Skip to main content

Reliable Patient-Specific Simulations of the Femur

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 09))

Abstract

Valuable simulations aimed at diagnosis and optimal treatment in clinical orthopedic practice should demonstrate that their results are verified, validated by experimental observations and obtained on a patient-specific level in a short time-scale. Such verified and validated simulations, based on CT-scans, were recently introduced using high-order finite element methods (p-FEMs), demonstrating an unprecedented prediction capability. We describe herein the methods used for creating p-FEM models of patient-specific femurs (including assignment of inhomogeneous material properties) and the large set of in-vitro experiments used to assess the validity of the simulation results. We thereafter extend the simulation capabilities for the analysis of bone fixations by metallic inserts, demonstrating again the high quality results. Such reliable patient-specific simulations are in an advanced stage to be used on a daily basis in clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    StressCheck is trademark of Engineering Software Research and Development, Inc, St. Louis, MO, USA.

References

  1. Alho, A., Husby, T., Hoiseth, A.: Bone mineral content and mechanical strength An ex-vivo study on human femora and autopsy. Clin. Orthop 227, 292–297 (1988)

    Google Scholar 

  2. Bayraktar, H.H., Morgan, E.F., Niebur, G.L., Morris, G.E., Wong, E.K., Keaveny, M.: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37, 27–35 (2004)

    Article  Google Scholar 

  3. Bergmann, G., Deuretzbacher, G., Heller, M.O., Graichenm, F., Rohlmann, A., Strauss, J., Haas, N.P., Duda, G.N.: Hip contact forces and gait patterns from routine activities. J. Biomech. 34, 859–871 (2001)

    Article  Google Scholar 

  4. Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K., Nakamura, K.: Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40(8), 1745–1753 (2007)

    Article  Google Scholar 

  5. Bland, J.M., Altman, D.G.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476), 307–310 (1986)

    Article  Google Scholar 

  6. Cann, C.E.: Quantitative CT for determination of bone mineral density: a review. Radiology 166, 509–522 (1988)

    Google Scholar 

  7. Carter, D.R., Hayes, W.C.: The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. Am. 59, 954–962 (1977)

    Google Scholar 

  8. Cody, D.D., Hou, F.J., Divine, G.W., Fyhrie, D.P.: Short term in vivo study of proximal femoral finite element modeling. Ann. Biomed. Eng. 28, 408–414 (2000)

    Article  Google Scholar 

  9. Cowin, S.C.: The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4, 137–147 (1985)

    Article  Google Scholar 

  10. Cowin, S.C.: Anisotropic poroelasticity: fabric tensor formulation. Mech. Mater. 36, 665–677 (2004)

    Article  Google Scholar 

  11. Cristofolini, L., Juszczyk, M., Taddei, F., Viceconti, M.: Strain distribution in the proximal human femoral metaphysis. Prof. Inst. Mech. Eng. Part H: J. Eng. Med. 223, 273–288 (2009)

    Article  Google Scholar 

  12. Eberle, S., Gerber, C., von Oldenburg, G., Hungerer, S., Augat, P.: Type of hip fracture determines load share in intramedullary osteosynthesis. Clin. Orthop. Rela. Res. 467, 1972–1980 (2009)

    Article  Google Scholar 

  13. Esses, S.I., Lotz, J.C., Hayes, W.C.: Biomechanical properties of the proximal femur determined in vitro by single-energy quantitative computed tomography. J. Bone Miner. Res. 4, 715–722 (1989)

    Article  Google Scholar 

  14. Franzoso, G., Zysset, P.K.: Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation. ASME J. Biomech. Eng. 021001/1–11 (2009)

    Google Scholar 

  15. Fritsch, A., Hellmich, C.: Universal microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J. Theor. Biol. 244, 597–620 (2007)

    Article  Google Scholar 

  16. Heismann, B.J., Leppert, J., Stierstorfer, K.: Density and atomic number measurements with spectral x-ray attenuation method. J. App. Phys. 94, 2073–2079 (2003)

    Article  Google Scholar 

  17. Heller, M.O., Bergmann, G., Deuretzbacher, G., Durselen, L., Pohl, M., Claes, L., Haas, N.P., Duda, G.N.: Musculo-skeletal loading conditions at the hip during walking and stair climbing. J. Biomech. 34, 883–893 (2001)

    Article  Google Scholar 

  18. Heller, M.O., Bergmann, G., Kassi, J.-P., Claes, L., Haas, N.P., Duda, G.N.: Determination of muscle loading at the hip joint for use in pre-clinical testing. J. Biomech. 38, 1155–1163 (2005)

    Article  Google Scholar 

  19. Hellmich, C., Kober, C., Erdmann, B.: Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann. Biomed. Eng. 36, 108–122 (2008)

    Article  Google Scholar 

  20. Henninger, H.B., Reese, S.P, Anderson, A.E., Weiss, J.A.: Validation of computational models in biomechanics. Proc. IMechE, Part H: Eng. Med. 224(H7), 801–812 (2010)

    Article  Google Scholar 

  21. Hert, J., Fiala, P., Petrtyl, M.: Osteon orientation of the diaphysis of the long bones in man. Bone 15(3), 269–277 (1994)

    Article  Google Scholar 

  22. Keller, T.S.: Predicting the compressive mechanical behavior of bone. J. Biomech. 27, 1159–1168 (1994)

    Article  Google Scholar 

  23. Keyak, J.H., Meagher, J.M., Skinner, H.B., Mote, C.D. Jr: Three-dimensional finite element modelling of bone: a new method. ASME J. Biomech. Eng. 12, 389–397 (1990)

    Google Scholar 

  24. Keyak, J.H., Falkinstein, Y.: Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med. Eng. Phys. 25, 781–787 (2003)

    Article  Google Scholar 

  25. Morgan, E.F., Bayraktar, H.H., Keaveny, T.M.: Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36, 897–904 (2003)

    Article  Google Scholar 

  26. Odgaard, A.: Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4), 315–328 (1997)

    Article  Google Scholar 

  27. Pietruszczak, S., Inglism, D., Pande, G.N.: A fabric-dependent fracture criterion for bone. J. Biomech. 32(10), 1071–1079 (1999)

    Article  Google Scholar 

  28. Pise, U.V., Bhatt, A.D., Srivastava, R.K., Warkedkar, R.: A B-spline based heterogeneous modeling and analysis of proximal femur with graded element. J. Biomech. 42, 1981–1988 (2009)

    Article  Google Scholar 

  29. Ruegsegger, P., Koller, B., Muller, R.: A microtomographic system for the nondestructive evaluation of bone architecture. Calcified Tissue Int. 58(1), 24–29 (1996)

    Article  Google Scholar 

  30. Schileo, E., DallAra, E., Taddei, F., Malandrino, A., Schotkamp, T., Baleani, M., Viceconti, M.: An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J. Biomech. 41, 2483–2491 (2008)

    Article  Google Scholar 

  31. Schneider, R., Faust, G., Hindenlang, U., Helwig, P.: Inhomogeneous, orthotropic material model for the cortical structure of long bones modelled on the basis of clinical CT or density data. Comput. Meth. Appl. Mech. Engrg. 198, 2167–2174 (2009)

    Article  MATH  Google Scholar 

  32. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  33. Szabó, B.A., Babuska, I.: Finite Element Analysis. John-Wiley, New York (1991)

    MATH  Google Scholar 

  34. Taddei, F., Cristofolini, L., Martelli, S., Gill, H.S., Viceconti, M.: Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J. Biomech. 39, 2457–2467 (2006)

    Article  Google Scholar 

  35. Taddei, F., Schileo, E., Helgason, B., Cristofolini, L., Viceconti, M.: The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med. Eng. Phys. 29(9), 973–979 (2007)

    Article  Google Scholar 

  36. Trabelsi, N., Yosibash, Z.: Patient-specific fe analyses of the proximal femur with orthotropic material properties validated by experiments. ASME J. Biomech. Eng. 133(6), 061001-1–061001-11 (2011)

    Article  Google Scholar 

  37. Trabelsi, N., Yosibash, Z., Milgrom, C.: Validation of subject-specific automated p-FE analysis of the proximal femur. J. Biomech 42, 234–241 (2009)

    Article  Google Scholar 

  38. Trabelsi, N., Yosibash, Z., Wutteb, C., Augat, R., Eberle, S.: Patient-specific finite element analysis of the human femur—a double-blinded biomechanical validation. J. Biomech. 44, 1666–1672 (2011)

    Article  Google Scholar 

  39. Verhulp, E., van Rietbergen, B., Huiskes, R.: Comparison of micro-level and continuum-level voxel models of the proximal femur. J. Biomech. 39(16), 2951–2957 (2006)

    Article  Google Scholar 

  40. Yosibash, Z., Padan, R., Joscowicz, L., Milgrom, C.: A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. ASME J. Biomech. Eng. 129(3), 297–309 (2007)

    Article  Google Scholar 

  41. Yosibash, Z., Trabelsi, N., Hellmich, C.: Subject-specific p-FE analysis of the proximal femur utilizing micromechanics based material properties. Int. J. Multiscale Comput. Eng. 6(5), 483–498 (2008)

    Article  Google Scholar 

  42. Yosibash, Z., Trabelsi, N., Milgrom, C.: Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J. Biomech. 40, 3688–3699 (2007)

    Article  Google Scholar 

  43. Zaoui, A.: Continuum micromechanics: survey. J. Eng. Mech. (ASCE) 128(8), 808–816 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Charles Milgrom from the Hadassah Hospital, Jerusalem, for femurs supply and his help with the CT-scans and experiments. Special thanks are extended to Mr. Alon Katz, a graduate student under the supervision of the first author, for his help with FE analyses and experiments. The authors gratefully acknowledge the generous support of the Technische Universität München–Institute for Advanced Study and International Graduate School of Science and Engineering, funded by the German Excellence Initiative, which made parts of this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohar Yosibash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yosibash, Z., Trabelsi, N. (2011). Reliable Patient-Specific Simulations of the Femur. In: Gefen, A. (eds) Patient-Specific Modeling in Tomorrow's Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_89

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_89

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24617-3

  • Online ISBN: 978-3-642-24618-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics