  PubMed  CAS  Google Scholar 

  141. Palella FJ Jr., Cole SR, Chmiel JS, et al. Anthropometrics and examiner-reported body habitus abnormalities in the multicenter AIDS cohort study. Clin Infect Dis. 2004;38(6):903–907.

    Article  PubMed  Google Scholar 

  142. Shlay JC, Bartsch G, Peng G, et al. Long-term body composition and metabolic changes in antiretroviral naive persons randomized to protease inhibitor-, nonnucleoside reverse transcriptase inhibitor-, or protease inhibitor plus nonnucleoside reverse transcriptase inhibitor-based strategy. J Acquir Immune Defic Syndr. 2007;44(5):506–517.

    Article  PubMed  CAS  Google Scholar 

  143. Riddler SA, Li X, Chu H, et al. Longitudinal changes in serum lipids among HIV-infected men on highly active antiretroviral therapy. HIV Med. 2007;8(5):280–287.

    Article  PubMed  CAS  Google Scholar 

  144. Stein JH, Klein MA, Bellehumeur JL, et al. Use of human immunodeficiency virus-1 protease inhibitors is associated with atherogenic lipoprotein changes and endothelial dysfunction. Circulation. 2001;104(3):257–262.

    PubMed  CAS  Google Scholar 

  145. Yki-Jarvinen H, Sutinen J, Silveira A, et al. Regulation of plasma PAI-1 concentrations in HAART-associated lipodystrophy during rosiglitazone therapy. Arterioscler Thromb Vasc Biol. 2003;23(4):688–694.

    Article  PubMed  CAS  Google Scholar 

  146. Hadigan C, Meigs JB, Rabe J, et al. Increased PAI-1 and tPA antigen levels are reduced with metformin therapy in HIV-infected patients with fat redistribution and insulin resistance. J Clin Endocrinol Metab. 2001;86(2):939–943.

    Article  PubMed  CAS  Google Scholar 

  147. Dressman J, Kincer J, Matveev SV, et al. HIV protease inhibitors promote atherosclerotic lesion formation independent of dyslipidemia by increasing CD36-dependent cholesteryl ester accumulation in macrophages. J Clin Invest. 2003;111(3):389–397.

    PubMed  CAS  Google Scholar 

  148. Mary-Krause M, Cotte L, Simon A, Partisani M, Costagliola D. Increased risk of myocardial infarction with duration of protease inhibitor therapy in HIV-infected men. AIDS. 2003;17(17):2479–2486.

    Article  PubMed  Google Scholar 

  149. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92(7):2506–2512.

    Article  PubMed  CAS  Google Scholar 

  150. Bozzette SA, Ake CF, Tam HK, Chang SW, Louis TA. Cardiovascular and cerebrovascular events in patients treated for human immunodeficiency virus infection. N Engl J Med. 2003;348(8):702–710.

    Article  PubMed  CAS  Google Scholar 

  151. Friis-Moller N, Sabin CA, Weber R, et al. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med. 2003;349(21):1993–2003.

    Article  PubMed  Google Scholar 

  152. Friis-Moller N, Reiss P, Sabin CA, et al. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356(17):1723–1735.

    Article  PubMed  Google Scholar 

  153. Grunfeld C, Kotler DP, Hamadeh R, Tierney A, Wang J, Pierson RN Jr. Hypertriglyceridemia in the acquired immunodeficiency syndrome. Am J Med. 1989;86:27–31.

    Article  PubMed  CAS  Google Scholar 

  154. Shor-Posner G, Basit A, Lu Y, et al. Hypocholesterolemia ia associated with immune dysfunction in early human immunodeficiency virus-1 infection. Am J Med. 1993;94:515–519.

    Article  PubMed  CAS  Google Scholar 

  155. Grunfeld C, Pang M, Doerrler W, Shigenaga JK, Jensen P, Feingold KR. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1992;74:1045–1052.

    Article  PubMed  CAS  Google Scholar 

  156. Zangerle R, Sarcletti M, Gallati H, Reibnegger G, Wachter H, Fuchs D. Decreased plasma concentrations of HDL cholesterol in HIV-infected individuals are associated with immune activation. J Acquir Defic Syndr. 1994;7:1149–1156.

    CAS  Google Scholar 

  157. Hellerstein MK, Grunfeld C, Wu K, et al. Increased de novo hepatic lipogenesis in human immunodeficiency virus infection. J Clin Endocrinol Metab. 1993;76:559–565.

    Article  PubMed  CAS  Google Scholar 

  158. Sekhar RV, Jahoor F, Pownall HJ, et al. Severely dysregulated disposal of postprandial triacylglycerols exacerbates hypertriacylglycerolemia in HIV lipodystrophy syndrome. Am J Clin Nutr. 2005;81(6):1405–1410.

    PubMed  CAS  Google Scholar 

  159. Fontas E, van Leth F, Sabin CA, et al. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy: are different antiretroviral drugs associated with different lipid profiles? J Infect Dis. 2004;189(6):1056–1074.

    Article  PubMed  CAS  Google Scholar 

  160. Friis-Moller N, Weber R, Reiss P, et al. Cardiovascular disease risk factors in HIV patients – association with antiretroviral therapy. Results from the DAD study. AIDS. 2003;17:1179–1193.

    Article  PubMed  Google Scholar 

  161. Mildvan D, Machado SG, Wilets I, Grossberg SE. Endogenous interferon and triglyceride concentrations to assess response to zidovudine in AIDS and advanced AIDS-related complex. Lancet. 1992;339:453–456.

    Article  PubMed  CAS  Google Scholar 

  162. Anastos K, Lu D, Shi Q, et al. Association of serum lipid levels with HIV serostatus, specific antiretroviral agents, and treatment regimens. J Acquir Immune Defic Syndr. 2007;45(1):34–42.

    Article  PubMed  CAS  Google Scholar 

  163. Sterne JA, May M, Bucher HC, et al. HAART and the heart: changes in coronary risk factors and implications for coronary risk in men starting antiretroviral therapy. J Intern Med. 2007;261(3):255–267.

    Article  PubMed  CAS  Google Scholar 

  164. Cameron DW, Heath-Chiozzi M, Danner S, et al. Randomised placebo-controlled trial of ritonavir in advanced HIV-1 disease. The Advanced HIV Disease Ritonavir Study Group. Lancet. 1998;351(9102):543–549.

    Article  PubMed  CAS  Google Scholar 

  165. Mobius U, Lubach-Ruitman M, Castro-Frenzel B, et al. Switching to atazanavir improves metabolic disorders in antiretroviral-experienced patients with severe hyperlipidemia. J Acquir Immune Defic Syndr. 2005;39(2):174–180.

    PubMed  Google Scholar 

  166. Liang JS, Distler O, Cooper DA, et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nat Med. 2001;7(12):1327–1331.

    Article  PubMed  CAS  Google Scholar 

  167. Schmitz M, Michl GM, Walli R, et al. Alterations of apolipoprotein B metabolism in HIV-infected patients with antiretroviral combination therapy. J Acquir Immune Defic Syndr. 2001;26(3):225–235.

    Article  PubMed  CAS  Google Scholar 

  168. Riddler SA, Smit E, Cole SR, et al. Impact of HIV infection and HAART on serum lipids in men. J Am Med Assoc. 2003;289(22):2978–2982.

    Article  CAS  Google Scholar 

  169. Domingo P, Sambeat MA, Perez A, Ordonez J. Effect of protease inhibitors on apolipoprotein B levels and plasma lipid profile in HIV-1-infected patients on highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2003;33(1):114–116.

    Article  PubMed  Google Scholar 

  170. Purnell JQ, Zambon A, Knopp RH, et al. Effect of ritonavir on lipids and post-heparin lipase activities in normal subjects. AIDS. 2000;14:51–57.

    Article  PubMed  CAS  Google Scholar 

  171. Periard D, Telenti A, Sudre P, et al. Atherogenic dyslipidemia in HIV-infected individuals treated with protease inhibitors. The Swiss HIV Cohort Study. Circulation. 1999;100(7):700–705.

    PubMed  CAS  Google Scholar 

  172. Calza L, Manfredi R, Colangeli V, et al. Substitution of nevirapine or efavirenz for protease inhibitor versus lipid-lowering therapy for the management of dyslipidaemia. AIDS. 2005;19(10):1051–1058.

    Article  PubMed  CAS  Google Scholar 

  173. Negredo E, Ribalta J, Paredes R, et al. Reversal of atherogenic lipoprotein profile in HIV-1 infected patients with lipodystrophy after replacing protease inhibitors by nevirapine. AIDS. 2002;16(10):1383–1389.

    Article  PubMed  CAS  Google Scholar 

  174. van Der Valk M, Kastelein JJ, Murphy RL, et al. Nevirapine-containing antiretroviral therapy in HIV-1 infected patients results in an anti-atherogenic lipid profile. AIDS. 2001;15(18):2407–2414.

    Article  PubMed  Google Scholar 

  175. Gallant JE, Staszewski S, Pozniak AL, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. J Am Med Assoc. 2004;292(2):191–201.

    Article  CAS  Google Scholar 

  176. Carr A, Workman C, Smith DE, et al. Abacavir substitution for nucleoside analogs in patients with HIV lipoatrophy: a randomized trial. J Am Med Assoc. 2002;288(2):207–215.

    Article  CAS  Google Scholar 

  177. Schambelan M, Benson CA, Carr A, et al. Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an International AIDS Society-USA panel. J Acquir Immune Defic Syndr. 2002;31(3):257–275.

    Article  PubMed  Google Scholar 

  178. Wohl DA, McComsey G, Tebas P, et al. Current concepts in the diagnosis and management of metabolic complications of HIV infection and its therapy. Clin Infect Dis. 2006;43(5):645–653.

    Article  PubMed  CAS  Google Scholar 

  179. Dube MP, Stein JH, Aberg JA, et al. Guidelines for the evaluation and management of dyslipidemia in human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy: recommendations of the HIV Medical Association of the Infectious Disease Society of America and the Adult AIDS Clinical Trials Group. Clin Infect Dis. 2003;37(5):613–627.

    Article  PubMed  Google Scholar 

  180. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). J Am Med Assoc. 2001;285(19):2486–2497.

    Article  Google Scholar 

  181. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2002;25(Suppl 1):S5–S20.

    Article  Google Scholar 

  182. Standards of Medical Care for Patients With Diabetes Mellitus; American Diabetes Association. Diabetes Care. 2002;25(Suppl 1):S33–S49.

    Article  Google Scholar 

  183. Roubenoff R, Schmitz H, Bairos L, et al. Reduction of abdominal obesity in lipodystrophy associated with human immunodeficiency virus infection by means of diet and exercise: case report and proof of principle. Clin Infect Dis. 2002;34(3):390–393.

    Article  PubMed  Google Scholar 

  184. Jones SP, Doran DA, Leatt PB, Maher B, Pirmohamed M. Short-term exercise training improves body composition and hyperlipidaemia in HIV-positive individuals with lipodystrophy. AIDS. 2001;15(15):2049–2051.

    Article  PubMed  CAS  Google Scholar 

  185. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333:550–554.

    Article  PubMed  CAS  Google Scholar 

  186. Saint-Marc T, Touraine JL. Effects of metformin on insulin resistance and central adiposity in patients receiving effective protease inhibitor therapy. AIDS. 1999;13:1000–1002.

    Article  PubMed  CAS  Google Scholar 

  187. Hadigan C, Corcoran C, Basgoz N, Davis B, Sax P, Grinspoon S. Metformin in the treatment of HIV lipodystrophy syndrome: A randomized controlled trial. J Am Med Assoc. 2000;284(4):472–477.

    Article  CAS  Google Scholar 

  188. Hadigan C, Rabe J, Grinspoon S. Sustained benefits of metformin therapy on markers of cardiovascular risk in human immunodeficiency virus-infected patients with fat redistribution and insulin resistance. J Clin Endocrinol Metab. 2002;87(10):4611–4615.

    Article  PubMed  CAS  Google Scholar 

  189. Mulligan K, Yang Y, Wininger DA, et al. Effects of metformin and rosiglitazone in HIV-infected patients with hyperinsulinemia and elevated waist/hip ratio. AIDS. 2007;21(1):47–57.

    Article  PubMed  CAS  Google Scholar 

  190. van Wijk JP, de Koning EJ, Cabezas MC, et al. Comparison of rosiglitazone and metformin for treating HIV lipodystrophy: a randomized trial. Ann Intern Med. 2005;143(5):337–346.

    PubMed  Google Scholar 

  191. Kohli R, Shevitz A, Gorbach S, Wanke C. A randomized placebo-controlled trial of metformin for the treatment of HIV lipodystrophy. HIV Med. 2007;8(7):420–426.

    Article  PubMed  CAS  Google Scholar 

  192. Vrouenraets SM, Treskes M, Regez RM, et al. Hyperlactataemia in HIV-infected patients: the role of NRTI-treatment. Antivir Ther. 2002;7(4):239–244.

    PubMed  CAS  Google Scholar 

  193. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–1118.

    Article  PubMed  Google Scholar 

  194. Arioglu E, Duncan-Morin J, Sebring N, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med. 2000;133(4):263–274.

    PubMed  CAS  Google Scholar 

  195. Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care. 1999;22:908–912.

    Article  PubMed  CAS  Google Scholar 

  196. Kawai T, Takei I, Oguma Y, et al. Effects of troglitazone on fat distribution in the treatment of male type 2 diabetes. Metabolism. 1999;48(9):1102–1107.

    Article  PubMed  CAS  Google Scholar 

  197. Kelly IE, Han TS, Walsh K, Lean MEJ. Effects of a thiazolidinedione compound on body fat and fat distribution of patiens with type 2 diabetes. Diabetes Care. 1999;22:288–293.

    Article  PubMed  CAS  Google Scholar 

  198. Gelato MC, Mynarcik DC, Quick JL, et al. Improved insulin sensitivity and body fat distribution in HIV-infected patients treated with rosiglitazone: a pilot study. J Acquir Immune Defic Syndr. 2002;31(2):163–170.

    Article  PubMed  CAS  Google Scholar 

  199. Hadigan C, Yawetz S, Thomas A, Havers F, Sax PE, Grinspoon S. Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial. Ann Intern Med. 2004;140(10):786–794.

    PubMed  CAS  Google Scholar 

  200. Sutinen J, Hakkinen AM, Westerbacka J, et al. Rosiglitazone in the treatment of HAART-associated lipodystrophy – a randomized double-blind placebo-controlled study. Antivir Ther. 2003;8(3):199–207.

    PubMed  CAS  Google Scholar 

  201. Carr A, Workman C, Carey D, et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet. 2004;363(9407):429–438.

    Article  PubMed  CAS  Google Scholar 

  202. Gavrila A, Hsu W, Tsiodras S, et al. Improvement in highly active antiretroviral therapy-induced metabolic syndrome by treatment with pioglitazone but not with fenofibrate: a 2 × 2 factorial, randomized, double-blinded, placebo-controlled trial. Clin Infect Dis. 2005;40(5):745–749.

    Article  PubMed  CAS  Google Scholar 

  203. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–2471.

    Article  PubMed  CAS  Google Scholar 

  204. Cnop M, Havel PJ, Utzschneider KM, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46(4):459–469.

    PubMed  CAS  Google Scholar 

  205. Cavalcanti RB, Raboud J, Shen S, Kain KC, Cheung A, Walmsley S. A randomized, placebo-controlled trial of rosiglitazone for HIV-related lipoatrophy. J Infect Dis. 2007;195(12):1754–1761.

    Article  PubMed  CAS  Google Scholar 

  206. McComsey GA, Ward DJ, Hessenthaler SM, et al. Improvement in lipoatrophy associated with highly active antiretroviral therapy in human immunodeficiency virus-infected patients switched from stavudine to abacavir or zidovudine: the results of the TARHEEL study. Clin Infect Dis. 2004;38(2):263–270.

    Article  PubMed  CAS  Google Scholar 

  207. John M, McKinnon EJ, James IR, et al. Randomized, controlled, 48-week study of switching stavudine and/or protease inhibitors to combivir/abacavir to prevent or reverse lipoatrophy in HIV-infected patients. J Acquir Immune Defic Syndr. 2003;33(1):29–33.

    Article  PubMed  CAS  Google Scholar 

  208. Martin A, Smith DE, Carr A, et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS. 2004;18(7):1029–1036.

    Article  PubMed  CAS  Google Scholar 

  209. Tebas P, Zhang J, Yarasheski K, et al. Switching to a protease inhibitor-containing, nucleoside-sparing regimen (lopinavir/ritonavir plus efavirenz) increases limb fat but raises serum lipid levels: results of a prospective randomized trial (AIDS clinical trial group 5125s). J Acquir Immune Defic Syndr. 2007;45(2):193–200.

    Article  PubMed  CAS  Google Scholar 

  210. Carr A, Hudson JCJ, Law M, et al. HIV protease inhibitor substitution in patients with lipodystrophy: a randomized, controlled, open-label, multicentre study. AIDS. 2001;15:1811–1822.

    Article  Google Scholar 

  211. Moyle GJ, Sabin CA, Cartledge J, et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS. 2006;20(16):2043–2050.

    Article  PubMed  CAS  Google Scholar 

  212. Lo JC, Mulligan K, Noor M, et al. The effects of recombinant human growth hormone on body composition and glucose metabolism in HIV-infected patients with fat accumulation. J Clin Endocrinol Metab. 2001;86:3480–3487.

    Article  PubMed  CAS  Google Scholar 

  213. Lo JC, Mulligan K, Noor MA, et al. The effects of low dose growth hormone in HIV-infected men with fat accumulation: a pilot study. Clin Infect Dis. 2004;39:732–735.

    Article  PubMed  CAS  Google Scholar 

  214. Schwarz JM, Mulligan K, Lee J, et al. Effects of recombinant human growth hormone on hepatic lipid and carbohydrate metabolism in HIV-infected patients with fat accumulation. J Clin Endocrinol Metab. 2002;87:942–945.

    Article  PubMed  CAS  Google Scholar 

  215. Kotler DP, Muurahainen N, Grunfeld C, et al. Effects of growth hormone on abnormal visceral adipose tissue accumulation and dyslipidemia in HIV-infected patients. J Acquir Immune Defic Syndr. 2004;35(3):239–252.

    Article  PubMed  CAS  Google Scholar 

  216. Grunfeld C, Thompson M, Brown SJ, et al. Recombinant human growth hormone to treat HIV-associated adipose redistribution syndrome: 12 week induction and 24-week maintenance therapy. J Acquir Immune Defic Syndr. 2007;45(3):286–297.

    PubMed  CAS  Google Scholar 

  217. Falutz J, Allas S, Blot K, et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N Engl J Med. 2007;357(23):2359–2370.

    Article  PubMed  CAS  Google Scholar 

  218. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565–581.

    Article  PubMed  CAS  Google Scholar 

  219. Fichtenbaum CJ, Gerber JG, Rosenkranz SL, et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS. 2002;16(4):569–577.

    Article  PubMed  CAS  Google Scholar 

  220. Palacios R, Santos J, Gonzalez M, et al. Efficacy and safety of atorvastatin in the treatment of hypercholesterolemia associated with antiretroviral therapy. J Acquir Immune Defic Syndr. 2002;30(5):536–537.

    Article  PubMed  CAS  Google Scholar 

  221. Calza L, Colangeli V, Manfredi R, et al. Rosuvastatin for the treatment of hyperlipidaemia in HIV-infected patients receiving protease inhibitors: a pilot study. AIDS. 2005;19(10):1103–1105.

    Article  PubMed  CAS  Google Scholar 

  222. Boccara F, Simon T, Lacombe K, et al. Influence of pravastatin on carotid artery structure and function in dyslipidemic HIV-infected patients receiving antiretroviral therapy. AIDS. 2006;20(18):2395–2398.

    Article  PubMed  CAS  Google Scholar 

  223. Benesic A, Zilly M, Kluge F, et al. Lipid lowering therapy with fluvastatin and pravastatin in patients with HIV infection and antiretroviral therapy: comparison of efficacy and interaction with indinavir. Infection. 2004;32(4):229–233.

    Article  PubMed  CAS  Google Scholar 

  224. Moyle GJ, Lloyd M, Reynolds B, Baldwin C, Mandalia S, Gazzard BG. Dietary advice with or without pravastatin for the management of hypercholesterolaemia associated with protease inhibitor therapy. AIDS. 2001;15(12):1503–1508.

    Article  PubMed  CAS  Google Scholar 

  225. Henry K, Melroe H, Huebesch J, Hermundson J, Simpson J. Atorvastatin and gemfibrozil for protease-inhibitor-related lipid abnormalities. Lancet. 1998;352(9133):1031–1032.

    Article  PubMed  CAS  Google Scholar 

  226. Aberg JA, Zackin RA, Brobst SW, et al. A randomized trial of the efficacy and safety of fenofibrate versus pravastatin in HIV-infected subjects with lipid abnormalities: AIDS Clinical Trials Group Study 5087. AIDS Res Hum Retroviruses. 2005;21(9):757–767.

    Article  PubMed  CAS  Google Scholar 

  227. Badiou S, Merle DB, Dupuy AM, Baillat V, Cristol JP, Reynes J. Fenofibrate improves the atherogenic lipid profile and enhances LDL resistance to oxidation in HIV-positive adults. Atherosclerosis. 2004;172(2):273–279.

    Article  PubMed  CAS  Google Scholar 

  228. Miller J, Brown D, Amin J, et al. A randomized, double-blind study of gemfibrozil for the treatment of protease inhibitor-associated hypertriglyceridaemia. AIDS. 2002;16(16):2195–2200.

    Article  PubMed  CAS  Google Scholar 

  229. Gerber MT, Mondy KE, Yarasheski KE, et al. Niacin in HIV-infected individuals with hyperlipidemia receiving potent antiretroviral therapy. Clin Infect Dis. 2004;39(3):419–425.

    Article  PubMed  CAS  Google Scholar 

  230. Dube MP, Wu JW, Aberg JA, et al. Safety and efficacy of extended-release niacin for the treatment of dyslipidaemia in patients with HIV infection: AIDS Clinical Trials Group Study A5148. Antivir Ther. 2006;11(8):1081–1089.

    PubMed  CAS  Google Scholar 

  231. de Truchis P, Kirstetter M, Perier A, et al. Reduction in triglyceride level with N-3 polyunsaturated fatty acids in HIV-infected patients taking potent antiretroviral therapy: a randomized prospective study. J Acquir Immune Defic Syndr. 2007;44(3):278–285.

    Article  PubMed  CAS  Google Scholar 

  232. Gerber JG, Kitch DW, Fichtenbaum CJ, et al. Fish Oil and Fenofibrate for the Treatment of Hypertriglyceridemia in HIV-Infected Subjects on Antiretroviral Therapy: Results of ACTG A5186. J Acquir Immune Defic Syndr. 2008;47:459–466.

    Article  PubMed  CAS  Google Scholar 

  233. Wohl DA, Tien HC, Busby M, et al. Randomized study of the safety and efficacy of fish oil (omega-3 fatty acid) supplementation with dietary and exercise counseling for the treatment of antiretroviral therapy-associated hypertriglyceridemia. Clin Infect Dis. 2005;41(10):1498–1504.

    Article  PubMed  CAS  Google Scholar 

  234. Negredo E, Molto J, Puig J, et al. Ezetimibe, a promising lipid-lowering agent for the treatment of dyslipidaemia in HIV-infected patients with poor response to statins. AIDS. 2006;20(17):2159–2164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris Schambelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rao, M.N., Mulligan, K., Schambelan, M. (2010). HIV Infection and Diabetes. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09841-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09841-8_38

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09840-1

  • Online ISBN: 978-0-387-09841-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics