Skip to main content

Graph-based Deformable Image Registration

  • Chapter
Handbook of Biomedical Imaging

Abstract

Deformable image registration is a field that has received considerable attention in the medical image analysis community. As a consequence, there is an important body of works that aims to tackle deformable registration. In this chapter we review one class of these techniques that use discrete optimization, and more specifically Markov Random Field models. We begin the chapter by explaining how one can formulate the deformable registration problem as a minimal cost graph problem where the nodes of the graph corresponds to the deformation grid, the graph connectivity encodes regularization constraints, and the labels correspond to 3D displacements. We then explain the use of discrete models in intensity-based volumetric registration. In the third section, we detail the use of Gabor-based attribute vectors in the context of discrete deformable registration, demonstrating the versatility of the graph-based models. In the last section of the chapter, the case of landmark-based registration is discussed. We first explain the discrete graphical model behind establishing landmark correspondences, and then continue to show how one can integrate it with the intensity-based model towards creating enhanced models that combine the best of both worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fast-PD is available at http://cvc-komodakis.centrale-ponts.fr/.

  2. 2.

    http://www.cma.mgh.harvard.edu/ibsr/data.html

  3. 3.

    DRAMMS is available at http://www.nitrc.org/projects/dramms/.

References

  1. Amit, Y.: A nonlinear variational problem for image matching. SIAM Journal on Scientific Computing 15(1), 207–224 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arsigny, V., Pennec, X., Ayache, N.: Polyrigid and polyaffine transformations: A novel geometrical tool to deal with non-rigid deformations – Application to the registration of histological slices. Medical Image Analysis 9(6), 507–523 (2005)

    Article  Google Scholar 

  3. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)

    Article  Google Scholar 

  4. Ashburner, J., Friston, K.J.: Nonlinear spatial normalization using basis functions. Human Brain Mapping 7(4), 254–266 (1999)

    Article  Google Scholar 

  5. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical image analysis 12(1), 26–41 (2008)

    Article  Google Scholar 

  6. Baumann, B.C., Teo, B.K., Pohl, K., Ou, Y., Doshi, J., Alonso-Basanta, M., Christodouleas, J., Davatzikos, C., Kao, G., Dorsey, J.: Multiparametric processing of serial mri during radiation therapy of brain tumors:finishing with flair?. International Journal of Radiation Oncology* Biology* Physics 81(2), S794 (2011)

    Google Scholar 

  7. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer vision and image understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  8. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  9. Betke, M., Hong, H., Thomas, D., Prince, C., Ko, J.P.: Landmark detection in the chest and registration of lung surfaces with an application to nodule registration. Medical Image Analysis 7(3), 265–281 (2003)

    Article  Google Scholar 

  10. Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  11. Cachier, P., Mangin, J.F., Pennec, X., Rivière, D., Papadopoulos-Orfanos, D., Régis, J., Ayache, N.: Multisubject non-rigid registration of brain MRI using intensity and geometric features. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 734–742 (2001)

    Google Scholar 

  12. Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. Pattern Analysis and Machine Intelligence, IEEE Transactions on 24(3), 347–364 (2002)

    Article  Google Scholar 

  13. Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE transactions on medical imaging 20(7), 568–82 (2001)

    Article  Google Scholar 

  14. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  15. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89(2-3), 114–141 (2003)

    Article  MATH  Google Scholar 

  16. Chung, A.C., Wells III, W.M., Norbash, A., Grimson, W.E.L.: Multi-modal image registration by minimizing Kullback-Leibler distance. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 525–532 (2002)

    Google Scholar 

  17. Da, X., Toledo, J.B., Zee, J., Wolk, D.A., Xie, S.X., Ou, Y., Shacklett, A., Parmpi, P., Shaw, L., Trojanowski, J.Q., et al.: Integration and relative value of biomarkers for prediction of mci to ad progression: Spatial patterns of brain atrophy, cognitive scores, apoe genotype and csf biomarkers. NeuroImage: Clinical 4, 164–173 (2014)

    Article  Google Scholar 

  18. D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical Image Analysis 7(4), 565–575 (2003)

    Article  Google Scholar 

  19. Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Computer Vision and Image Understanding 66(2), 207–222 (1997)

    Article  Google Scholar 

  20. Droske, M., Rumpf, M.: A variational approach to nonrigid morphological image registration. SIAM Journal on Applied Mathematics 64(2), 668–687 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Erus, G., Battapady, H., Satterthwaite, T.D., Hakonarson, H., Gur, R.E., Davatzikos, C., Gur, R.C.: Imaging patterns of brain development and their relationship to cognition. Cerebral Cortex p. bht425 (2014)

    Google Scholar 

  22. Fischer, B., Modersitzki, J.: Fast diffusion registration. AMS Contemporary Mathematics, Inverse Problems, Image Analysis, and Medical Imaging 313, 117–127 (2002)

    Article  MathSciNet  Google Scholar 

  23. Glaunès, J., Trouvé, A., Younes, L.: Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching. In: International Conference on Computer Vision and Pattern Recognition, pp. 712–718 (2004)

    Google Scholar 

  24. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Medical Image Analysis 12(6), 731–741 (2008)

    Article  Google Scholar 

  25. Glocker, B., Sotiras, A., Komodakis, N., Paragios, N.: Deformable medical image registration: setting the state of the art with discrete methods. Annual Review of Biomedical Engineering 13, 219–244 (2011)

    Article  Google Scholar 

  26. Hajnal, J.V., Hill, D.L., Hawkes, D.J. (eds.): Medical image registration. CRC Press, Boca Raton, FL (2001)

    Google Scholar 

  27. Hartkens, T., Hill, D.L.G., Castellano-Smith, A., Hawkes, D.J., Maurer, C.R., Martin, A., Hall, W., Liu, H., Truwit, C.: Using points and surfaces to improve voxel-based non-rigid registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 565–572 (2002)

    Google Scholar 

  28. Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V., Brady, S.M., Schnabel, J.A.: Mind: Modality independent neighbourhood descriptor for multi-modal deformable registration. Medical Image Analysis 16(7), 1423–1435 (2012)

    Article  Google Scholar 

  29. Hellier, P., Barillot, C.: Coupling dense and landmark-based approaches for nonrigid registration. IEEE Transactions on Medical Imaging 22(2), 217–227 (2003)

    Article  Google Scholar 

  30. Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Transactions on Medical Imaging 27(1), 111–128 (2008)

    Article  Google Scholar 

  31. Hsieh, J.W., Liao, H.Y.M., Fan, K.C., Ko, M.T., Hung, Y.P.: Image registration using a new edge-based approach. Computer Vision and Image Understanding 67(2), 112–130 (1997)

    Article  Google Scholar 

  32. Huang, X., Paragios, N., Metaxas, D.N.: Shape registration in implicit spaces using information theory and free form deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(8), 1303–1318 (2006)

    Article  Google Scholar 

  33. Ingalhalikar, M., Parker, D., Ghanbari, Y., Smith, A., Hua, K., Mori, S., Abel, T., Davatzikos, C., Verma, R.: Connectome and maturation profiles of the developing mouse brain using diffusion tensor imaging. Cerebral Cortex p. bhu068 (2014)

    Google Scholar 

  34. Jian, B., Vemuri, B., Marroquin, J.: Robust nonrigid multimodal image registration using local frequency maps. In: Information Processing in Medical Imaging (IPMI), pp. 504–515 (2005)

    Google Scholar 

  35. Johnson, H.J., Christensen, G.E.: Consistent landmark and intensity-based image registration. IEEE Transactions on Medical Imaging 21(5), 450–461 (2002)

    Article  Google Scholar 

  36. Kadir, T., Brady, M.: Saliency, scale and image description. International Journal of Computer Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  37. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 2, pp. II–506. IEEE (2004)

    Google Scholar 

  38. Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration. Neuroimage 46(3), 786–802 (2009)

    Article  Google Scholar 

  39. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE transactions on pattern analysis and machine intelligence 29(8), 1436–53 (2007)

    Article  Google Scholar 

  40. Komodakis, N., Tziritas, G., Paragios, N.: Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies. Computer Vision and Image Understanding 112(1), 14–29 (2008)

    Article  Google Scholar 

  41. Koutsouleris, N., Davatzikos, C., Borgwardt, S., Gaser, C., Bottlender, R., Frodl, T., Falkai, P., Riecher-Rössler, A., Möller, H.J., Reiser, M., et al.: Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophrenia bulletin p. sbt142 (2013)

    Google Scholar 

  42. Kwon, D., Lee, K., Yun, I., Lee, S.: Nonrigid image registration using dynamic higher-order mrf model. In: European Conference on Computer Vision, pp. 373–386 (2008)

    Google Scholar 

  43. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: International Conference on Computer Vision, pp. 1482–1489 (2005)

    Google Scholar 

  44. Li, G., Guo, L., Liu, T.: Deformation invariant attribute vector for deformable registration of longitudinal brain MR images. Computerized Medical Imaging and Graphics 33(5), 273–297 (2009)

    Article  Google Scholar 

  45. Li, H., Manjunath, B., Mitra, S.K.: A contour-based approach to multisensor image registration. Image Processing, IEEE Transactions on 4(3), 320–334 (1995)

    Article  Google Scholar 

  46. Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. International Journal of Computer Vision 11(3), 283–318 (1993)

    Article  Google Scholar 

  47. Ling, H., Jacobs, D.: Deformation invariant image matching. In: The Tenth International Conference in Computer Vision (ICCV). Beijing, China. (2005)

    Google Scholar 

  48. Liu, J., Vemuri, B.C., Marroquin, J.L.: Local frequency representations for robust multimodal image registration. IEEE Transactions on Medical Imaging 21(5), 462–469 (2002)

    Article  Google Scholar 

  49. Liu, J., Vemuri, B.C., Marroquin, J.L.: Local frequency representations for robust multimodal image registration. IEEE Transactions on Medical Imaging 21(5), 462–469 (2002)

    Article  Google Scholar 

  50. Lowe, D.G.: Object recognition from local scale-invariant features. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol. 2, pp. 1150–1157. Ieee (1999)

    Google Scholar 

  51. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  52. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  53. Maintz, J.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)

    Article  Google Scholar 

  54. Modersitzki, J.: FAIR: Flexible algorithms for image registration. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  55. Narayanan, R., Fessler, J.A., Park, H., Meyer, C.R.: Diffeomorphic nonlinear transformations: a local parametric approach for image registration. In: International Conference on Information Processing in Medical Imaging, pp. 174–185 (2005)

    Google Scholar 

  56. Noblet, V., Heinrich, C., Heitz, F., Armspach, J.P.: Symmetric nonrigid image registration: application to average brain templates construction. In: Medical Image Computing and Computer-Assisted Intervention: MICCAI ’08, no. Pt 2 in LNCS, pp. 897–904 (2008)

    Google Scholar 

  57. Ou, Y., Akbari, H., Bilello, M., Da, X., Davatzikos, C.: Comparative evaluation of registration algorithms for different brain databases with varying difficulty: Results and Insights. IEEE Transactions on Medical Imaging (2014). doi:10.1109/TMI.2014.2330355

    Google Scholar 

  58. Ou, Y., Besbes, A., Bilello, M., Mansour, M., Davatzikos, C., Paragios, N.: Detecting mutually-salient landmark pairs with MRF regularization. In: International Symposium on Biomedical Imaging, pp. 400–403 (2010)

    Google Scholar 

  59. Ou, Y., Weinstein, S.P., Conant, E.F., Englander, S., Da, X., Gaonkar, B., Hsiao, M., Rosen, M., DeMichele, A., Davatzikos, C., Kontos, D.: Deformable registration for quantifying longitudinal tumor changes during neoadjuvant chemotherapy: In Press. Magnetic Resonance in Medicine (2014)

    Google Scholar 

  60. Ou, Y., Reynolds, N., Gollub, R., Pienaar, R., Wang, Y., Wang, T., Sack, D., Andriole, K., Pieper, S., Herrick, C., Murphy, S., Grant, P., Zollei, L.: Developmental brain adc atlas creation from clinical images. In: Organization for Human Brain Mapping (OHBM) (2014)

    Google Scholar 

  61. Ou, Y., Shen, D., Feldman, M., Tomaszewski, J., Davatzikos, C.: Non-rigid registration between histological and MR images of the prostate: A joint segmentation and registration framework. In: Computer Vision and Pattern Recognition workshop, 2009. CVPR 2009. IEEE Conference on, pp. 125–132 (2009)

    Google Scholar 

  62. Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C.: DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting. Medical Image Analysis 15(4), 622–639 (2011)

    Article  Google Scholar 

  63. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. Pattern Analysis and Machine Intelligence, IEEE Transactions on 12(7), 629–639 (1990)

    Article  Google Scholar 

  64. Postelnicu, G., Zollei, L., Fischl, B.: Combined volumetric and surface registration. IEEE Transactions on Medical Imaging 28(4), 508–522 (2009)

    Article  Google Scholar 

  65. Roche, A., Malandain, G., Pennec, X., Ayache, N.: The correlation ratio as a new similarity measure for multimodal image registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 1115–1124 (1998)

    Google Scholar 

  66. Rohr, K.: On 3d differential operators for detecting point landmarks. Image and Vision Computing 15(3), 219–233 (1997)

    Article  Google Scholar 

  67. Rohr, K., Stiehl, H.S., Sprengel, R., Buzug, T.M., Weese, J., Kuhn, M.: Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions on Medical Imaging 20(6), 526–534 (2001)

    Article  Google Scholar 

  68. Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeomorphic registration using B-splines. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 702–709 (2006)

    Google Scholar 

  69. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  70. Satterthwaite, T.D., Elliott, M.A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M.E., Hopson, R., Jackson, C., Keefe, J., Riley, M., et al.: Neuroimaging of the philadelphia neurodevelopmental cohort. NeuroImage 86, 544–553 (2014)

    Article  Google Scholar 

  71. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM Siggraph Computer Graphics 20(4), 151–160 (1986)

    Article  Google Scholar 

  72. Serpa, M.H., Ou, Y., Schaufelberger, M.S., Doshi, J., Ferreira, L.K., Machado-Vieira, R., Menezes, P.R., Scazufca, M., Davatzikos, C., Busatto, G.F., et al.: Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar i disorder with 1 year of diagnostic stability. BioMed Research International 2014 (2014)

    Google Scholar 

  73. Shen, D.: Image registration by local histogram matching. Pattern Recognition 40(4), 1166–1172 (1997)

    Google Scholar 

  74. Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE transactions on Medical Imaging 21(11), 1421–39 (2002)

    Article  Google Scholar 

  75. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Transactions on Medical Imaging 32(7), 1153–90 (2013)

    Article  Google Scholar 

  76. Sotiras, A., Ou, Y., Glocker, B., Davatzikos, C., Paragios, N.: Simultaneous geometric–iconic registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 676–683 (2010)

    Google Scholar 

  77. Sotiras, A., Paragios, N.: Discrete symmetric image registration. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 342–345 (2012)

    Google Scholar 

  78. Szeliski, R.: Image alignment and stitching: A tutorial. Foundations and Trends®; in Computer Graphics and Vision 2(1), 1–104 (2006)

    Google Scholar 

  79. Tagare, H., Groisser, D., Skrinjar, O.: Symmetric non-rigid registration: A geometric theory and some numerical techniques. Journal of Mathematical Imaging and Vision 34(1), 61–88 (2009)

    Article  MathSciNet  Google Scholar 

  80. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)

    Article  Google Scholar 

  81. Toews, M., Wells III, W.M.: Efficient and robust model-to-image alignment using 3d scale-invariant features. Medical image analysis 17(3), 271–282 (2013)

    Article  Google Scholar 

  82. Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: European Conference on Computer Vision, pp. 596–609 (2008)

    Google Scholar 

  83. Tsin, Y., Kanade, T.: A correlation-based approach to robust point set registration. In: European Conference on Computer Vision, pp. 558–569 (2004)

    Google Scholar 

  84. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic Registration: a demons-based approach. In: Medical Image Computing and Computer-Assisted Intervention: MICCAI’08, no. Pt 1 in LNCS, pp. 754–61 (2008)

    Google Scholar 

  85. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic Demons: Efficient non-parametric image registration. NeuroImage 45(1, Supplement 1), S61–S72 (2009)

    Google Scholar 

  86. Viola, P., Wells III, W.M.: Alignment by maximization of mutual information. International Journal of Computer Vision 24(2), 137–154 (1997)

    Article  Google Scholar 

  87. Wu, Y.T., Kanade, T., Li, C.C., Cohn, J.: Image registration using wavelet-based motion model. International Journal of Computer Vision 38(2), 129–152 (2000)

    Article  MATH  Google Scholar 

  88. Yang, J., Shen, D., Davatzikos, C.: Diffusion tensor image registration using tensor geometry and orientation features. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 905–913 (2008)

    Google Scholar 

  89. Yi, Z., Zhiguo, C., Yang, X.: Multi-spectral remote image registration based on sift. Electronics Letters 44(2), 107–108 (2008)

    Article  Google Scholar 

  90. Zanetti, M.V., Schaufelberger, M.S., Doshi, J., Ou, Y., Ferreira, L.K., Menezes, P.R., Scazufca, M., Davatzikos, C., Busatto, G.F.: Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry 43, 116–125 (2013)

    Article  Google Scholar 

  91. Zhan, Y., Ou, Y., Feldman, M., Tomaszeweski, J., Davatzikos, C., Shen, D.: Registering histologic and mr images of prostate for image-based cancer detection. Academic Radiology 14(11), 1367–1381 (2007)

    Article  Google Scholar 

  92. ZHANG, R.j., Zhang, J.q., Yang, C.: Image registration approach based on surf [j]. Infrared and Laser Engineering 1, 041 (2009)

    Google Scholar 

  93. Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Dr. Ben Glocker, from Imperial College London, whose work formed the basis of the subsequent works that are presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sotiras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sotiras, A., Ou, Y., Paragios, N., Davatzikos, C. (2015). Graph-based Deformable Image Registration. In: Paragios, N., Duncan, J., Ayache, N. (eds) Handbook of Biomedical Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09749-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09749-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09748-0

  • Online ISBN: 978-0-387-09749-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics