Skip to main content

Characterisation of Trabecular Bone Structure

  • Chapter
  • First Online:
Skeletal Aging and Osteoporosis

Abstract

The characterisation of trabecular bone structure has until recently relied on morphometric analysis of histological sections although there is now wide availability of bench top non-destructive X-ray-based imaging with the ability to resolve trabecular elements at resolution on the order of ~10 microns. The advent of non-destructive X-ray-based imaging, such as micro-computed tomography (micro-CT) has enabled measurements from image datasets, representing the three-dimensional structure of trabecular bone. Ex vivo studies into trabecular bone structure in osteoporosis have mainly focused on clinically relevant skeletal sites, such as the proximal femur, the distal radius and vertebral bodies. In vivo, the iliac crest and the sternum have been used to obtain material for the diagnosis of metabolic bone diseases including osteoporosis. Metaphyseal bone structure is determined early in development as secondary trabeculae emerge from the primary spongiosa in the epiphyseal plates during endochondral bone growth. After closure of the epiphyseal growth plates at skeletal maturity, bone remodelling becomes the predominant means by which bone is added or removed from the trabecular compartment. From the time of attainment of peak bone mass, studies show that there is a decrease in trabecular bone volume through to older age in both sexes, although not at all sites and not uniformly for males and females. Gender specific changes in trabecular bone are most evident at and after the menopause in females, which is associated with decreased estrogen and associated with reduced androgen production in males. The consequence of menopausal or age-related bone loss for females and males, respectively, is a marked increase in fracture incidence, although the changes to the trabecular bone architecture are different between sexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaron, J.E., Makins, N.B., et al.: The microanatomy of trabecular bone loss in normal aging men and women. Clin. Orthop. Relat. Res. 215, 260–271 (1987)

    Google Scholar 

  2. Aaron, J.E., Shore, P.A., et al.: Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone 27, 277–282 (2000)

    Article  Google Scholar 

  3. Amling, M., Herden, S., et al.: Polyostotic heterogeneity of the spine in osteoporosis. Quantitative analysis and three-dimensional morphology. Bone Miner. 27, 193–208 (1994)

    Article  Google Scholar 

  4. Amling, M., Herden, S., et al.: Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur and the calcaneus. J. Bone Miner. Res. 11, 36–45 (1996)

    Article  Google Scholar 

  5. Anonymous. World Medical Association Declaration of Helsinki. W. M. Association (2008)

    Google Scholar 

  6. Badiei, A., Bottema, M.J., et al.: Influence of orthogonal overload on human vertebral trabecular bone mechanical properties. J. Bone Miner. Res. 22, 1690–1699 (2007)

    Article  Google Scholar 

  7. Bevill, G., Eswaran, S.K., et al.: Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone 39, 1218–1225 (2006)

    Article  Google Scholar 

  8. Biewener, A.A.: Safety factors in bone strength. Calcif. Tissue Int. 53(Suppl 1), 68–74 (1993)

    Article  Google Scholar 

  9. Birkenhager-Frenkel, D.H., Courpron, P., et al.: Age-related changes in cancellous bone structure. Bone Miner. 4, 197–216 (1988)

    Google Scholar 

  10. Borah, B., Defresne, T.E., et al.: Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: sequential triple biopsy studies with micro-computed tomography. Bone 39, 345–352 (2006)

    Article  Google Scholar 

  11. Borah, B., Ritman E.L., et al.: The effect of risedronate on bone mineralization as measured by micro-computed tomography with synchrotron radiation: correlation to histomorphometric indices of turnover. Bone 37, 1–9 (2005)

    Article  Google Scholar 

  12. Bouxsein, M.L., Boyd, S.K., et al.: Guidlines for assessment of bone microsctructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468–1486 (2010)

    Article  Google Scholar 

  13. Burr, D.B.: Targeted and nontargeted remodeling. Bone 30, 2–4 (2002)

    Article  Google Scholar 

  14. Byers, S., Moore, A., et al.: Quantitative histomorphometric analysis of the human growth plate from birth to adolescence. Bone 27, 495–501 (2000)

    Article  Google Scholar 

  15. Callis, G.M.: Bone. Theory and practice of histological techniques. In: Bancroft, J.D., Gamble, M. (eds.) pp. 333–364. Churchill Livingstone, London (2008)

    Google Scholar 

  16. Carneiro, R.M., Prebehalla, L., et al.: Lactation and bone turnover: a conundrum of marked bone loss in the setting of coupled bone turnover. J. Clin. Endocrinol. Metab. 95, 1767–1776 (2010)

    Article  Google Scholar 

  17. Chappard, C., Peyrin, F., et al.: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthr. Cartil. 14, 215–223 (2006)

    Article  Google Scholar 

  18. Chappard, D., Legrand E., et al.: Measuring trabecular bone architecture by image analysis of histological sections. Microsc. Anal. 13, 23–25 (1997)

    Google Scholar 

  19. Chappard, D., Legrand, E., et al.: Altered trabecular architecture induced by corticosteroids: a histomorphometric study. J. Bone Miner. Res. 5, 676–685 (1996)

    Google Scholar 

  20. Chavassieux, P., Meunier, P.J.: Histomorphometric approach of bone loss in men. Calcif. Tissue Intern. 69, 209–213 (2001)

    Article  Google Scholar 

  21. Compston, J.E.: Bone histomorphometry––the renaissance. BoneKEy-Osteovis. 1, 9–12 (2004)

    Article  Google Scholar 

  22. Compston, J.E., Mellish, R.W.E., et al.: Structural mechanisms of trabecular bone loss in man. Bone Miner. 6, 339–350 (1989)

    Article  Google Scholar 

  23. Currey, J.: Minimum mass of cancellous bone. Bone: structure and mechanics J. Currey, pp. 224–225. Princeton, Princeton University Press (2002)

    Google Scholar 

  24. Dempster, D.W., Ferguson-Pell, M., et al.: Relationships between bone structure in the iliac crest and bone structure in the lumbar spine. Osteoporos. Int. 3, 90–96 (1993)

    Article  Google Scholar 

  25. Ebbesen, E.N., Thomsen, J.S., et al.: Age- and gender-related differences in vertebral bone mass, density, and strength. J. Bone Miner. Res. 14, 1394–1403 (1999)

    Article  Google Scholar 

  26. Eckstein, F., Matsuura, M., et al.: Sex differences of human trabecular bone microstructure in aging are site specific. J. Bone Miner. Res. 22, 817–824 (2007)

    Article  Google Scholar 

  27. Engelke, K., Gluer, C.C., et al.: Structural and fractal analyses of the trabecular network using micro computed tomography images. J. Bone Miner. Res. 8, S354 (1993)

    Google Scholar 

  28. Fazzalari, N.L., Crisp, D.J., et al.: Mathematical modelling of trabecular bone structure: the evaluation of analytical and quantified surface to volume relationships in the femoral head and iliac crest. J. Biomech. 22, 901–910 (1989)

    Article  Google Scholar 

  29. Fazzalari, N.L., Darracott, J., et al.: A quantitative description of selected stress regions of cancellous bone in the head of the femur using automatic image analysis. Metab. Bone Dis. Relat. Res. 5, 119–125 (1983)

    Article  Google Scholar 

  30. Fazzalari, N.L., Forwood, M.R., et al.: Assessment of cancellous bone quality in severe oseoarthritis: bone mineral dnesity, mechanics and microdamage. Bone 22, 381–388 (1998)

    Article  Google Scholar 

  31. Fazzalari, N.L., Kuliwaba, J.S., et al.: The ratio of messenger RNA levels of receptor activator of nuclear factor kB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J. Bone Miner. Res. 16, 1015–1027 (2001)

    Article  Google Scholar 

  32. Fazzalari, N.L., Kuliwaba, J.S., et al.: Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution. Bone 31, 697–702 (2002)

    Article  Google Scholar 

  33. Fazzalari, N.L., Moore, A., et al.: Quantitative analysis of trabecular morphogenesis in the human costochondral junction during postnatal period in normal subjects. The Anat. Rec. 248, 1–12 (1997)

    Article  Google Scholar 

  34. Fazzalari, N.L., Moore, R.J., et al.: Comparative study of iliac crest and subchondral femoral bone in osteoarthritic patients. Bone 13, 331–335 (1992)

    Article  Google Scholar 

  35. Fazzalari, N.L., Parkinson, I.H.: Femoral trabecular bone of osteoarthritic and normal subjects in an age and sex matched group. Osteoarthr. Cartil. 6, 377–382 (1998)

    Article  Google Scholar 

  36. Fazzalari, N.L., Parkinson, I.H., et al.: Antero-postero differences in cortical thickness and cortical porosity of thoraco-lumbar vertebral bodies. Jt. Bone Spine 73, 293–297 (2006)

    Article  Google Scholar 

  37. Feldkamp, L.A., Goldstein, S.A., et al.: The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Miner. Res. 4, 3–11 (1989)

    Article  Google Scholar 

  38. Fields, A.J., Eswaran, S.K., et al.: Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J. Bone Miner. Res. 24, 1523–1530 (2009)

    Article  Google Scholar 

  39. Frost, H.M.: Tetracycline-based histological analysis of bone remodeling. Calcif. Tissue Res. 3, 211–237 (1969)

    Article  Google Scholar 

  40. Frost, H.M.: Bone histomorphometry: analysis of trabecular bone dynamics. In: Recker R.R. (ed.) Bone histomorphometry: techniques and interpretation, pp. 109–131. CRC Press, Boca Raton (1983)

    Google Scholar 

  41. Frost, H.M.: From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. The Anatomical Record 262, 398–419 (2001)

    Article  Google Scholar 

  42. Glorieux, F.H., Salle, B.L., et al.: Dynamic histomorphometric evaluation of human fetal bone formation. Bone 12, 377–381 (1991)

    Article  Google Scholar 

  43. Guggenbuhl, P.: Osteoporosis in males and females: is there really a difference? Jt. Bone Spine 76, 595–601 (2009)

    Article  Google Scholar 

  44. Guo, X.E., Kim, C.H.: Mechanical consequence of trabecular bone loss and its treatment: a three-dimension model simulation. Bone 30, 404–411 (2002)

    Article  Google Scholar 

  45. Heaney, R.P., Abrams, S., et al.: Peak bone mass. Osteoporos. Int. 11, 985–1009 (2000)

    Article  Google Scholar 

  46. Hildebrand, T., Laib, A., et al.: Direct three-dimensional morphometric analysis of human cancellous bone: microstrucural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14, 1167–1174 (1999)

    Article  Google Scholar 

  47. Hildebrand, T., Ruegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67–75 (1997)

    Article  Google Scholar 

  48. Hildebrand, T., Ruegsegger, P.: Quantification of bone microarchitecture with the structure model index. Comput. Meth. Biomech. Biomed. Eng. 1, 15–23 (1997)

    Article  Google Scholar 

  49. Homminga, J., McCreadie, B.R., et al.: Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structural level, not on the bone hard tissue level. Bone 30, 759–764 (2002)

    Article  Google Scholar 

  50. Hordon, L.D., Raisa, M., et al.: Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two dimensional histology. Bone 27, 271–276 (2000)

    Article  Google Scholar 

  51. Ito, M., Nakmura, T., et al.: Analysis of trabecular microarchitecture of human iliac bone using microcomputed tomography in patients with hip arthrosis with and without vertebral fracture. Bone 23, 163–169 (1998)

    Article  Google Scholar 

  52. Johnell, O., Kanis, J.A.: An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos. Int. 15, 897–902 (2004)

    Article  Google Scholar 

  53. Johnell, O., Kanis, J.A.: An estimate of the worldwide prevalence and disability with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733 (2006)

    Article  Google Scholar 

  54. Kanis, J.A., Borgstrom, F., et al.: Assessment of fracture risk. Osteoporos. Int. 16, 581–589 (2005)

    Article  Google Scholar 

  55. Kaufman, J.M., Goemaere, S.: Osteoporosis in men. Best Pract. Res. Clin. Endocrinol. Metab. 22, 787–812 (2008)

    Article  Google Scholar 

  56. Kimmel, D.B., Jee, W.S.S.: Measurements of area, perimeter and distance: details of data collection in bone histomorphometry. Bone histomorphometry: techniques and interpretation. Recker R.R., pp. 89–108. Boca Raton, CRC Press (1983)

    Google Scholar 

  57. Krug, R., Banerjee, S., et al.: Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos. Int. 16, 1307–1314 (2005)

    Article  Google Scholar 

  58. Kuliwaba, J.S., Findlay, D.M., et al.: Enhanced expression of oseocalcin mRNS in human osteoarthitic trabecular bone of the proximal femur is associated with decreased expression of interleukin-6 and interleukin-11 mRNA. J. Bone Miner. Res. 15, 332–341 (2000)

    Article  Google Scholar 

  59. Ladinsky, G.A., Vasilic, B., et al.: Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J. Bone Miner. Res. 23, 64–74 (2008)

    Article  Google Scholar 

  60. Landin, L.A.: Fracture patterns in children. Acta Orthop. Scand. 202, 100–109 (1983)

    Google Scholar 

  61. Link, T.M., Vieth, V., et al.: High-resolution MRI vs multislice CT: which technique depicts the trabecular structure best? Eur. Radiol. 13, 663–671 (2003)

    Google Scholar 

  62. Liu, X.S., Bevill, G., et al.: Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J. Biomech. 42, 249–256 (2009)

    Article  Google Scholar 

  63. Liu, X.S., Sajda, P., et al.: Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J. Bone Miner. Res. 23, 223–235 (2008)

    Article  Google Scholar 

  64. Liu, X.S., Sajda, P., et al.: Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J. Bone Miner. Res. 21, 1608–1617 (2006)

    Article  Google Scholar 

  65. Liu, X.S., Zhang, X.H., et al.: Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone. ASME Summer Bioengineering Conference, Keystone, Colorado (2007)

    Google Scholar 

  66. Lochmuller, E.M., Matsuura, M., et al.: Site-specific deterioration of trabecular bone architecture in men and women with advancing age. J. Bone Miner. Res. 23, 1964–1973 (2008)

    Article  Google Scholar 

  67. Majumdar, S.: A review of magnetic resonance (MR) imaging of trabecular bone micro-architecture: contribution to the prediction of biomechanical properties and fracture prevalence. Technol. Health Care 6, 321–327 (1998)

    Google Scholar 

  68. Mazess, R.B.: On aging bone loss. Clin. Orthop. Relat. Res. 165, 239–252 (1982)

    Google Scholar 

  69. Meunier, P.J.: Histomorphometry of the skeleton. In: Peck, W.A. (ed.) Bone and mineral research annual, pp. 191–222. Excerpta Medica, Amsterdam (1983)

    Google Scholar 

  70. Moore, R.J., Durbridge, T.C., et al.: Trabecular spacing in post-menopausal Australian women with and without vertebral fractures. Australian and New Zealand J. Med. 22, 269–273 (1992)

    Article  Google Scholar 

  71. Morgan, E.F., Keaveny, T.M.: Dependence of yoield strain of human trabecular bone on anatomic site. J. Biomech. 34, 569–577 (2001)

    Article  Google Scholar 

  72. Mori, S., Harruff, R., et al.: Trabecular bonevolume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21, 521–526 (1997)

    Article  Google Scholar 

  73. Mosekilde, L.: Sex differences in age-related loss of vertebral trabecular bone mass and structure-biomechanical consequences. Bone 10, 425–432 (1989)

    Article  Google Scholar 

  74. Mueller, T.L., Van Lenthe, G.H., et al.: Regional, age and gender differences in architectural measures of bone quality and their contribution to bone mechanical competence in the human radius of an elderly population. Bone 45, 882–891 (2009)

    Article  Google Scholar 

  75. Muller, R., Hahn, M., et al.: Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histological sections. Bone 18, 215–220 (1996)

    Article  Google Scholar 

  76. Muller, R., Hildebrand, T., et al.: Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys. Med. Biol. 39, 145–164 (1994)

    Article  Google Scholar 

  77. Muller, R., Koller, B., et al.: Resolution dependency of microstructural properties of cancellous bone based on three-dimensional micro-tomography. Technol. Health Care 4, 113–119 (1996)

    Google Scholar 

  78. Muller, R., van Campenhout, H., et al.: Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23, 59–66 (1998)

    Article  Google Scholar 

  79. Odgaard, A.: Three-dimensional methods for quantification of cancellous bone architecture. Bone 20, 315–328 (1997)

    Article  Google Scholar 

  80. Odgaard, A., Gundersen, H.J.: Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14, 173–182 (1993)

    Article  Google Scholar 

  81. Pahr, D.H., Zysset, P.K.: A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J. Biomech. 42, 455–462 (2009)

    Article  Google Scholar 

  82. Parfitt, A.M.: Size of bone in the ages: endocortical resorption. J. Bone Miner. Res. 17, 1306 (2002)

    Article  Google Scholar 

  83. Parfitt, A.M.: Targeted and nontargeted bone remodeling: Relationship to basic multicellular unit origination and progression. Bone 30, 5–7 (2002)

    Article  Google Scholar 

  84. Parfitt, A.M., Drezner, M.K., et al.: Bone histomorphometry: standardization of nomenclature, symbols, and units. J. Bone Miner. Res. 2, 595–610 (1987)

    Article  Google Scholar 

  85. Parfitt, A.M., Mathews, C.H.E., et al.: Relationships between surface, volume and thickness if iliac trabecular bone in aging and in osteoporosis. J. Clin. Investig. 72, 1396–1409 (1983)

    Article  Google Scholar 

  86. Parkinson, I.H., Fazzalari, N.L.: Cancellous bone structure analysis using image analysis. Australasian Phys. Eng. Sci. Med. 417, 64–67 (1994)

    Google Scholar 

  87. Parkinson, I.H., Fazzalari, N.L.: Interrelationships between structural parameters of cancellous bone reveal accelerated structural change at low bone volume. J. Bone Miner. Res. 18, 2200–2205 (2003)

    Article  Google Scholar 

  88. Parkinson, I.H., Forbes, D., et al.: Model-independent 3D descriptorss of vertebral cancellous bone architecture. J. Osteoporos. (2010). doi:10.4061/2010/641578

    Google Scholar 

  89. Reginster, J.-Y., Minne, H.W., et al.: Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Osteoporos. Int. 11, 83–91 (2000)

    Article  Google Scholar 

  90. Riggs, B.L., Melton, L.J.: Involutional osteoporosis. The New England J. Med. 314, 1676–1686 (1986)

    Article  Google Scholar 

  91. Riggs, B.L., Melton, L.J.: Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J. Bone Miner. Res. 17, 11–14 (2002)

    Article  Google Scholar 

  92. Riggs, B.L., Melton 3rd, L.J., et al.: Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J. Bone Miner. Res. 19, 1945–1954 (2004)

    Article  Google Scholar 

  93. Robling, A., Castillo, A., et al.: Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8, 455–498 (2006)

    Article  Google Scholar 

  94. Roux, J.P., Wegrzyn, J., et al.: Contribution of trabecular and cortical components to biomechanical behaviour of human vertebrae: an ex vivo study. J. Bone Miner. Res. 25, 356–3561 (2010)

    Article  Google Scholar 

  95. Schaffler, M.B., Choi, K., et al.: Aging and matrix microdamage accumulation in human compact bone. Bone 17, 521–525 (1995)

    Article  Google Scholar 

  96. Schuit, S.C.E., van der Klift, M., et al.: Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34, 195–202 (2004)

    Article  Google Scholar 

  97. Silva, M.J., Gibson, L.J.: Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone 21, 191–199 (1997)

    Article  Google Scholar 

  98. Simpson, E.K., Parkinson, I.H., et al.: Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J. Bone Miner. Res. 16, 681–687 (2001)

    Article  Google Scholar 

  99. Sornay-Rendu, E., Boutroy, S., et al.: Cortical and trabevular architecture are altered in postmenopausal women with fractures. Osteoporos. Int. 20, 1291–1297 (2009)

    Article  Google Scholar 

  100. Stauber, M., Muller, R.: Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos. Int. 17, 616–626 (2006)

    Article  Google Scholar 

  101. Stauber, M., Muller, R.: Volumetric spatial decomposition of trabecular bone into rods and plates—a new method for local bone morphometry. Bone 38, 475–484 (2006)

    Article  Google Scholar 

  102. Stauber, M., Rapillard, L., et al.: Importance of individual rods and plates in the assessment of bone quality and their contribution to the bone stiffness. J. Bone Miner. Res. 21, 586–595 (2006)

    Article  Google Scholar 

  103. Szulc, P., Kaufman, J.M., et al.: Biochemical assessment of bone turnover in men. Osteoporos. Int. 18, 1451–1461 (2007)

    Article  Google Scholar 

  104. Thomsen, J.S., Ebbesen, E.N., et al.: Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study. Bone 30, 267–274 (2002)

    Article  Google Scholar 

  105. Townsend, P.R., Rose, R.M., et al.: Buckling studies of single human trabeculae. J. Biomech. 8, 199–201   (1975)

    Article  Google Scholar 

  106. Tsangari, H., Findlay, D.M., et al.: Structural and remodeling indices in the cancellous bone of the proximal femur across adulthood. Bone 40(1), 211–217 (2006)

    Article  Google Scholar 

  107. van der Linden, J.C., Homminga, J., et al.: Mechanical consequences of bone loss in cancellous bone. J. Bone Miner. Res. 16, 457–465 (2001)

    Article  Google Scholar 

  108. van Staa, T.P., Dennison, E.M., et al.: Epidemiology of fractures in England and Wales. Bone 29, 517–522 (2001)

    Article  Google Scholar 

  109. Wang, Q., Seeman, E.: Skeletal growth and peak bone strength. Best Pract. Res. Clin. Endocrinol. Metab. 22, 687–700 (2008)

    Article  Google Scholar 

  110. Wegrzyn, J., Roux, J.P., et al.: Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae. J. Bone Miner. Res. 25, 2324–2331 (2010)

    Article  Google Scholar 

  111. Weinstein, R.S., Hutson, M.S.: Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging. Bone 8, 137–142 (1987)

    Article  Google Scholar 

  112. Whitehouse, W.J.: The quantitative morphology of anisotropic trabecular bone. J. Microsc. 101, 153–168 (1974)

    Article  Google Scholar 

  113. Yeni, Y.N., Zinno M.J., et al.: Variability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone. Bone 49, 886–894 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the staff of the Bone and Joint Research Laboratory, SA Pathology for their skill in sample preparation and quantitative analyses and The National Health and Medical Research Council, Australia for grant funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian H. Parkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parkinson, I.H., Fazzalari, N.L. (2013). Characterisation of Trabecular Bone Structure. In: Silva, M. (eds) Skeletal Aging and Osteoporosis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_113

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_113

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18052-1

  • Online ISBN: 978-3-642-18053-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics