Skip to main content

Nanostructured Materials Use in Sensors: Their Benefits and Drawbacks

  • Chapter
  • First Online:
Carbon and Oxide Nanostructures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 5))

Abstract

The development of nanoscale materials for optical chemical sensing applications has emerged as one of the most important research areas of interest over the past decades. In this chapter we firstly present some general aspects of nanostructured materials and give a description on the analytical aspects of sensors and sensing principles. The broad variety of nanomaterials as well as sensors’ design made us to limit our presentation, which concentrates on nanomaterials, such as quantum dots, polymer- and sol-gel-based particles. The benefits and drawbacks of the properties of these nanomaterials used in optical sensing applications are given, and the recently developed optical chemical sensors and probes based on photoluminescence are overviewed. Finally, some future trends of the nanomaterial-based optical chemical sensors are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guozhong C (2005) Nanostructures & nanomaterials: synthesis, properties & applications. Imperial College Press, London

    Google Scholar 

  2. Göpel, W.: Sensors: a Comprehensive Survey, Fundamentals and General Aspects, vol. 1. VCH, Weinheim (1989)

    Google Scholar 

  3. Göpel, W.: Sensors: a Comprehensive Survey, Chemical and Biochemical Sensors Part 1, vol. 2. VCH, Weinheim (1991)

    Google Scholar 

  4. Göpel, W.: Sensors: a Comprehensive Survey, Chemical and Biochemical Sensors Part 2, vol. 3. VCH, Weinheim (1991)

    Google Scholar 

  5. Göpel, W.: Sensors: a Comprehensive Survey, Chemical and Biochemical Sensors Part 2, vol. 3. VCH, Weinheim (1990)

    Google Scholar 

  6. Göpel, W.: Sensors: a Comprehensive Survey, Optical Sensors, vol. 6. VCH, Weinheim (1991)

    Google Scholar 

  7. Göpel, W.: Micro- and nanosensor technology/trends in sensor markets. In: Sensors: a Comprehensive Survey, vol. 8. VCH, Weinheim (1995)

    Google Scholar 

  8. Pitkethly MJ (2004) Mater Today 7:20–29

    Article  Google Scholar 

  9. Kalantar-Zadeh, K., Fry, B.: Inorganic nanotechnology enabled sensors. In: Nanotechnology-Enabled Sensors. Springer, USA (2008)

    Google Scholar 

  10. Hauptmann P (1993) Sensors: principles and applications. Prentice Hall, London

    Google Scholar 

  11. Shtykov SN, Rusanova TY (2008) Russ J Gen Chem 78:2521–2531

    Article  CAS  Google Scholar 

  12. Schneider HJ (1991) Angew Chem Int Ed Engl 30:1417–1436

    Article  Google Scholar 

  13. Reichardt C (1988) Solvents and solvent effects in organic chemistry. VCH Verlagsgesellschaft, Weinheim, FRG

    Google Scholar 

  14. Sellergren B, Shea KJ (1993) J Chromatogr A 654:17–28

    Article  CAS  Google Scholar 

  15. Sellergren B (1994) J Chromatogr 673:133–141

    Article  CAS  Google Scholar 

  16. Matsui J, Kato T, Takeuchi T, Suzuki M, Yokohama K, Tamiya E, Karube I (1993) Anal Chem 65:2223–2224

    Article  CAS  Google Scholar 

  17. Ansell RJ, Kriz D, Mosbach K (1996) Curr Opin Biotechnol 7:89–94

    Article  CAS  Google Scholar 

  18. Grundler P (2007) Chemical Sensors, an Introduction for Scientists and Engineers. Springer, Berlin Heidelberg

    Google Scholar 

  19. Demchenko AP (2009) Introduction to Fluorescence Sensing – Theoretical Aspects. Springer, Netherlands

    Book  Google Scholar 

  20. Wolfbeis OS (1990) J Anal Chem 337:522–527

    CAS  Google Scholar 

  21. Nagl S, Wolfbeis OS (2008) Springer Ser Fluoresc 5:325–346

    Article  CAS  Google Scholar 

  22. Blum LJ (1997) Bio- and Chemi-Luminescent Sensors. World Scientific, Singapore

    Google Scholar 

  23. Moreno-Bondi MC, Benito-Pena E (2006) Fundamentals of enzyme-based sensors (Ch. 16). In: Baldini F, Chester AN, Homola J, Martellucci S (eds) Optical Chemical Sensors. NATO Science Series II. Springer, Dordrecht

    Google Scholar 

  24. Galán-Vidal CA, Munoz J, Domínguez C, Alegret S (1995) Trends Anal Chem 14:225–231

    Google Scholar 

  25. Lobnik A (2006) Absorption-based sensors. In: Baldini F, Chester AN, Homola J, Martellucci S (eds) Optical Chemical Sensors. NATO Science Series II. Springer, Dordrecht

    Google Scholar 

  26. Jerónimo PCA, Araújo AN, Montenegro MCBSM (2007) Talanta 72:13–27

    Article  CAS  Google Scholar 

  27. Lukowiak A, Strek W (2009) J Sol-Gel Sci Technol 50:201–215

    Article  CAS  Google Scholar 

  28. Seitz WR (1988) Crit Rev Anal Chem 19:135–173

    CAS  Google Scholar 

  29. Yappert MC (1997) Chem Educ 1:1–10

    Article  Google Scholar 

  30. Wolfbeis OS (2008) Anal Chem 80:4269–4283

    Article  CAS  Google Scholar 

  31. Guilbault G (1990) Practical Fluorescence. Marcel Dekker Inc., New York

    Google Scholar 

  32. Szmacinski H, Lakowicz JR (1995) Sens Actuators B 29:16–24

    Article  Google Scholar 

  33. Lippittsch ME, Draxler S (1993) Sens Actuators B 11:97–101

    Article  Google Scholar 

  34. Lippitsch ME, Draxler S, Kieslinger D (1997) Sens Actuators B 38–39:96–102

    Article  Google Scholar 

  35. Kostov Y, Harms P, Rao G (2001) Anal Biochem 297:105–108

    Article  CAS  Google Scholar 

  36. Valledor M, Campo JC, Sánchez-Barragán I, Viera JC, Costa-Fernández JM, Sanz-Medel A (2006) Sens Actuators B 117:266–273

    Article  CAS  Google Scholar 

  37. Buck SM, Koo Y-EL, Park E, Xu H, Philbert MA, Brasuel MA, Kopelman R (2004) Curr Opin Chem Biol 8:540–546

    Article  CAS  Google Scholar 

  38. Sun H, Scharff-Poulsen AM, Gu H, Almdal K (2006) Chem Mater 18:3381–3384

    Article  CAS  Google Scholar 

  39. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer, USA

    Book  Google Scholar 

  40. McDonagh C, Burke CS, MacCraith BD (2008) Chem Rev 108:400–422

    Article  CAS  Google Scholar 

  41. Wolfbeis OS (1991) Fiber Optic Chemical Sensors and Biosensors. CRC, Boca Raton

    Google Scholar 

  42. Murković Steinberg I, Lobnik A, Mohr GJ, Wolfbeis OS (1996) Anal Chim Acta 334:125–132

    Article  Google Scholar 

  43. Lobnik A, Majchin N, Niederreiter K, Uray G (2001) Sens Actuators B 74:200–206

    Article  Google Scholar 

  44. Durkop A, Turel M, Lobnik A, Wolfbeis OS (2006) Anal Chim Acta 555:292–298

    Article  CAS  Google Scholar 

  45. Turel M, Čajlakovic M, Austin E, Dakin JP, Uray G, Lobnik A (2008) Sens Actuators B 131:247–253

    Article  CAS  Google Scholar 

  46. Turel M, Durkop A, Yegorova A, Scripinets Y, Lobnik A, Samic N (2009) Anal Chim Acta 644:53–60

    Article  CAS  Google Scholar 

  47. Demchenko AP (2009) Introduction to Fluorescence Sensing – Design and Properties of Fluorescence Reporters. Springer, Netherlands

    Book  Google Scholar 

  48. Han, J., Burgess, K.: Chem Rev. doi:10.1021/cr900249z (2009)

  49. Lev O, Tsionsky M, Rabinovich L, Glezer V, Sampath S, Pankratov I, Gun J (1995) Anal Chem 67:22A–30A

    Article  CAS  Google Scholar 

  50. Mohr GJ (2006) Polymers for optical sensors. In: Baldini F, Chester AN, Homola J, Martellucci S (eds) Optical Chemical Sensors, Part 1. Springer, Netherlands

    Google Scholar 

  51. Avnir D, Braun S, Lev O, Levy D, Ottolenghi M (2004) Organically doped sol-gel porous glasses: chemical sensors, enzymatic sensors, electrooptical materials, luminescent materials and photochromic materials. In: Klein LC (ed) Sol-Gel Optics: Processing and Applications. Springer, New York

    Google Scholar 

  52. Lobnik A, Oehme I, Murkovic I, Wolfbeis OS (1998) Anal Chim Acta 367:159–165

    Article  CAS  Google Scholar 

  53. Oehme I, Prattes S, Wolfbeis OS, Mohr GJ (1998) Talanta 47:595–604

    Article  CAS  Google Scholar 

  54. Lobnik A, Wolfbeis OS (2001) J Sol-Gel Sci Technol 20:303–311

    Article  CAS  Google Scholar 

  55. Orellana G, Moreno-Bondi MC, Garcia-Fresnadillo D, Marazuela MD (2005) Springer Ser Chem Sens Biosens 3:189–225

    Article  CAS  Google Scholar 

  56. Korent SM, Lobnik A, Mohr GJ (2007) Anal Bioanal Chem 387:2863–2870

    Article  CAS  Google Scholar 

  57. Chu CS, Lo YL (2009) Sens Actuators B 143:205–210

    Article  CAS  Google Scholar 

  58. Waich K, Mayr T, Klimant I (2008) Talanta 77:66–72

    Article  CAS  Google Scholar 

  59. Borisov SM, Klimant I (2008) Analyst 133:1302–1307

    Article  CAS  Google Scholar 

  60. Aylott JW (2003) Analyst 128:309–312

    Article  CAS  Google Scholar 

  61. Riu J, Maroto A, Rius FX (2006) Talanta 69:288–301

    Article  CAS  Google Scholar 

  62. Borisov SM, Mayr T, Mistlberger G, Waich K, Koren K, Chojnacki P, Klimant I (2009) Talanta 79:1322–1330

    Article  CAS  Google Scholar 

  63. Buck SM, Xu H, Brausel M, Philbert MA, Kopelman R (2004) Talanta 63:41–59

    Article  CAS  Google Scholar 

  64. Sounderya N, Zhang Y (2008) Recent Pat Biomed Eng 1:34–42

    Article  CAS  Google Scholar 

  65. Nel A, Xia T, Mädler L, Li N (2006) Science 311:622–627

    Article  CAS  Google Scholar 

  66. Shi J, Zhu Y, Zhang X, Baeyens WRG, Garcıa-Campana AM (2004) TrAC Trends Anal Chem 23:351–360

    Article  CAS  Google Scholar 

  67. Asefa T, Duncan CT, Sharma KK (2009) Analyst 134:1980–1990

    Article  CAS  Google Scholar 

  68. Lapresta-Fernandez A, Cywinski PJ, Moro AJ, Mohr GJ (2009) Anal Bioanal Chem 395:1821–1830

    Article  CAS  Google Scholar 

  69. Zenkl G, Klimant I (2009) Microchim Acta 166:123–131

    Article  CAS  Google Scholar 

  70. Hornig S, Schulz A, Mohr GJ, Heinze T (2009) J Photopolym Sci Technol 22:671–673

    Article  CAS  Google Scholar 

  71. Borisov SM, Herrod DL, Klimant I (2009) Sens Actuators B 139:52–58

    Article  CAS  Google Scholar 

  72. Cywinski PJ, Moro AJ, Stanca SE, Biskup C, Mohr GJ (2009) Sens Actuators B 135:472–477

    Article  CAS  Google Scholar 

  73. Borisov SM, Mayr T, Klimant I (2008) Anal Chem 80:573–582

    Article  CAS  Google Scholar 

  74. Sumner JP, Kopelman R (2005) Analyst 130:528–533

    Article  CAS  Google Scholar 

  75. Sumner JP, Aylott JW, Monson E, Kopelman R (2002) Analyst 127:11–16

    Article  CAS  Google Scholar 

  76. Doussineau T, Trupp S, Mohr GJ (2009) J Colloid Interface Sci 339:266–270

    Article  CAS  Google Scholar 

  77. Hun X, Zhang ZJ (2007) Microchim Acta 159:255–261

    Article  CAS  Google Scholar 

  78. Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Langmuir 23:8632–8636

    Article  CAS  Google Scholar 

  79. Gao F, Tang LJ, Dai L, Wang L (2007) Spectrochim Acta A 67:517–521

    Article  CAS  Google Scholar 

  80. Peng JF, He XX, Wang KM, Tan WH, Wang Y, Liu Y (2007) Anal Bioanal Chem 388:645–654

    Article  CAS  Google Scholar 

  81. Teolato P, Rampazzo E, Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Chem Eur J 13:2238–2245

    Article  CAS  Google Scholar 

  82. He L, Toh CS (2006) Anal Chim Acta 556:1–15

    Article  CAS  Google Scholar 

  83. Tansil NC, Gao Z (2006) Nano Today 1:28–37

    Article  Google Scholar 

  84. Vaseashta A, Dimova-Malinovska D (2006) Sci Technol Adv Mater 6:312–318

    Article  CAS  Google Scholar 

  85. Davis F, Higson SPJ (2005) Biosens Bioelectron 21:1–20

    Article  CAS  Google Scholar 

  86. James SW, Tatam RP (2006) J Opt A Pure Appl Opt 8:430–444

    Article  CAS  Google Scholar 

  87. Jain PK, El-Sayed IH, El-Sayed MA (2007) Nano Today 2:18–29

    Article  Google Scholar 

  88. Shi J, Zhu Y, Zhang X, Baeyens WRG, Garcia-Campana AM (2004) TrAC Trends Anal Chem 23:351–360

    Article  CAS  Google Scholar 

  89. Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2006) TrAC Trends Anal Chem 25:207–218

    Article  CAS  Google Scholar 

  90. Yain J, Esteves CM, Smith JE, Wang K, He X, Wang L, Tan W (2007) Nano Today 2:44–50

    Article  Google Scholar 

  91. Murphy CJ (2002) Anal Chem 74:520A–526A

    Article  CAS  Google Scholar 

  92. Ashby MF, Ferreira PJ, Schodek DL (2009) Nanomaterials, Nanotechnologies and Design: an Introduction for Engineers and Architects. Butterworth & Heinemann, Amsterdam

    Google Scholar 

  93. Yu WW, Wang YA, Peng X (2003) Chem Mater 15:4300–4308

    Article  CAS  Google Scholar 

  94. Gubin SP, Kataeva NA, Khomutov GB (2005) Russ Chem B 54:827–852

    Article  CAS  Google Scholar 

  95. Mattoussi H, Radzilowski LH, Dabbousi DO, Thomas EL, Bawendi MG, Rubner MF (1998) J Appl Phys 83:7965–7974

    Article  CAS  Google Scholar 

  96. Teranishi T, Nishida M, Kanehara M (2005) Chem Lett 34:1004–1005

    Article  CAS  Google Scholar 

  97. Efros AL (1982) Sov Phys Semicond 16:772–775

    Google Scholar 

  98. Halperin WP (1986) Rev Mod Phys 58:533–606

    Article  CAS  Google Scholar 

  99. Alivisatos AP (1996) Science 271:933–937

    Article  CAS  Google Scholar 

  100. Frasco MF, Chaniotakis N (2009) Sensors 9:7266–7286

    Article  CAS  Google Scholar 

  101. Costa-Fernandez, J.M., Pereiro, R., Sanz-Medel, A (2006) 25, 207–218

    Google Scholar 

  102. Grecco HE, Lidke KA, Heintzmann R, Lidke DS, Spagnuolo C, Martinez OE, Jares-Erijman EA, Jovin TM (2004) Microsc Res Tech 65:169–179

    Article  CAS  Google Scholar 

  103. Sapsford KE, Pons T, Medintz IL, Mattoussi H (2006) Sensors 6:925–953

    Article  CAS  Google Scholar 

  104. Eychmuller A (2000) J Phys Chem B 104:6514–6528

    Article  CAS  Google Scholar 

  105. Murray, C.B.: Synthesis and characterization of II–VI quantum dots and their assembly into 3D quantum dot superlattices. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1995)

    Google Scholar 

  106. Rossetti R, Ellison JL, Gibson JM, Brus LE (1984) J Phys Chem 80:4464–4469

    Article  CAS  Google Scholar 

  107. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  108. Wang Y, Herron N (1987) J Phys Chem 91:257–260

    Article  CAS  Google Scholar 

  109. Kuczynski JP, Milosavljevic BH, Thomas JK (1983) J Phys Chem 87:3368–3370

    Article  CAS  Google Scholar 

  110. Yin Y, Alivisatos AP (2005) Nature 437:664–670

    Article  CAS  Google Scholar 

  111. Wang J, Liang JG, Sheng ZH, Han HY (2009) Microchim Acta 167:281–287

    Article  CAS  Google Scholar 

  112. Yan XQ, Shang ZB, Zhang Z, Wang Y, Jin WJ (2009) Luminescence 24:255–259

    Article  CAS  Google Scholar 

  113. Koneswaran M, Narayanaswamy R (2009) Sens Actuators B 139:91–96

    Article  CAS  Google Scholar 

  114. Callan JF, Mulrooney RC (2009) Phys Status Solidi C 4:920–923

    Article  CAS  Google Scholar 

  115. Lai SJ, Chang XJ, Fu C (2009) Microchim Acta 165:39–44

    Article  CAS  Google Scholar 

  116. Liu MM, Xu L, Cheng WQ, Zeng Y, Yan ZY (2008) Spectrochim Acta A 70:1198–1202

    Article  CAS  Google Scholar 

  117. Wu HM, Liang JG, Han HY (2008) Microchim Acta 161:81–86

    Article  CAS  Google Scholar 

  118. Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, Nocera DG (2006) J Am Chem Soc 128:13320–13321

    Article  CAS  Google Scholar 

  119. Susha AS, Javier AM, Parak WJ, Rogach AL (2006) Colloids Surf A 281:40–43

    Article  CAS  Google Scholar 

  120. Liang JG, Huang S, Zeng DY, He ZK, Ji XH, Ai XP, Yang HX (2006) Talanta 69:126–130

    Article  CAS  Google Scholar 

  121. Singh N, Mulrooney RC, Kaur N, Callan JF (2009) J Fluoresc 19:777–782

    Article  CAS  Google Scholar 

  122. Uskoković V, Košak A, Drofenik M (2006) Int J Appl Ceram Technol 3:134–143

    Article  Google Scholar 

  123. Uskoković V, Košak A, Drofenik M (2006) Mater Lett 60:2620–2622

    Article  CAS  Google Scholar 

  124. Wang JH, Wang HQ, Zhang HL, Li XQ, Hua XF, Huang ZL, Zhao YD (2007) Colloids Surf A 305:48–53

    Article  CAS  Google Scholar 

  125. Zhang Y, Zhang H, Guo X, Wang H (2008) Microchem J 89:142–147

    Article  CAS  Google Scholar 

  126. Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C (2007) J Am Chem Soc 129:482–483

    Article  CAS  Google Scholar 

  127. Kamat PV (1993) Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  128. Schmid G (2004) Nanoparticles – from Theory to Application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  129. Weller H (1993) Angew Chem Int Ed Engl 32:41–53

    Article  Google Scholar 

  130. Spanhel L, Haase M, Weller H (1987) J Am Chem Soc 109:5649–5655

    Article  CAS  Google Scholar 

  131. Sooklal K, Cullum BS, Angel SM, Murphy CJ (1996) J Phys Chem 100:4551–4555

    Article  CAS  Google Scholar 

  132. Dannhauser T, O’Neil M, Johansson K, Whitten D, McLendon GJ (1986) Phys Chem 90:6074–6076

    Article  CAS  Google Scholar 

  133. O’Neil M, Marohn J, McLendon G (1990) J Phys Chem 94:4356–4363

    Article  Google Scholar 

  134. Johansson K, Cowdery R, O’Neil M, Rehm J, McLendon G, Marchetti A, Whitten DG (1993) Isr J Chem 33:67–70

    CAS  Google Scholar 

  135. Fox MA, Dulay MT (1993) Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  136. Kumar A, Kumar S (1996) Chem Lett 7:711–712

    Article  Google Scholar 

  137. Weller H, Koch U, Gutierrez M, Henglein A (1984) Phys Chem 88:649–656

    CAS  Google Scholar 

  138. Zhou HS, Honma I, Komiyama H, Haus JW (1993) J Phys Chem 97:895–901

    Article  CAS  Google Scholar 

  139. Zhou HS, Sasahara H, Honma I, Komiyama H, Haus JW (1994) Chem Mater 6:1534–1541

    Article  CAS  Google Scholar 

  140. Bedja I, Kamat PV (1995) J Phys Chem 99:9182–9188

    Article  CAS  Google Scholar 

  141. Tian Y, Newton T, Kotov NA, Guldi DM, Fendler JH (1996) J Phys Chem 100:8927–8939

    Article  CAS  Google Scholar 

  142. Mews A, Eychmuller A, Giersig M, Schooss D, Weller H (1994) J Phys Chem 98:934–941

    Article  CAS  Google Scholar 

  143. Kamalov VF, Little R, Logunov SL, El-Sayed MA (1996) J Phys Chem 100:6381–6384

    Article  CAS  Google Scholar 

  144. Li J, Zhang JZ (2009) Coord Chem Rev 253:3015–3041

    Article  CAS  Google Scholar 

  145. Fujii H, Inata K, Ohtaki M, Eguchi K (2001) J Mater Sci 36:527–532

    Article  CAS  Google Scholar 

  146. Cumberland SL, Berrettini MG, Javier A, Strouse GF (2003) Chem Mater 15:1047–1056

    Article  CAS  Google Scholar 

  147. Manera MG, Spadavecchia J, Buso D, Fernandez C, Mattei G, Martucci A, Mulvaney P, Perez-Juste J, Rella R, Vasanelli L, Mazzoldi P (2008) Sens Actuators B 132:107–115

    Article  CAS  Google Scholar 

  148. Diguna LJ, Shen Q, Sato A, Katayama K, Sawada T, Toyoda T (2007) Mater Sci Eng C Biomim Supramol Syst 27:1514–1520

    Article  CAS  Google Scholar 

  149. Ge JP, Xu S, Zhuang J, Wang X, Peng Q, Li YD (2006) Inorg Chem 45:4922–4927

    Article  CAS  Google Scholar 

  150. Youn HC, Baral S, Fendler HJ (1988) J Phys Chem 92:6320–6327

    Article  CAS  Google Scholar 

  151. Henglein A (1989) Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  152. Henglein A (1995) Ber Bunsenges Phys Chem 99:903–913

    CAS  Google Scholar 

  153. Weller H, Eychmüller A (1995) Adv Photochem 20:165–216

    Article  CAS  Google Scholar 

  154. Danek M, Jensen KF, Murray CB, Bawendi MG (1996) Chem Mater 8:173–180

    Article  CAS  Google Scholar 

  155. RodriguezViejo J, Jensen KF, Mattoussi H, Michel J, Dabbousi BO, Bawendi MG (1997) Appl Phys Lett 70:2132–2134

    Article  CAS  Google Scholar 

  156. Kuno M, Lee JK, Dabbousi BO, Mikulec FV, Bawendi MG (1997) J Chem Phys 106:9869–9882

    Article  CAS  Google Scholar 

  157. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) J Am Chem Soc 119:7019–7029

    Article  CAS  Google Scholar 

  158. Meisel D (1997) Charge transfer in nanoparticles. In: Kamat PV, Meisel D (eds) Semiconductor Nanoclusters. Elsevier Science BV, Amsterdam

    Google Scholar 

  159. Pavel FM (2004) J Dispers Sci Technol 25:1–16

    Article  CAS  Google Scholar 

  160. Košak A, Makovec D, Drofenik M (2004) J Magn Magn Mater 272–276:1542–1544

    Google Scholar 

  161. Košak A, Makovec D, Drofenik M, Žnidaršič A (2004) J Eur Ceram Soc 24:959–962

    Article  CAS  Google Scholar 

  162. Košak A, Makovec D, Drofenik M (2004) Mater Sci Forum 453–454:219–224

    Article  Google Scholar 

  163. Košak A, Makovec D, Drofenik M (2004) Nanotechnology (Bristol) 15:S160–S166

    Google Scholar 

  164. Košak A, Makovec D, Drofenik M, Žnidaršič A (2005) J Magn Magn Mater 289:32–35

    Article  CAS  Google Scholar 

  165. Košak A, Makovec D, Drofenik M (2005) J Metastable Nanocryst Mater 23:251–254

    Article  Google Scholar 

  166. Higuchi T, Yabu H, Shimomura M (2006) Colloids Surf A 284–285:250–253

    Article  CAS  Google Scholar 

  167. Borisov SM, Klimant I (2009) Microchim Acta 164:7–15

    Article  CAS  Google Scholar 

  168. Borisov SM, Mayr T, Karasyov AA, Klimant I, Chojnacki P, Moser C, Nagl S, Schaeferling M, Stich M, Kocincova AS, Wolfbeis OS (2008) Springer Ser Fluoresc 4:431–463

    Article  CAS  Google Scholar 

  169. Méallet-Renault, R., Pansu, R., Amigoni-Gerbier, S., Larpent, C.: Chem. Commun., 2344–2345 (2004)

    Google Scholar 

  170. Frigoli M, Ouadahi K, Larpent C (2009) Chem Eur J 15:8319–8330

    Article  CAS  Google Scholar 

  171. Lobnik A (2000) Sol-Gels and Other Polymers used in Optical Chemical Sensors. SPIE, Bellingham

    Google Scholar 

  172. Lobnik A, Wolfbeis OS (1998) Analyst 123:2247–2250

    Article  CAS  Google Scholar 

  173. Lobnik A, Wolfbeis OS (1998) Sens Actuators B 51:203–207

    Article  Google Scholar 

  174. Lobnik A, Čajlaković M (2001) Sens Actuators B 74:194–199

    Article  Google Scholar 

  175. Čajlaković M, Lobnik A, Werner T (2002) Anal Chim Acta 455:207–213

    Article  Google Scholar 

  176. Murković Steinberg I, Lobnik A, Wolfbeis OS (2003) Sens Actuators B 90:230–235

    Article  CAS  Google Scholar 

  177. Jain TK, Roy I, De TK, Maitra A (1998) J Am Chem Soc 120:11092–11095

    Article  CAS  Google Scholar 

  178. Rossi LM, Shi L, Quina FH, Rosenzweig Z (2005) Langmuir 21:4277–4280

    Article  CAS  Google Scholar 

  179. Shibata S, Taniguchi T, Yano T, Yamane M (1997) J Sol-Gel Sci Technol 10:263–268

    Article  CAS  Google Scholar 

  180. Wang L, Tan W (2006) Nano Lett 6:84–88

    Article  CAS  Google Scholar 

  181. Wang L, Yang C, Tan W (2005) Nano Lett 5:37–43

    Article  CAS  Google Scholar 

  182. Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Langmuir 20:8336–8342

    Article  CAS  Google Scholar 

  183. Santra S, Zhang P, Wang K, Tapec R, Tan W (2001) Anal Chem 73:4988–4993

    Article  CAS  Google Scholar 

  184. Zhao X, Tapec-Dytioco R, Tan W (2003) J Am Chem Soc 125:11474–11475

    Article  CAS  Google Scholar 

  185. Yang HH, Qu HY, Lin P, Li SH, Ding MT, Xu JG (2003) Analyst 128:462–466

    Article  CAS  Google Scholar 

  186. Santra S, Bagwe RP, Dutta D, Stanley JT, Walter GA, Tan W, Moudgul BM, Mericle RA (2005) Adv Mater 17:2165–2169

    Article  CAS  Google Scholar 

  187. Schmidt J, Guesdon C, Schomäcker R (1999) J Nanopart Res 1:267–276

    Article  CAS  Google Scholar 

  188. Brasola, E., Mancin, F., Ramazzo, E., Tecilla, P., Tonellato, U.: Chem. Commun., 3026–3027 (2003)

    Google Scholar 

  189. Ramazzo E, Brasola E, Marcuz S, Mancin F, Tecilla P, Tonellato U (2005) J Mater Chem 15:2687–2696

    Article  CAS  Google Scholar 

  190. Zheng, J.N., Xiao, C., Fei, Q., Li, M., Wang, B.J., Feng, G.D., Yu, H.M., Huan, Y.F., Song, Z.G.: Nanotechnology. doi:10.1088/0957-4484/21/4/045501(2010)

  191. Tapec R, Zhao XJJ, Tan WH (2002) J Nanosci Nanotechnol 2:405–409

    Article  CAS  Google Scholar 

  192. Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006) Small 2:723–726

    Article  CAS  Google Scholar 

  193. Wencel D, MacCraith BD, McDonagh C (2009) Sens Actuators B 139:208–213

    Article  CAS  Google Scholar 

  194. Niu CG, Gui XQ, Zeng GM, Guan AL, Gao PF, Qin PZ (2005) Anal Bioanal Chem 383:349–357

    Article  CAS  Google Scholar 

  195. Niu CG, Gui XQ, Zeng GM, Yuan XZ (2005) Analyst 130:1551–1556

    Article  CAS  Google Scholar 

  196. Niu CG, Guan AL, Zeng GM, Liu YG, Huang GH, Gao PF, Gui XQ (2005) Anal Chim Acta 547:221–228

    Article  CAS  Google Scholar 

  197. Park EJ, Reid KR, Tang W, Kennedy RT, Kopelman R (2005) J Mater Chem 15:2913–2919

    Article  CAS  Google Scholar 

  198. Ge XD, Kostov Y, Rao G (2003) Biosens Bioelectron 18:857–865

    Article  CAS  Google Scholar 

  199. Kermis HR, Kostov Y, Harms P, Rao G (2002) Biotechnol Prog 18:1047–1053

    Article  CAS  Google Scholar 

  200. Xu Z, Rollins A, Alcala R, Marchant RE (1998) J Biomed Mater Res A 39:9–15

    Article  CAS  Google Scholar 

  201. Song A, Parus S, Kopelman R (1997) Anal Chem 69:863–867

    Article  CAS  Google Scholar 

  202. Chan WCW, Nie SM (1998) Science 281:2016–2018

    Article  CAS  Google Scholar 

  203. Bruchez M, Moronne JM, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016

    Article  CAS  Google Scholar 

  204. Han MY, Gao XH, Su JZ, Nie SM, Nie SM (2001) Nat Biotechnol 19:631–635

    Article  CAS  Google Scholar 

  205. Isarov AV, Chrysochoos J (1997) Langmuir 13:3142–3149

    Article  CAS  Google Scholar 

  206. Chen Y, Rosenzweig Z (2002) Anal Chem 74:5132–5138

    Article  CAS  Google Scholar 

  207. Fernandez-Arguelles MT, Jin WJ, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2005) Anal Chim Acta 549:20–25

    Article  CAS  Google Scholar 

  208. Bo C, Ping Z (2005) Anal Bioanal Chem 381:986–992

    Article  CAS  Google Scholar 

  209. Dong B, Cao L, Su G, Liu W, Qu H, Jiang D (2009) J Colloid Interface Sci 339:78–82

    Article  CAS  Google Scholar 

  210. Liang JG, Xin-Ping A, He ZK, Pang DW (2004) Analyst 129:619–622

    Article  CAS  Google Scholar 

  211. Jin WJ, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2004) Anal Chim Acta 522:1–8

    Article  CAS  Google Scholar 

  212. Jin, W.J., Costa-Fernandez, J.M., Pereiro, R., Sanz-Medel, A (2005) Chem. Commun., 883–885

    Google Scholar 

  213. Moore DE, Patel K (2001) Langmuir 17:2541–2544

    Article  CAS  Google Scholar 

  214. Li, J., Bao, D.S., Hong, X., Li, D., Li, J.H., Bai, Y.B., Li, T.J (2005) Colloids Surf. A Physicochem. Eng. Aspects, 257–258

    Google Scholar 

  215. Ruedas-Rama MJ, Hall EAH (2008) Anal Chem 80:8260–8268

    Article  CAS  Google Scholar 

  216. Shang ZB, Wang Y, Jin WJ (2009) Talanta 78:364–369

    Article  CAS  Google Scholar 

  217. Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM (2006) Langmuir 22:10284–10290

    Article  CAS  Google Scholar 

  218. Lakowicz JR, Gryczynski I, Gryczynski Z, Murphy CJ (1999) J Phys Chem B 103:7613–7620

    Article  CAS  Google Scholar 

  219. Diao XL, Xia YS, Zhang TL, Li Y, Zhu CQ (2007) Anal Bioanal Chem 388:1191–1197

    Article  CAS  Google Scholar 

  220. Dybko A, Wroblewski W, Rozniecka E, Poznisk K, Maciejewski J, Romaniuk R, Brozozka Z (1998) Sens Actuators B 51:208–213

    Article  Google Scholar 

  221. Malins C, Glever HG, Keyes TE, Vos JG, Dressick WJ, MacCraith BD (2000) Sens Actuators B 67:89–95

    Article  Google Scholar 

  222. Jorge PAS, Caldas P, Esteves da Silva JCG, Rosa CC, Oliva AG, Farahi F, Santos JL (2005) Fiber Integr Opt 24:201–225

    Article  CAS  Google Scholar 

  223. Swindlehurst BR, Narayanaswamy R (2004) Optical sensing of pH in low ionic strength waters. In: Narayanaswamy R, Wolbeis OS (eds) Optical Sensors – Industrial Environmental and Diagnostic Applications. Springer, New York

    Google Scholar 

  224. Orellana G, Garcia-Fresnadillo D (2004) Environmental and industrial optosensing with tailored luminescent Ru(II) polypyridyl complexes in optical sensors. In: Narayanaswamy R, Wolbeis OS (eds) Optical Sensors – Industrial Environmental and Diagnostic Applications. Springer, New York

    Google Scholar 

  225. Fritzsche M, Barreiro CG, Hitzmann B, Scheper T (2007) Sens Actuators B 128:133–137

    Article  CAS  Google Scholar 

  226. Seidel MP, DeGrandpre MD, Dickson AG (2008) Mar Chem 109:18–28

    Article  CAS  Google Scholar 

  227. Brigo L, Carofiglio T, Fregonese C, Meneguzzi F, Mistura G, Natali M, Tonellato U (2008) Sens Actuators B 130:477–482

    Article  CAS  Google Scholar 

  228. Ge FY, Chen LG (2008) J Fluoresc 18:741–747

    Article  CAS  Google Scholar 

  229. Hakonen A, Hulth S (2008) Anal Chim Acta 606:63–71

    Article  CAS  Google Scholar 

  230. Bradley M, Alexander L, Duncan K, Chennaoui M, Jones AC, Martin RMS (2008) Bioorg Med Chem Lett 18:313–317

    Article  CAS  Google Scholar 

  231. Dong S, Luo M, Peng G, Cheng W (2008) Sens Actuators B 129:94–98

    Article  CAS  Google Scholar 

  232. Doussineau T, Smaihi M, Mohr GJ (2009) Adv Funct Mater 19:117–122

    Article  CAS  Google Scholar 

  233. Schulz A, Hornig S, Liebert T, Birckner E, Heinze T, Mohr GJ (2009) Org Biomol Chem 7:1884–1889

    Article  CAS  Google Scholar 

  234. Hornig S, Biskup C, Grafe A, Wotschadlo J, Liebert T, Mohr GJ, Heinze T (2008) Soft Matter 4:1169–1172

    Article  CAS  Google Scholar 

  235. Gao F, Wang L, Tang LJ, Zhu CQ (2005) Microchim Acta 152:131–135

    Article  CAS  Google Scholar 

  236. Kim S, Pudavar HE, Prasad PN (2006) Chem Commun 19:2071–2073

    Article  CAS  Google Scholar 

  237. Allard E, Larpent C (2008) J Polym Sci A Polym Chem 46:6206–6213

    Article  CAS  Google Scholar 

  238. Welser K, Perera MDA, Aylott JW, Chan WC (2009) Chem Commun 43:6601–6603

    Article  CAS  Google Scholar 

  239. Wolfbeis OS (2005) J Mater Chem 15:2657–2669

    Article  CAS  Google Scholar 

  240. Papkovsky DB, O’Riordan TC (2005) J Fluoresc 15:569

    Article  CAS  Google Scholar 

  241. Kostov Y, Harms P, Randers-Eichhorn L, Rao G (2001) Biotechnol Bioeng 72:346–352

    Article  CAS  Google Scholar 

  242. Ge X, Hanson M, Shen H, Kostov Y, Brorson KA, Frey DD, Moreira AR, Rao G (2006) J Biotechnol 122:293–306

    Article  CAS  Google Scholar 

  243. John GT, Klimant I, Wittmann C, Heinzle E (2003) Biotechnol Bioeng 81:829–836

    Article  CAS  Google Scholar 

  244. Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KH (2004) Biotechnol Bioeng 87:243–254

    Article  CAS  Google Scholar 

  245. Hanson MA, Ge X, Kostov Y, Brorson KA, Moreira AR, Rao G (2007) Biotechnol Bioeng 97:833–841

    Article  CAS  Google Scholar 

  246. Mehta G, Mehta K, Sud D, Song JW, Bersano-Begey T, Futai N, Heo YS, Mycek MA, Linderman JJ, Takayama S (2007) Biomed Microdevices 9:123–134

    Article  CAS  Google Scholar 

  247. Schmaelzlin E, van Dongen JT, Klimant I, Marmodee B, Steup M, Fisahn J, Geigenberger P, Loehmannsroeben HG (2005) Biophys J 89:1339–1345

    Article  CAS  Google Scholar 

  248. Cao Y, Koo YEL, Kopelman R (2004) Analyst 129:745–750

    Article  CAS  Google Scholar 

  249. Gouin JF, Baros F, Birot D, Andre JC (1997) Sens Actuators B 38–39:401–406

    Article  Google Scholar 

  250. Klimant I, Meyer V, Kuhl M (1995) Limnol Oceanogr 40:1159–1165

    Article  CAS  Google Scholar 

  251. Hasumoto H, Imazu T, Miura T, Kogure K (2006) J Oceanogr 62:99–103

    Article  CAS  Google Scholar 

  252. Koenig B, Kohls O, Holst G, Glud RN, Kuehl M (2005) Mar Chem 97:262–276

    Article  CAS  Google Scholar 

  253. Schroeder CR, Polerecky L, Klimant I (2007) Anal Chem 79:60–70

    Article  CAS  Google Scholar 

  254. Meruva RC, Meyerhoff ME (1998) Biosens Bioelectron 13:201–212

    Article  CAS  Google Scholar 

  255. Schmaelzlin E, Walz B, Klimant I, Schewe B, Loehmannsroeben HG (2006) Sens Actuators B 119:251–254

    Article  CAS  Google Scholar 

  256. Babilas P, Liebsch G, Schacht V, Klimant I, Wolfbeis OS, Szeimies R-M, Abels C (2005) Microcirculation 12:477–487

    Article  CAS  Google Scholar 

  257. Kimura S, Matsumoto K, Mineura K, Itoh T (2007) J Neurol Sci 258:60–68

    Article  CAS  Google Scholar 

  258. McDonagh C, Bowe P, Mongey K, MacCraith BD (2002) J Non-Cryst Solids 306:138–148

    Article  CAS  Google Scholar 

  259. Koo YEL, Cao YF, Kopelman R, Brasuel M, Philbert MA (2004) Anal Chem 76:2498–2505

    Article  CAS  Google Scholar 

  260. Borisov SM, Nuss G, Klimant I (2008) Anal Chem 80:9435–9442

    Article  CAS  Google Scholar 

  261. Uauy R, Olivares M, Gonzalez M (1998) Am J Clin Nutr 67:952S–959S

    CAS  Google Scholar 

  262. Cuajungco MP, Lees GJ (1997) Neurobiol Dis 4:137–169

    Article  CAS  Google Scholar 

  263. Frederickson CJ, Suh SW, Silva D, Thompson RB (2000) J Nutr 130:1471S–1483S

    CAS  Google Scholar 

  264. Choi DW, Koh JY (1998) Annu Rev Neurosci 21:347–375

    Article  CAS  Google Scholar 

  265. Cunnane SC (1988) Zinc: Clinical and Biochemical Significance. CRC, Boca Raton

    Google Scholar 

  266. Silvia J, Williams R (1991) The Biological Chemistry of the Elements: the Inorganic Chemistry of Life. Claredon Press, Oxford

    Google Scholar 

  267. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  268. Van Blaaderen A, Kentgens APM (1992) J Non-Cryst Solids 149:161–178

    Article  Google Scholar 

  269. Van Blaaderen A, Van Geest J, Vrij A (1992) J Colloid Interface Sci 154:481–501

    Article  Google Scholar 

  270. Van Blaaderen A, Vrij A (1993) J Colloid Interface Sci 156:1–18

    Article  Google Scholar 

  271. Van Blaaderen A, Vrij A (1992) Langmuir 8:2921–2931

    Article  Google Scholar 

  272. Verhaegh NAM, Van Blaaderen A (1994) Langmuir 10:1427–1438

    Article  CAS  Google Scholar 

  273. Burdo JR, Connor JR (2003) Biometals 16:63–75

    Article  CAS  Google Scholar 

  274. Felt BT, Lozoff B (1996) J Nutr 126:693–701

    CAS  Google Scholar 

  275. Earley CJ, Connor JR, Beard JL, Malecki EA, Epstein DK, Allen RP (2000) Neurology 54:1698–1700

    CAS  Google Scholar 

  276. Golovina VA, Blaustein MP (1997) Science 275:1643–1648

    Article  CAS  Google Scholar 

  277. Kennedy RT, Huang L, Aspenwall CAJ (1996) J Am Chem Soc 118:1795–1796

    Article  CAS  Google Scholar 

  278. Nuccitelli R (1994) Methods in Cell Biology. Academic, San Diego

    Google Scholar 

  279. Ross WN (1993) Biophys J 64, 1655–1656

    Google Scholar 

  280. Kotyk A, Slavik J (1989) Intracellular pH and Its Measurement. CRC, Boca Raton

    Google Scholar 

  281. Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R (2003) Anal Chem 75:3784–3791

    Article  CAS  Google Scholar 

  282. Gotoh H, Kajikawa M, Kato H, Suto K (1999) Brain Res 828:163–168

    Article  CAS  Google Scholar 

  283. Cheng C, Reynolds IJ (2000) Neuroscience 95:973–979

    Article  CAS  Google Scholar 

  284. Brocard JB, Rajdev S, Reynolds IJ (1993) Neuron 11:751–757

    Article  CAS  Google Scholar 

  285. He H, Jenkins K, Lin C (2008) Anal Chem Acta 661:197–204

    Article  CAS  Google Scholar 

  286. Ruedas-Rama MJ, Hall EAH (2006) Analyst 131:1282–1291

    Article  CAS  Google Scholar 

  287. Graefe A, Stanca SE, Nietzsche S, Kubicova L, Beckert R, Biskup C, Mohr GJ (2008) Anal Chem 80:6526–6531

    Article  CAS  Google Scholar 

  288. Clark HA, Kopelman R, Tjalkens R, Philbert MA (1999) Anal Chem 71:4837–4843

    Article  CAS  Google Scholar 

  289. Brasuel M, Kopelman R, Miller TJ, Tjalkens R, Philbert MA (2001) Anal Chem 73:2221–2228

    Article  CAS  Google Scholar 

  290. Gao F, Luo FB, Chen XX, Yao W, Yin J, Yao Z, Wang L (2009) Talanta 80:202–206

    Article  CAS  Google Scholar 

  291. Ai KL, Zhang BH, Lu LH (2009) Angew Chem Int Ed 48:304–308

    Article  CAS  Google Scholar 

  292. Taylor KML, Lin WB (2009) J Mater Chem 19:6418–6422

    Article  CAS  Google Scholar 

  293. Wu XD, Song LT, Li B, Liu YH (2010) J Lumin 130:374–379

    Article  CAS  Google Scholar 

  294. Zhang HR, Li B, Lei BF, Li WL (2008) J Lumin 128:1331–1338

    Article  CAS  Google Scholar 

  295. Li L, Gao XK, Lv BQ, Zhou ZD, Xiao D (2007) Sensor Lett 5:441–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Lobnik .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lobnik, A., Turel, M., Urek, Š.K., Košak, A. (2010). Nanostructured Materials Use in Sensors: Their Benefits and Drawbacks. In: Carbon and Oxide Nanostructures. Advanced Structured Materials, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8611_2010_21

Download citation

Publish with us

Policies and ethics