Skip to main content

Advancements in Spine FE Mesh Development: Toward Patient-Specific Models

  • Chapter
  • First Online:
Patient-Specific Modeling in Tomorrow's Medicine

Abstract

Laboratory-driven experimental studies are capable of delineating the biomechanical characteristics of the spine. They are limited, however, to external responses; that is, internal stresses and strains throughout the structures are not readily attained. Mathematical simulations provide a unique opportunity to serve as an adjunct to experimental studies to predict the external responses, while complementing the experiments by providing such internal responses. Musculoskeletal finite element (FE) analyses have emerged as an invaluable tool in orthopaedic-related research. While it has provided significant insight into the biomechanics of the spine, the demands associated with modeling the geometrically complex structures often limit its utility. Individualized models are important for future development of this field, as they offer a means of correlating mechanical predictions with clinical outcomes. However, relatively few FE studies to date have employed specimen- or patient-specific models. Spine modeling is by no means an exception. In this chapter we describe multiblock methods for generating subject-specific spine meshes to alleviate the current limitations of spine meshing. In addition, we demonstrate additional computational tools to perform “virtual surgery,” and show examples of how the techniques have been applied to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FE:

Finite element

ACDF:

Anterior cervical discectomy and fusion

FSU:

Functional spinal unit

CT:

Computed tomography

MR:

Magnetic resonance

IVD:

Intervertebral disc

ALL:

Anterior longitudinal ligament

PLL:

Posterior longitudinal ligament

CL:

Capsular ligament

LF:

Ligamentum flavum

IS:

Interspinous ligament

ODL:

Open door laminoplasty

DDL:

Double door laminoplasty

References

  1. Acosta, F.L.: Cervical disc arthroplasty: general introduction. Neurosurg. Clin. N. Am. 16(4), 603–607 (2005)

    Article  Google Scholar 

  2. Belytschko, T., Kulak, R.F., Schultz, A.: A finite element stress analysis of an intervertebral disc. J. Biomech. 7, 277–285 (1972)

    Article  Google Scholar 

  3. Bohlman, H.H., Emery, S.E., Goodfellow, D.B., Jones, P.K.: Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J. Bone Jt. Surg. 75(9), 1298–1307 (1993)

    Google Scholar 

  4. Bornemann, F., Erdmann, B., Kornhuber, R.: Adaptive multilevel methods in three space dimensions. Int. J. Numer. Methods Eng. 36, 3187–3203 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bowden, A.: Finite element modeling of the spine. In: Kurtz, S.M., Edidin, A.A. (eds.) Spine Technology Handbook. Elsevier Inc., USA (2006)

    Google Scholar 

  6. Bowden, A.E., Guerin, H.L., Villarraga, M.L., Patwardhan, A.G., Ochoa, J.A.: Quality of motion considerations in numerical analysis of motion restoring implants of the spine. Clin. Biomech. 23, 536–544 (2008)

    Article  Google Scholar 

  7. Blacker, T.D., Meyers, R.J.: Seams and wedges in plastering: a 3-D hexahedral mesh generation algorithm. Eng. Comput. 9(2), 83–93 (1993)

    Article  Google Scholar 

  8. Brewer, M., Diachin, L.F., Knupp, P., Leurent, T., Melander, D.: The Mesquite mesh quality improvement toolkit. Proceedings of 12th International Meshing Roundtable, pp. 239–250 (2003)

    Google Scholar 

  9. Cifuentes, A.O., Kalbag, A.: A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Ele. Anal. Des. 12(3–4), 313–318 (1992)

    Article  Google Scholar 

  10. Couteau, B., Payan, Y., Lavallée, S.: The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures. J. Biomech. 33(8), 1005–1009 (2000)

    Article  Google Scholar 

  11. De Vries, N.A., Gandhi, A.A., Fredericks, D.C., Smucker, J.D., Grosland, N.M.: In vitro study of the C2–C7 sheep cervical spine. ASME Summer Bioengineering Conference, Farmington, PA (2011)

    Google Scholar 

  12. DeVries, N.A., Kallemeyn, N.A., Shivanna, K.H., Grosland, N.M.: Finite element analysis of the C2–C7 sheep spine. ASME Summer Bioengineering Conference, Naples, FL (2010)

    Google Scholar 

  13. De Vries, N.A., Shivanna, K.H., Tadepalli, S.C., Magnotta, V.A., Grosland, N.M.: IA-FEMESH: anatomic FE models—a check of mesh accuracy and validity. Iowa Orthopaedic J. 29, 48 (2009)

    Google Scholar 

  14. Dooris, A.P., Goel, V.K., Grosland, N.M., Gilbertson, L.G., Wilder, D.G.: Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 26(6E), 122–129 (2001)

    Article  Google Scholar 

  15. Eberlein, R., Holzapfel, G.A., Fröhlich, M.: Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus. Comput. Mech. 34(2), 147–163 (2004)

    Article  MATH  Google Scholar 

  16. Eck, J.C., Humphreys, S.C., Lim, T.-H., Jeong, S.T., Kim, J.G., Hodges, S.D., An, H.S.: Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine 27, 2431–2434 (2002)

    Article  Google Scholar 

  17. Fagan, M.J., Julian, S., Mohsen, A.M.: Finite element analysis in spine research. Proc. Inst. Mech. Eng. Part H. J. Eng. Med. 216(5), 281–298 (2002)

    Google Scholar 

  18. Faizan, A., Goel, V.K., Garfin, S.R., Bono, C.M., Serhan, H., Biyani, A., Elgafy, H., Krishna, M., Friesem, T.: Do design variations in the artificial disc influence cervical spine biomechanics A finite element investigation. Eur. Spine J. (2009) (Epub ahead of print)

    Google Scholar 

  19. Field, D.A.: Laplacian smoothing and delaunay triangulations. Commun. Appl. Numer. Methods 4(6), 709–712 (1988)

    Article  MATH  Google Scholar 

  20. Fuller, D.A., Kirkpatrick, J.S., Emery, S.E., Wilber, R.G., Davy, D.T.: A kinematic study of the cervical spine before and after segmental arthrodesis. Spine 23(15), 1649–1656 (1998)

    Article  Google Scholar 

  21. Galbusera, F., Anasetti, F., Bellini, C.M., Costa, F., Fornari, M.: The influence of the axial, antero-posterior and lateral positions of the center of rotation of a ball-and-socket disc prosthesis on the cervical spine biomechanics. Clin. Biomech. 25(5), 397–401 (2010)

    Article  Google Scholar 

  22. Galbusera, F., Bellini, C.M., Costa, F., Assietti, R., Fornari, M.: Anterior cervical fusion: a biomechanical comparison of 4 techniques. J. Neurosurg. Spine 9, 444–449 (2008)

    Google Scholar 

  23. Galbusera, F., Bellini, C.M., Raimondi, M.T., Fornari, M., Assietti, R.: Cervical spine biomechanics following implantation of a disc prosthesis. Med. Eng. Phy. 30(9), 1127–1133 (2008)

    Article  Google Scholar 

  24. Galbusera, F., Fantigrossi, A., Raimondi, M.T., Assietti, R., Sassi, M., Fornari, M.: Biomechanics of the C5–C6 spinal unit before and after placement of a disc prosthesis. Biomech. Model. Mechanobiol. 5(4), 253–261 (2006)

    Article  Google Scholar 

  25. George, P.L.: Automatic Mesh Generation. Wiley, London (1993)

    Google Scholar 

  26. Gilbertson, L.G., Goel, V.K., Kong, W.Z., Clausen, J.D.: Finite element methods in spine biomechanics research. Crit. Rev. Biomed. Eng. 23(5–6), 411–473 (1995)

    Google Scholar 

  27. Goel, V.K., Clausen, J.D.: Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine 23(6), 684–691 (1998)

    Article  Google Scholar 

  28. Goel, V.K., Gilbertson, L.G.: Applications of the finite element method to thoracolumbar spine research—past, present, and future. Spine 20, 1719–1727 (1995)

    Article  Google Scholar 

  29. Goel, V.K., Kong, W., Han, J.S., Weinstein, J.N., Gilbertson, L.G.: A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine 18(11), 1531–1541 (1993)

    Google Scholar 

  30. Goel, V.K., Ramirez, S.A., Kong, W., Gilbertson, L.G.: Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine—applications of bone adaptive remodeling concepts. J. Biomech. Eng. 117(3), 226–271 (1995)

    Article  Google Scholar 

  31. Goel, V.K., Weinstein, J.N.: Biomechanics of the spine: Clinical and surgical perspective. CRC Press, Boca Raton (1990)

    Google Scholar 

  32. Goffin, J., Geusens, E., Vantomme, N., Quintens, E., Waerzeggers, Y., Depreitere, B., Van Calenbergh, F., van Loon, J.: Long-term follow-up after interbody fusion of the cervical spine. J. Spinal Disord. 17(2), 79–85 (2004)

    Article  Google Scholar 

  33. Goffin, J., van Loon, J., van Calenbergh, F., Plets, C.: Long-term results after anterior cervical fusion and osteosynthetic stabilization for fractures and/or dislocations of the cervical spine. J. Spinal Disord. 8(6), 500–508 (1995)

    Article  Google Scholar 

  34. Grobler, L.J., Frymoyer, J.W., Robertson, P.A., Novotny, J.E.: Biomechanics of lumbar spinal surgery. Semin. Spine Surg. 5(1), 59–72 (1993)

    Google Scholar 

  35. Grosland, N., Goel, V., Grobler, L.: Comparative biomechanical investigation of multiple interbody fusion cages: a finite element analysis. In: 45th Annual Meeting, Orthopaedic Research Society, Anaheim, CA, p 1002, 1999

    Google Scholar 

  36. Grosland, N.M., Bafna, R., Magnotta, V.A.: Automated hexahedral meshing of human anatomical structures using deformable registration. Comput. Methods Biomech. Biomed. Eng. 12(1), 35–43 (2009a)

    Article  Google Scholar 

  37. Grosland, N.M., Shivanna, K.H., Magnotta, V.A., Kallemeyn, N.A., DeVries, N.A., Tadepalli, S.C., Lisle, C.: IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development. Comput. Methods Programs Biomed. 94(1), 96–107 (2009b)

    Article  Google Scholar 

  38. Hilibrand, A.S., Carlson, G.D., Palumbo, M.A., Jones, P.K., Bohlman, H.H.: Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J. Bone Jt. Surg. Am. 81(4), 519–528 (1999)

    Google Scholar 

  39. Huiskes, R., Heck, J.V.: Stresses in the femoral head-neck region after surface replacement. A three-dimensional finite element analysis. Trans. Orthop. Res. Soc. 6, 174 (1981)

    Google Scholar 

  40. Ito, Y., Shih, A.M., Soni, B.K.: Octree-based reasonable quality hexahedral mesh generation using a new set of refinement templates. Int. J. Numer. Methods Eng. 77(13), 1809–1833 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jacobs, C.R., Davis, B.R., Rieger, C.J., Francis, M., Saad, M., Fyhrie, D.P.: The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite element modeling. J. Biomech. 32, 1159–1164 (1999)

    Article  Google Scholar 

  42. Jacobs, C.R., Mandell, J.A., Beaupre, G.S: A comparative study of automatic finite element mesh generation techniques in orthopaedic biomechanics. In: Bioengineering Conference of ASME, pp. 512–514 (1993)

    Google Scholar 

  43. Kallemeyn, N.A., Gandhi, A.A., Kode, S., Shivanna, K.H., Smucker, J.D., Grosland, N.M.: Validation of a C2–C7 cervical spine finite element model using specimen-specific flexibility data. Med. Eng. Phy. 32(5), 482–489 (2010)

    Article  Google Scholar 

  44. Kallemeyn, N.A., Natarajan, A., Magnotta, V.A., Grosland, N.M.: Hexahedral meshing of subject-specific anatomic structures using mapped building blocks. Under Review (2011)

    Google Scholar 

  45. Kallemeyn, N.A., Tadepalli, S.C., Shivanna, K.H., Grosland, N.M.: An interactive multiblock approach to meshing the spine. Comput. Methods Programs Biomed. 95(3), 227–235 (2009)

    Article  Google Scholar 

  46. Kaminsky, J., Rodt, T., Gharabaghi, A., Forster, J., Brand, G., Samii, M.: A universal algorithm for an improved finite element mesh generation: Mesh quality assessment in comparison to former automated mesh-generators and an analytic model. Med. Eng. Phys. 27(5), 383–394 (2005)

    Article  Google Scholar 

  47. Kang, H., Park, P., La Marca, F., Hollister, S.J., Lin, C.Y.: Analysis of load sharing on uncovertebral and facet joints at the C5-6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: an in vivo image-based finite element study. Neurosurg. Focus 28(6), 9 (2010)

    Article  Google Scholar 

  48. Kasra, M., Shirazi-Adl, A., Drouin, G.: Dynamics of human lumbar intervertebral joints: Experimental and finite-element investigations. Spine 17(1), 93–101 (1992)

    Article  Google Scholar 

  49. Katz, J.N.: Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J. Bone Jt. Surg. 88(Suppl 2), 21–24 (2006)

    Article  Google Scholar 

  50. Keyak, J.H., Meagher, J.M., Skinner, H.B., Mote, C.D.J.: Automated three-dimensional finite element modeling of bone: a new method. J. Biomed. Eng. 12, 389–397 (1990)

    Article  Google Scholar 

  51. Keyak, J.H., Skinner, H.B.: Three-dimensional finite element modeling of bone; effects of element size. J. Biomed. Eng. 14, 483–489 (1992)

    Article  Google Scholar 

  52. Kode, S., Kallemeyn, N.A., Smucker, J.D., Fredericks, D.C., Grosland, N.M.: Biomechanical effects of laminoplasty and laminectomy on the stability of cervical spine. In: ASME Summer Bioengineering Conference, Farmington, PA (2011)

    Google Scholar 

  53. Kode, S., Kallemeyn, N.A., Smucker, J.D., Grosland, N.M.: Finite element model of multi level cervical laminoplasty. In: ASME Summer Bioengineering Conference, Naples, FL (2010)

    Google Scholar 

  54. Kumaresan, S., Yoganandan, N., Pintar, F.A.: Finite element analysis of anterior cervical spine interbody fusion. Biomed. Mater. Eng. 4, 221–230 (1997)

    Google Scholar 

  55. Kumaresan, S., Yoganandan, N., Pintar, F.A.: Finite element modeling approaches of human cervical spine facet joint capsule. J. Biomech. 31(4), 371 (1998)

    Article  Google Scholar 

  56. Le Huec, J.C., Lafage, V., Bonnet, X., Lavaste, F., Josse, L., Liu, M., Skalli, W.: Validated finite element analysis of the Maverick total disc prosthesis. J. Spinal Disord. Tech. 23(4), 249 (2010)

    Article  Google Scholar 

  57. Lepi, S.M.: Practical guide to finite elements: a solid mechanics approach. Mechanical engineering: A Series of Textbooks and Reference Books. Marcel Dekker Inc., New York (1988)

    Google Scholar 

  58. Lopez-Espina, C.G., Amirouche, F., Havalad, V.: Multilevel cervical fusion and its effect on disc degeneration and osteophyte formation. Spine 31(9), 972 (2006)

    Article  Google Scholar 

  59. Lu, Y.M., Hutton, W.C., Gharpuray, V.M.: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine 21(22), 2570–2579 (1996)

    Article  Google Scholar 

  60. Magnotta, V.A., Li, W., Grosland, N.M.: Comparison of displacement-based and force-based mapped meshing. Insight Journal 2008 MICCAI Workshop, Computational Biomechanics for Medicine, 1–10 (2008)

    Google Scholar 

  61. McBroom, R.J., Hayes, W.C., Edwards, W.T., Goldberg, R.P., White, A.A.: Prediction of vertebral body compressive fracture using quantitative computed tomography. J. Bone Jt. Surg. 67A, 1206–1214 (1985)

    Google Scholar 

  62. Mitchell, S.A., Vavasis, S.A.: Quality mesh generation in three dimensions. In: Proc. 8th ACM Conf. on Comp. Geometry pp. 212–221 (1992)

    Google Scholar 

  63. Natarajan, R.N., Williams, J.R., Andersson, G.B.: Recent advances in analytical modeling of lumbar disc degeneration. Spine 29(23), 2733–2741 (2004)

    Article  Google Scholar 

  64. Oonishi, H., Isha, H., Hasegawa, T.: Mechanical analyis of the human pelvis and its application to the artificial hip—by means of the three dimensional finite element. J. Biomech. 16, 427–444 (1983)

    Article  Google Scholar 

  65. Owen, S.J.: A survey of unstructured mesh generation technology. In: Proceedings of the 7th International Meshing Roundtable vol. 3(6), (1998)

    Google Scholar 

  66. Rao, A.A., Dumas, G.A.: Influence of material properties on the mechanical behavior of the L5-S1 intervertebral disc in compression: a nonlinear finite element study. J. Biomed. Eng. 13, 139–151 (1991)

    Article  Google Scholar 

  67. Rohlmann, A., Calisse, J., Bergmann, G., Weber, U.: Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs. Spine 24(12), 1192–1195 (discussion 1195–1196) (1999)

    Google Scholar 

  68. Schoberl, J.: NETGEN-An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual. Sci. 1, 41–52 (1997)

    Article  Google Scholar 

  69. Sherk, H.H., Parke, W.W.: Anatomy. In: Committee, C.S.R.S.E. (ed.) The Cervical Spine. Lippincott, Philadelphia (1989)

    Google Scholar 

  70. Shirazi-Adl, A.: Models of the functional spinal unit. Semin. Spine Surg. 5(1), 23–28 (1993)

    Google Scholar 

  71. Shirazi-Adl, A.: Nonlinear stress analysis of the whole lumbar spine in torsion–mechanics of facet articulation. J. Biomech. 27(3), 289–299 (1994)

    Article  Google Scholar 

  72. Shirazi-Adl, S.A., Shrivatsava, S.C., Ahmed, A.M.: Stress analysis of the lumbar disc-body unit in compression. Spine 9(2), 120 (1984)

    Article  Google Scholar 

  73. Shivanna, K.H., Tadepalli, S.C., Grosland, N.M.: Feature-based multiblock finite element mesh generation. Comput. Aided Des. 42, 1108–1116 (2010)

    Article  Google Scholar 

  74. Spekreijse, S.P.: Elliptic grid generation based on Laplace equations and algebraic transformations. J. Comput. Phy. 118(1), 38–61 (1995)

    Article  MATH  Google Scholar 

  75. Spilker, R.L.: Mechanical behavior of a simple model of an intervertebral disc under compressive loading. J. Biomech. 13, 895–901 (1980)

    Article  Google Scholar 

  76. Spilker, R.L., Daugirda, D.M., Schultz, A.B.: Mechanical response of a simple finite element model of the intervertebral disc under complex loading. J. Biomech. 17(2), 103–112 (1984)

    Article  Google Scholar 

  77. Spilker, R.L., Jakobs, D.M., Schultz, A.B.: Material constants for a finite element model of the intervertebral disk with a fiber composite annulus. J. Biomech. Eng. 108, 1–11 (1986)

    Article  Google Scholar 

  78. Stokes, I.A., Laible, J.P.: Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J. Biomech. 23(6), 589–595 (1990)

    Article  Google Scholar 

  79. Szeliski, R., Lavallée, S.: Matching 3-D anatomical surfaces with non-rigid deformations using octree-splines. Int. J. Comput. Vis. 18(2), 171–186 (1996)

    Article  Google Scholar 

  80. Tadepalli, S.C., Shivanna, K.H., Magnotta, V.A., Kallemeyn, N.A., Grosland, N.M.: Toward the development of virtual surgical tools to aid orthopaedic FE analyses. EURASIP J. Adv. Sig. Process. (2010)

    Google Scholar 

  81. Tautges, T.J., Blacker, T., Mitchell, S.A.: The whisker weaving algorithm: A connectivity-based method for constructing all-hexahedral finite element meshes. Int. J. Numer. Methods Eng. 39(19), 3327–3349 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  82. Teo, E.C., Ng, H.W.: Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method. Med. Eng. Phy. 23(3), 155–164 (2001)

    Article  Google Scholar 

  83. Teo, E.C., Yang, K., Fuss, F.K., Lee, K.K., Qiu, T.X., Ng, H.W.: Effects of cervical cages on load distribution of cancellous core: a finite element analysis. J. Spinal Disord. Tech. 17(3), 226 (2004)

    Article  Google Scholar 

  84. Teo, J.C.M., Chui, C.K., Ong, S.H., Yan, C.H., Wang, S.C., Wong, H.K., Teoh, S.H.: Heterogeneous meshing and biomechanical modeling of human spine. Med. Eng. Phy. 29, 277–290 (2007)

    Article  Google Scholar 

  85. Viceconti, M., Olsen, S., Nolte, L.P., Burton, K.: Extracting clinically relevant data from finite element simulations. Clin. Biomech. 20(5), 451–454 (2005)

    Article  Google Scholar 

  86. Villarraga, M.L., Anderson, R.C., Hart, R.T., Dinh, D.H.: Contact analysis of a posterior cervical spine plate using a three-dimensional canine finite element model. J. Biomech. Eng. 121(2), 206–214 (1999)

    Article  Google Scholar 

  87. Voo, L., Pintar, F.A.: Finite element applications in human cervical spine modeling. Spine 21, 1824–1834 (1996)

    Article  Google Scholar 

  88. Wang, Z.L., Teo, J.C.M., Chui, C.K., Ong, S.H., Yan, C.H., Wang, S.C., Wong, H.K., Teoh, S.H.: Computational biomechanical modelling of the lumbar spine using marching-cubes surface smoothened finite element voxel meshing. Comput. Methods Programs Biomed. 80(1), 25–35 (2005)

    Article  Google Scholar 

  89. Wassell, J.T., Gardner, L.I., Landsittel, D.P., Johnston, J.J., Johnston, J.M.: A prospective study of back belts for prevention of back pain and injury. J. Am. Med. Assoc. 284, 2727–2732 (2000)

    Article  Google Scholar 

  90. Weiss, J.A., Gardiner, J.C., Ellis, B.J., Lujan, T.J., Phatak, N.S.: Three-dimensional finite element modeling of ligaments: Technical aspects. Med. Eng. Phy. 27, 845–861 (2005)

    Article  Google Scholar 

  91. Womack, W., Ayturk, U.M., Puttlitz, C.M.: Cartilage thickness distribution affects computational model predictions of cervical spine facet contact parameters. J. Biomech. Eng. 133, 1–10 (2011)

    Article  Google Scholar 

  92. Womack, W., Woldtvedt, D., Puttlitz, C.M.: Lower cervical spine facet cartilage thickness mapping. Osteoarthr. Cartil. 16, 1018–1023 (2008)

    Article  Google Scholar 

  93. Yoganandan, N., Kumaresan, S., Pintar, F.A.: Geometric and mechanical properties of human cervical spine ligaments. J. Biomech. Eng. 122, 623 (2000)

    Article  Google Scholar 

  94. Yoganandan, N., Kumaresan, S., Voo, L., Pintar, F.A.: Finite element applications in human cervical spine modeling. Spine 21(15), 1824–1834 (1996)

    Article  Google Scholar 

  95. Yoganandan, N., Myklebust, J.B., Ray, G., Sances Jr., A.: Mathematical and finite element analysis of spine injuries. Crit. Rev. Biomed. Eng. 15(1), 29–93 (1987)

    Google Scholar 

  96. Zhang, Y., Hughes, T.J.R., Bajaj, C.L.: An automatic 3D mesh generation method for domains with multiple materials. Comput. Methods Appl. Mech. Eng. 199, 405–415 (2010)

    Article  MATH  Google Scholar 

  97. Zhong, Z.C., Chen, S.H., Hung, C.H.: Load-and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 223(2), 143–157 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole M. Grosland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kallemeyn, N.A. et al. (2011). Advancements in Spine FE Mesh Development: Toward Patient-Specific Models. In: Gefen, A. (eds) Patient-Specific Modeling in Tomorrow's Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_93

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_93

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24617-3

  • Online ISBN: 978-3-642-24618-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics