Skip to main content

The “Microflora Hypothesis” of Allergic Disease

  • Chapter
GI Microbiota and Regulation of the Immune System

Abstract

Predisposition to allergic disease is a complex function of an individual’s genetic background and, as is the case with multi-gene traits, environmental factors have important phenotypic consequences. Over a span of decades, a dramatic increase in the prevalence of allergic disease in westernized populations suggests the occurrence of critical changes in environmental pressures. Recently, it has been shown that the microbiota (i.e. microflora) of allergic individuals differs from that of non-allergic ones and that differences are detectable prior to the onset of atopy, consistent with a possible causative role. Features of the westernized lifestyle that are known to alter the microbiota, such as antibiotics and diet, are also associated with allergy in humans. In this chapter, we discuss the “Microflora Hypothesis” for allergy which predicts that an “unhealthy” microbiota composition, now commonly found within westernized communities, contributes to the development of allergy and conversely, that restoring a “healthy” microbiota, perhaps through probiotic supplementation, may prevent the development of allergy or even treat existing disease. In testing this hypothesis, our laboratory has recently reported that mice can develop allergic airway responses if their microbiota is altered at the time of first allergen exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mannino DM, Homa DM, Pertowski CA et al. Surveillance for asthma-United States, 1960–1995. MMWR CDC Surveill Summ 1998; 47(1):1–27.

    PubMed  CAS  Google Scholar 

  2. Beasley R, Crane J, Lai CK et al. Prevalence and etiology of asthma. J Allergy Clin Immunol 2000; 105(2 Pt 2):S466–472.

    Article  Google Scholar 

  3. Burney PG, Luczynska C, Chinn S et al. The European Community Respiratory Health Survey. Eur Respir J 1994; 7(5):954–960.

    PubMed  CAS  Google Scholar 

  4. Asher MI, Keil U, Anderson HR et al. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur Respir J 1995; 8(3):483–491.

    Article  PubMed  CAS  Google Scholar 

  5. Noverr MC, Huffnagle GB. The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy 2005; 35(12):1511–1520.

    Article  PubMed  CAS  Google Scholar 

  6. Upton MN, McConnachie A, McSharry C et al. Intergenerational 20 year trends in the prevalence of asthma and hay fever in adults: the Midspan family study surveys of parents and offspring. BMJ 2000; 321(7253):88–92.

    Article  PubMed  CAS  Google Scholar 

  7. Peat JK, van den Berg RH, Green WF et al. Changing prevalence of asthma in Australian children. BMJ 1994; 308(6944):1591–1596.

    PubMed  CAS  Google Scholar 

  8. Worldwide variations in the prevalence of asthma symptoms: the International Study of Asthma and Allergies in Childhood (ISAAC). Eur Respir J 1998; 12(2):315–335.

    Article  Google Scholar 

  9. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet 1998; 351(9111):1225–1232.

    Google Scholar 

  10. Gerrard JW, Geddes CA, Reggin PL et al. Serum IgE levels in white and metis communities in Saskatchewan. Ann Allergy 1976; 37(2):91–100.

    PubMed  CAS  Google Scholar 

  11. Strachan DP. Hay fever, hygiene and household size. BMJ 1989; 299(6710):1259–1260.

    PubMed  CAS  Google Scholar 

  12. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347(12):911–920.

    Article  PubMed  Google Scholar 

  13. Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol 2001; 1(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  14. Umetsu DT, McIntire JJ, Akbari O et al. Asthma: an epidemic of dysregulated immunity. Nat Immunol 2002; 3(8):715–720.

    Article  PubMed  CAS  Google Scholar 

  15. Rook GA, Brunet LR. Give us this day our daily germs. Biologist (London) 2002; 49(4):145–149.

    Google Scholar 

  16. Rook GA, Brunet LR. Old friends for breakfast. Clin Exp Allergy 2005; 35(7):841–842.

    Article  PubMed  CAS  Google Scholar 

  17. Bjorksten B. Effects of intestinal microflora and the environment on the development of asthma and allergy. Springer Semin Immunopathol 2004; 25(3–4):257–270.

    Article  PubMed  Google Scholar 

  18. Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol 2004; 12(12):562–8.

    Article  PubMed  CAS  Google Scholar 

  19. Noverr MC, Noggle RM, Toews GB et al. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 2004; 72(9):4996–5003.

    Article  PubMed  CAS  Google Scholar 

  20. Rautava S, Kalliomaki M, Isolauri E. New therapeutic strategy for combating the increasing burden of allergic disease: Probiotics-A Nutrition, Allergy, Mucosal Immunology and Intestinal Microbiota (NAMI) Research Group report. J Allergy Clin Immunol 2005; 1161):31–37.

    Article  PubMed  Google Scholar 

  21. Bjorksten B, Naaber P, Sepp E et al. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy 1999; 29(3):342–346.

    Article  PubMed  CAS  Google Scholar 

  22. Bjorksten B, Sepp E, Julge K et al. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 2001; 108(4):516–520.

    Article  PubMed  CAS  Google Scholar 

  23. He F, Ouwehand AC, Isolauri E et al. Comparison of mucosal adhesion and species identification of bifidobacteria isolated from healthy and allergic infants. FEMS Immunol Med Microbiol 2001; 30(1):43–47.

    Article  PubMed  CAS  Google Scholar 

  24. Kalliomaki M, Kirjavainen P, Eerola E et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001; 107(1):129–134.

    Article  PubMed  CAS  Google Scholar 

  25. Kirjavainen PV, Apostolou E, Arvola T et al. Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol Med Microbiol 2001; 32(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  26. Ouwehand AC, Isolauri E, He F et al. Differences in Bifidobacterium flora composition in allergic and healthy infants. J Allergy Clin Immunol 2001; 108(1):144–145.

    Article  PubMed  CAS  Google Scholar 

  27. Watanabe S, Narisawa Y, Arase S et al. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J Allergy Clin Immunol 2003; 111(3):587–591.

    Article  PubMed  Google Scholar 

  28. Sepp E, Julge K, Mikelsaar M et al. Intestinal microbiota and immunoglobulin E responses in 5-year-old Estonian children. Clin Exp Allergy 2005; 35(9):1141–1146.

    Article  PubMed  CAS  Google Scholar 

  29. Mah KW, Bjorksten B, Lee BW et al. Distinct pattern of commensal gut microbiota in toddlers with eczema. Int Arch Allergy Immunol 2006; 140(2):157–163.

    Article  PubMed  CAS  Google Scholar 

  30. Bottcher MF, Nordin EK, Sandin A et al. Microflora-associated characteristics in faeces from allergic and non-allergic infants. Clin Exp Allergy 2000; 30(11):1590–1596.

    Article  PubMed  CAS  Google Scholar 

  31. Woodcock A, Moradi M, Smillie FI et al. Clostridium difficile, atopy and wheeze during the first year of life. Pediatr Allergy Immunol 2002; 13(5):357–360.

    Article  PubMed  Google Scholar 

  32. Murray CS, Tannock GW, Simon MA et al. Fecal microbiota in sensitized wheezy and nonsensitized nonwheezy children: a nested case-control study. Clin Exp Allergy 2005; 35(2):741–745.

    Article  PubMed  CAS  Google Scholar 

  33. Voor T, Julge K, Bottcher MF et al. Atopic sensitization and atopic dermatitis in Estonian and Swedish infants. Clin Exp Allergy 2005; 35(2):153–159.

    Article  PubMed  CAS  Google Scholar 

  34. Fanaro S, Chierici R, Guerrini P et al. Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 2003; 91(441):48–55.

    PubMed  CAS  Google Scholar 

  35. Tannock GW. Normal Microflora: An Introduction to Microbes Inhabiting the Human Body. London: Chapman and Hall, 1995.

    Google Scholar 

  36. Hooper LV. Bacterial contributions to mammalian gut development. Trends Microbiol 2004; 12(3):129–134.

    Article  PubMed  CAS  Google Scholar 

  37. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004; 4(6):478–485.

    Article  PubMed  CAS  Google Scholar 

  38. Xu J, Chiang HC, Bjursell MK et al. Message from a human gut symbiont: sensitivity is a prerequisite for sharing. Trends Microbiol 2004; 12(1):21–28.

    Article  PubMed  CAS  Google Scholar 

  39. Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 2001; 1(2):101–114.

    Article  PubMed  CAS  Google Scholar 

  40. Orrhage K, Nord CE. Bifidobacteria and lactobacilli in human health Drugs Exp Clin Res 2000; 26(3):95–111.

    PubMed  CAS  Google Scholar 

  41. Sjovall J, Huitfeldt B, Magni L et al. Effect of beta-lactam prodrugs on human intestinal microflora. Scand J Infect Dis Suppl 1986; 49:73–84.

    PubMed  CAS  Google Scholar 

  42. Lidbeck A, Nord CE. Lactobacilli and the normal human anaerobic microflora. Clin Infect Dis 1993; 16(Suppl 4):S181–187.

    PubMed  Google Scholar 

  43. van der Waaij D. The ecology of the human intestine and its consequences for overgrowth by pathogens such as Clostridium difficile. Annu Rev Microbiol 1989; 43:69–87.

    Article  PubMed  Google Scholar 

  44. Payne S, Gibson G, Wynne A et al. In vitro studies on colonization resistance of the human gut microbiota to Candida albicans and the effects of tetracycline and Lactobacillus plantarum LPK. Curr Issues Intest Microbiol 2003; 4(1):1–8.

    PubMed  CAS  Google Scholar 

  45. Guggenbichler JP, Kofler J, Allerberger F. The influence of third-generation cephalosporins on the aerobic intestinal flora. Infection 1985; 13(Suppl 1):S137–139.

    Article  PubMed  Google Scholar 

  46. Mulligan ME, Citron DM, McNamara BT et al. Impact of cefoperazone therapy on fecal flora. Antimicrob Agents Chemother 1982; 22(2):226–230.

    PubMed  CAS  Google Scholar 

  47. Samonis G, Gikas A, Anaissie EJ et al. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrob Agents Chemother 1993; 37(1):51–53.

    PubMed  CAS  Google Scholar 

  48. Tannock GW. Analysis of the intestinal microflora using molecular methods. Eur J Clin Nutr 2002; 56(Suppl 4):S44–49.

    Article  PubMed  CAS  Google Scholar 

  49. Farooqi IS, Hopkin JM. Early childhood infection and atopic disorder. Thorax 1998; 53(11):927–932.

    Article  PubMed  CAS  Google Scholar 

  50. von Mutius E, Illi S, Hirsch T et al. Frequency of infections and risk of asthma, atopy and airway hyperresponsiveness in children. Eur Respir J 1999; 14(1):4–11.

    Article  Google Scholar 

  51. Wjst M, Hoelscher B, Frye C et al. Early antibiotic treatment and later asthma. Eur J Med Res 2001; 6(6):263–271.

    PubMed  CAS  Google Scholar 

  52. McKeever TM, Lewis SA, Smith C et al. Early exposure to infections and antibiotics and the incidence of allergic disease: a birth cohort study with the West Midlands General Practice Research Database. J Allergy Clin Immunol 2002; 109(1):43–50.

    Article  PubMed  Google Scholar 

  53. Cullinan P, Harris J, Mills P et al. Early prescriptions of antibiotics and the risk of allergic disease in adults: a cohort study. Thorax 2004; 59(1):11–15.

    Article  PubMed  CAS  Google Scholar 

  54. Ahn KM, Lee MS, Hong SJ et al. Fever, use of antibiotics and acute gastroenteritis during infancy as risk factors for the development of asthma in Korean school-age children. J Asthma 2005; 42(9):745–750.

    Article  PubMed  Google Scholar 

  55. Celedon JC, Fuhlbrigge A, Rifas-Shiman S et al. Antibiotic use in the first year of life and asthma in early childhood. Clin Exp Allergy 2004; 34(7):1011–1016.

    Article  PubMed  CAS  Google Scholar 

  56. Illi S, tvon Mutius E, Lau S et al. Early childhood infectious diseases and the development of asthma up to school age: a birth cohort study. BMJ 2001; 322(7283):390–395.

    Article  PubMed  CAS  Google Scholar 

  57. Wickens K, Pearce N, Crane J et al. Antibiotic use in early childhood and the development of asthma. Clin Exp Allergy 1999; 29(6):766–771.

    Article  PubMed  CAS  Google Scholar 

  58. Droste JH, Wieringa MH, Weyler JJ et al. Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease? Clin Exp Allergy 2000; 30(11):1547–1553.

    Article  PubMed  CAS  Google Scholar 

  59. Johnson CC, Ownby DR, Alford SH et al. Antibiotic exposure in early infancy and risk for childhood atopy. J Allergy Clin Immunol 2005; 115(6):1218–1224.

    Article  PubMed  CAS  Google Scholar 

  60. Cohet C, Cheng S, MacDonald C et al. Infections, medication use and the prevalence of symptoms of asthma, rhinitis and eczema in childhood. J Epidemiol Community Health 2004; 58(10):852–857.

    Article  PubMed  Google Scholar 

  61. Celedon JC, Litonjua AA, Ryan L et al. Lack of association between antibiotic use in the first year of life and asthma, allergic rhinitis, or eczema at age 5 years. Am J Respir Crit Care Med 2002; 166(1):72–75.

    Article  PubMed  Google Scholar 

  62. Bremner SA, Carey IM, DeWilde S et al. Early-life exposure to antibacterials and the subsequent development of hayfever in childhood in the UK: case-control studies using the General Practice Research Database and the Doctors’ Independent Network. Clin Exp Allergy 2003; 33(11):1518–1525.

    Article  PubMed  CAS  Google Scholar 

  63. Rettger LF, Horton GD. A comparitive study of the intestinal flora of white rats kept on experimental and ordinary mixed diets. Zentralbl Bakteriol 1914; 73:362–372.

    Google Scholar 

  64. Dubos R, Schaedler R, Stephens M. The effect of antibacterial drugs on the fecal flora of mice. J Exp Med 1963; 117:231–243.

    Article  PubMed  CAS  Google Scholar 

  65. Dubos R. Man Adapting. New Haven: Yale University Press, 1971.

    Google Scholar 

  66. Fogarty A, Britton J. Nutritional issues and asthma. Curr Opin Pulm Med 2000; 6(1):86–89.

    Article  PubMed  CAS  Google Scholar 

  67. Greene LS. Asthma, oxidant stress and diet. Nutrition 1999; 15(11–12):899–907.

    Article  PubMed  CAS  Google Scholar 

  68. Black PN. The prevalence of allergic disease and linoleic acid in the diet. J Allergy Clin Immunol 1999; 103(2 Pt 1):351–352.

    Article  PubMed  CAS  Google Scholar 

  69. La Vecchia C, Decarli A, Pagano R. Vegetable consumption and risk of chronic disease. Epidemiology Mar 1998; 9(2):208–210.

    Article  Google Scholar 

  70. Weiland SK, von Mutius E, Husing A et al. Intake of trans fatty acids and prevalence of childhood asthma and allergies in Europe. ISAAC Steering Committee. Lancet 1999; 353(9169):2040–2041.

    Article  PubMed  CAS  Google Scholar 

  71. Strom K, Janzon L, Mattisson I et al. Asthma but not smoking-related airflow limitation is associated with a high fat diet in men: results from the population study “Men born in 1914”, Malmo, Sweden. Monaldi Arch Chest Dis 1996; 51(1):16–21.

    PubMed  CAS  Google Scholar 

  72. Morotomi M, Kawai Y, Mutai M. Intestinal microflora in rats: isolation and characterization of strictly anaerobic bacteria requiring long-chain fatty acids. Appl Environ Microbiol 1976; 31(4):475–480.

    PubMed  CAS  Google Scholar 

  73. Eyssen H, Parmentier G. Biohydrogenation of sterols and fatty acids by the intestinal microflora. Am J Clin Nutr 1974; 27(11):1329–1340.

    PubMed  CAS  Google Scholar 

  74. Eyssen H, Piessens-Denef M, Parmentier G. Role of the cecum in maintaing 5 steroid-and fatty acid-reducing activity of the rat intestinal microflora. J Nutr 1972; 102(11):1501–1511.

    PubMed  CAS  Google Scholar 

  75. Eyssen H. Role of the gut microflora in metabolism of lipids and sterols. Proc Nutr Soc 1973; 32(2):59–63.

    Article  PubMed  CAS  Google Scholar 

  76. Martindale S, McNeill G, Devereux G et al. Antioxidant intake in pregnancy in relation to wheeze and eczema in the first two years of life. Am J Respir Crit Care Med 2005; 17(2):121–128.

    Google Scholar 

  77. Alm JS, Swartz J, Lilja G et al. Atopy in children of families with an anthroposophic lifestyle. Lancet 1999; 353(9163):1485–1488.

    Article  PubMed  CAS  Google Scholar 

  78. Alm JS, Swartz J, Bjorksten B et al. An anthroposophic lifestyle and intestinal microflora in infancy. Pediatr Allergy Immunol 2002; 13(6):402–411.

    Article  PubMed  Google Scholar 

  79. Chase MW. Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc Soc Exp Biol 1946; 61:257–259.

    CAS  Google Scholar 

  80. Boyaka PN, Tafaro A, Fischer R et al. Therapeutic manipulation of the immune system: enhancement of innate and adaptive mucosal immunity. Curr Pharm Des 2003; 9(24):1965–1972.

    Article  PubMed  CAS  Google Scholar 

  81. Macaubas C, DeKruyff RH, Umetsu DT. Respiratory tolerance in the protection against asthma. Curr Drug Targets Inflamm Allergy 2003; 2(2):175–186.

    Article  PubMed  CAS  Google Scholar 

  82. Mayer L, Shao L. Therapeutic potential of oral tolerance. Nat Rev Immunol 2004; 4(6):407–419.

    Article  PubMed  CAS  Google Scholar 

  83. Sudo N, Sawamura S, Tanaka K et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 1997; 159(4):1739–1745.

    PubMed  CAS  Google Scholar 

  84. Kiyono H, Fukuyama S. NALT-versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 2004; 4(9):699–710.

    Article  PubMed  CAS  Google Scholar 

  85. Eberl G. Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol 2005; 5(5):413–420.

    Article  PubMed  CAS  Google Scholar 

  86. Bauer H, Horowitz RE, Levenson SM et al. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol 1963; 42:471–483.

    PubMed  CAS  Google Scholar 

  87. Manolios N, Geczy CL, Schrieber L. High endothelial venule morphology and function are inducible in germ-free mice: a possible role for interferon-gamma. Cell Immunol 1988; 117(1):136–151.

    Article  PubMed  CAS  Google Scholar 

  88. Hamada H, Hiroi T, Nishiyama Y et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 2002; 168(1):57–64.

    PubMed  CAS  Google Scholar 

  89. Fukuyama S, Hiroi T, Yokota Y et al. Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR and NIK signaling pathways but requires the Id2 gene and CD3(−) CD4(+) CD45(+) cells. Immunity 2002; 17(1):31–40.

    Article  PubMed  CAS  Google Scholar 

  90. Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2(4):361–367.

    Article  PubMed  CAS  Google Scholar 

  91. Kerneis S, Bogdanova A, Kraehenbuhl JP et al. Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 1997; 277(5328):949–952.

    Article  PubMed  CAS  Google Scholar 

  92. Mowat AM. Dendritic cells and immune responses to orally administered antigens. Vaccine 2005; 23(15):1797–1799.

    Article  PubMed  CAS  Google Scholar 

  93. Reis e Sousa C. Toll-like receptors and dendritic cells: for whom the bug tolls. Semin Immunol 2004; 16(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  94. Bashir ME, Louie S, Shi HN et al. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol 2004; 172(11):6978–6987.

    PubMed  CAS  Google Scholar 

  95. Mellor AL, Baban B, Chandler PR et al. Cutting edge: CpG oligonucleotides induce splenic CD19+dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T-cell regulatory functions via IFN Type 1 signaling. J Immunol 2005; 175(9):5601–5605.

    PubMed  CAS  Google Scholar 

  96. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+T-cell-mediated suppression by dendritic cells. Science 2003; 299(5609):1033–1036.

    Article  PubMed  CAS  Google Scholar 

  97. Csencsits KL, Jutila MA, Pascual DW. Nasal-associated lymphoid tissue: phenotypic and functional evidence for the primary role of peripheral node addressin in naive lymphocyte adhesion to high endothelial venules in a mucosal site. J Immunol 1999; 163(3):1382–1389.

    PubMed  CAS  Google Scholar 

  98. Spalding DM, Griffin JA. Different pathways of differentiation of pre B-cell lines are induced by dendritic cells and T-cells from different lymphoid tissues. Cell 1986; 44(3):507–515.

    Article  PubMed  CAS  Google Scholar 

  99. Shikina T, Hiroi T, Iwatani K et al. IgA class switch occurs in the organized nasopharynx-and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol 2004; 172(10):6259–6264.

    PubMed  CAS  Google Scholar 

  100. Bowman EP, Kuklin NA, Youngman KR et al. The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells. J Exp Med 2002; 195(2):269–275.

    Article  PubMed  CAS  Google Scholar 

  101. Fagarasan S, Muramatsu M, Suzuki K et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 2002; 298(5597):1424–1427.

    Article  PubMed  CAS  Google Scholar 

  102. Masopust D, Vezys V, Marzo AL et al. Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001; 291(5512):2413–2417.

    Article  PubMed  CAS  Google Scholar 

  103. Reinhardt RL, Khoruts A, Merica R et al. Visualizing the generation of memory CD4 T-cells in the whole body. Nature 2001; 410(6824):101–105.

    Article  PubMed  CAS  Google Scholar 

  104. Higgins PJ, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments. J Immunol 1988; 140(2):440–445.

    PubMed  CAS  Google Scholar 

  105. Homann D, Dyrberg T, Petersen J et al. Insulin in oral immune “tolerance”: a one-amino acid change in the B chain makes the difference. J Immunol 1999; 163(4):1833–1838.

    PubMed  CAS  Google Scholar 

  106. Nagler-Anderson C, Bober LA, Robinson ME et al. Suppression of type II collagen-induced arthritis by intragastric administration of soluble type II collagen. Proc Natl Acad Sci USA 1986; 83(19):7443–7446.

    Article  PubMed  CAS  Google Scholar 

  107. Russo M, Nahori MA, Lefort J et al. Suppression of asthma-like responses in different mouse strains by oral tolerance. Am J Respir Cell Mol Biol 2001; 24(5):518–526.

    PubMed  CAS  Google Scholar 

  108. Husby S, Mestecky J, Moldoveanu Z et al. Oral tolerance in humans. T-cell but not B-cell tolerance after antigen feeding. J Immunol 1994; 152(9):4663–4670.

    PubMed  CAS  Google Scholar 

  109. Eyles JE, Spiers ID, Williamson ED et al. Tissue distribution of radioactivity following intranasal administration of radioactive microspheres. J Pharm Pharmacol 2001; 53(5):601–607.

    Article  PubMed  CAS  Google Scholar 

  110. Pickett TE, Pasetti MF, Galen JE et al. In vivo characterization of the murine intranasal model for assessing the immunogenicity of attenuated Salmonella enterica serovar Typhi strains as live mucosal vaccines and as live vectors. Infect Immun 2000; 68(1):205–213.

    PubMed  CAS  Google Scholar 

  111. Southam DS, Dolovich M, O’Byrne PM et al. Distribution of intranasal instillations in mice: effects of volume, time, body position and anesthesia. Am J Physiol Lung Cell Mol Physiol 2002; 282(4):L833–839.

    PubMed  CAS  Google Scholar 

  112. Maeda Y, Noda S, Tanaka K et al. The failure of oral tolerance induction is functionally coupled to the absence of T-cells in Peyer’s patches under germfree conditions. Immunobiology 2001; 204(4):442–457.

    Article  PubMed  CAS  Google Scholar 

  113. Sudo N, Yu XN, Aiba Y et al. An oral introduction of intestinal bacteria prevents the development of a long-term Th2-skewed immunological memory induced by neonatal antibiotic treatment in mice. Clin Exp Allergy 2002; 32(7):1112–1116.

    Article  PubMed  CAS  Google Scholar 

  114. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 1994; 91(14):6688–6692.

    Article  PubMed  CAS  Google Scholar 

  115. Mitchison NA. Induction of Immunological Paralysis in Two Zones of Dosage. Proc R Soc Lond B Biol Sci 1964; 161:275–292.

    PubMed  CAS  Google Scholar 

  116. Barone KS, Jain SL, Michael JG. Effect of in vivo depletion of CD4+ and CD8+ cells on the induction and maintenance of oral tolerance. Cell Immunol 1995; 163(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  117. Garside P, Steel M, Liew FY et al. CD4+ but not CD8+ T-cells are required for the induction of oral tolerance. Int Immunol 1995; 7(3):501–504.

    Article  PubMed  CAS  Google Scholar 

  118. Yoshida H, Hachimura S, Hirahara K et al. Induction of oral tolerance in splenocyte-reconstituted SCID mice. Clin Immunol Immunopathol 1998; 87(3):282–291.

    Article  PubMed  CAS  Google Scholar 

  119. Zhang X, Izikson L, Liu L et al. Activation of CD25(+)CD4(+) regulatory T-cells by oral antigen administration. J Immunol 2001; 167(8):4245–4253.

    PubMed  CAS  Google Scholar 

  120. von Boehmer H. Mechanisms of suppression by suppressor T-cells. Nat Immunol 2005; 6(4):338–344.

    Article  CAS  Google Scholar 

  121. Viney JL, Mowat AM, O’Malley JM et al. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 1998;160(12):5815–5825.

    PubMed  CAS  Google Scholar 

  122. Hall G., Houghton CG, Rahbek JU et al. Suppression of allergen reactive Th2 mediated responses and pulmonary eosinophilia by intranasal administration of an immunodominant peptide is linked to IL-10 production. Vaccine 2003; 21(5–6):549–561.

    Article  PubMed  CAS  Google Scholar 

  123. Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001; 2(8):725–731.

    Article  PubMed  CAS  Google Scholar 

  124. de Heer HJ, Hammad H, Soullie T et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 2004; 200(1):89–98.

    Article  PubMed  Google Scholar 

  125. Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27(1):20–21.

    Article  PubMed  CAS  Google Scholar 

  126. Chatila TA, Blaeser F, Ho N et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000; 106(12):R75–81.

    Article  PubMed  CAS  Google Scholar 

  127. Wildin RS, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27(1):18–20.

    Article  PubMed  CAS  Google Scholar 

  128. Bellinghausen I, Klostermann B, Knop J et al. Human CD4+CD25+ T-cells derived from the majority of atopic donors are able to suppress TH1 and TH2 cytokine production. J Allergy Clin Immunol 2003; 111(4):862–868.

    Article  PubMed  CAS  Google Scholar 

  129. Grindebacke H, Wing K, Andersson AC et al. Defective suppression of Th2 cytokines by CD4CD25 regulatory T-cells in birch allergics during birch pollen season. Clin Exp Allergy 2004; 34(9):1364–1372.

    Article  PubMed  CAS  Google Scholar 

  130. Ling EM, Smith T, Nguyen XD et al. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 2004; 363(9409):608–615.

    Article  PubMed  CAS  Google Scholar 

  131. Calderone RA, ed. Candida and Candidiasis. Washington, DC: ASM Press, 2001:472.

    Google Scholar 

  132. Giuliano M, Barza M, Jacobus NV et al. Effect of broad-spectrum parenteral antitiotics on composition of intestinal microflora of humans. Antimicrob Agents Chemother 1987; 31(2):202–206.

    PubMed  CAS  Google Scholar 

  133. Huang MY, Wang JH. Impact of antibiotic use on fungus colonization in patients hospitalized due to fever. J Microbiol Immunol Infect 2003; 36(2):123–128.

    PubMed  Google Scholar 

  134. Maraki S, Margioris AN, Orfanoudaki E et al. Effects of doxycycline, metronidazole and their combination on Candida species colonization of the human oropharynx, intestinal lumen and vagina. J Chemother 2003; 15(4):369–373.

    PubMed  CAS  Google Scholar 

  135. Hoberg KA, Cihlar RL, Calderone RA. Inhibitory effect of cerulenin and sodium butyrate on germination of Candida albicans. Antimicrob Agents Chemother 1983; 24(3):401–408.

    PubMed  CAS  Google Scholar 

  136. Noverr MC, Huffnagle GB. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 2004; 72(11):6206–6210.

    Article  PubMed  CAS  Google Scholar 

  137. Sjogren J, Magnusson J, Broberg A et al. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol 2003; 69(12):7554–7557.

    Article  PubMed  CAS  Google Scholar 

  138. Magnusson J, Strom K, Roos S et al. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 2003; 219(1):129–135.

    Article  PubMed  CAS  Google Scholar 

  139. Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 2004; 54(5):1212–1223.

    Article  PubMed  CAS  Google Scholar 

  140. Bohmig GA, Krieger PM, Saemann MD et al. n-butyrate downregulates the stimulatory function of peripheral blood-derived antigen-presenting cells: a potential mechanism for modulating T-cell responses by short-chain fatty acids. Immunology 1997; 92(2):234–243.

    Article  PubMed  CAS  Google Scholar 

  141. Saemann MD, Bohmig GA, Osterreicher CH et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J 2000; 14(15):2380–2382.

    PubMed  CAS  Google Scholar 

  142. Cavaglieri CR, Nishiyama A, Fernandes LC et al. Differential effects of short-chain fatty acids on proliferation and production of pro-and anti-inflammatory cytokines by cultured lymphocytes. Life Sci 2003; 73(13):1683–1690.

    Article  PubMed  CAS  Google Scholar 

  143. Andoh A, Bamba T, Sasaki M. Physiological and anti-inflammatory roles of dietary fiber and butyrate in intestinal functions. JPEN J Parenter Enteral Nutr 1999; 23(5 Suppl):S70–73.

    Article  PubMed  CAS  Google Scholar 

  144. Saemann MD, Bohmig GA, Zlabinger GJ. Short-chain fatty acids: bacterial mediators of a balanced host-microbial relationship in the human gut. Wien Klin Wochenschr 2002; 114(8–9):289–300.

    PubMed  Google Scholar 

  145. Noverr MC, Huffnagle GB. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 2004; 72(11):6206–10.

    Article  PubMed  CAS  Google Scholar 

  146. Noverr MC, Falkowski NR, McDonald RA et al. The development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen and IL-13. Infect Immun 2005; 73(1):30–38.

    Article  PubMed  CAS  Google Scholar 

  147. Hunt JR, Martinelli R, Adams VC et al. Intragastric administration of Mycobacterium vaccae inhibits severe pulmonary allergic inflammation in a mouse model. Clin Exp Allergy 2005; 35(5):685–690.

    Article  PubMed  CAS  Google Scholar 

  148. Adams VC, Hunt JR, Martinelli R et al. Mycobacterium vaccae induces a population of pulmonary CD11c+ cells with regulatory potential in allergic mice. Eur J Immunol 2004; 34(3):631–638.

    Article  PubMed  CAS  Google Scholar 

  149. Zuany-Amorim C, Sawicka E, Manlius C et al. Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med 2002; 8(6):625–629.

    Article  PubMed  CAS  Google Scholar 

  150. Kitagaki K, Businga TR, Kline JN. Oral administration of CpG-ODNs suppresses antigen-induced asthma in mice. Clin Exp Immunol 2006; 143(2):249–259.

    Article  PubMed  CAS  Google Scholar 

  151. Blumer N, Herz U, Wegmann M et al. Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy 2005; 35(3):397–402.

    Article  PubMed  CAS  Google Scholar 

  152. Eisenbarth SC, Piggott DA, Huleatt JW et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T-helper cell type 2 responses to inhaled antigen. J Exp Med 2002; 196(12):1645–1651.

    Article  PubMed  CAS  Google Scholar 

  153. Gerhold K, Blumchen K, Bock A et al. Endotoxins prevent murine IgE production, T(H) 2 immune responses and development of airway eosinophilia but not airway hyperreactivity. J Allergy Clin Immunol 2002; 110(1):110–116.

    Article  PubMed  CAS  Google Scholar 

  154. Racila DM, Kline JN. Perspectives in asthma: molecular use of microbial products in asthma prevention and treatment. J Allergy Clin Immunol 2005; 116(6):1202–1205.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Shreiner, A., Huffnagle, G.B., Noverr, M.C. (2008). The “Microflora Hypothesis” of Allergic Disease. In: Huffnagle, G.B., Noverr, M.C. (eds) GI Microbiota and Regulation of the Immune System. Advances in Experimental Medicine and Biology, vol 635. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09550-9_10

Download citation

Publish with us

Policies and ethics