Skip to main content

Patient-Specific Modeling of the Cornea

  • Chapter
  • First Online:
Patient-Specific Modeling in Tomorrow's Medicine

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 09))

Abstract

This chapter reviews the up-to-date literature in regard to patient-specific modeling of the human cornea. First, the relevant anatomical, morphological and physiological aspects are summarized. Then, examples of non-patient-specific seldom are addressed before existing patient-specific models are discussed. Finally, an overview is presented, of the development of a patient-specific model that can aid the clinician to prognose response to different intraocular pressure controlling medications. This feature can be very useful in cases of keratoconus—a disease of the cornea which involves changes to the corneal microstructure as well as to its macrostructure, gradually causing a conic-like corneal shape that distorts vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghamohammadzadeh H, Newton RH, Meek KM.: X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 12(2), 249–256 (2004)

    Google Scholar 

  2. Anderson, K., El-Sheikh, A., Newson, T.: Application of structural analysis to the mechanical behaviour of the cornea. J. R. Soc. Interface 1(1), 3–15 (2004)

    Article  Google Scholar 

  3. Andreassen, T.T., Simonsen, A.H., Oxlund, H.: Biomechanical properties of keratoconus and normal corneas. Exp. Eye Res. 31(4), 435–441 (1980)

    Article  Google Scholar 

  4. Auffarth, G.U., Wang, L., Völcker, H.E.: Keratoconus evaluation using the orbscan topography system. J. Cataract Refract. Surg. 26(2), 222–228 (2000)

    Article  Google Scholar 

  5. Boote, C., Dennis, S., Meek, K.: Spatial mapping of collagen fibril organisation in primate cornea-an X-ray diffraction investigation. J. Struct. Biol. 146(3), 359–367 (2004)

    Article  Google Scholar 

  6. Bron, A.J.: Keratoconus. Cornea 7(3), 163–169 (1988)

    Article  Google Scholar 

  7. Bryant, M.R., McDonnell, P.J.: Constitutive laws for biomechanical modeling of refractive surgery. J. Biomech. Eng. 118(4), 473–481 (1996)

    Article  Google Scholar 

  8. Buzard, K.A.: Introduction to biomechanics of the cornea. Refract. Corneal Surg. 8(2), 127–138 (1992)

    Google Scholar 

  9. Deenadayalu, C., Mobasher, B., Rajan, S.D., Hall, G.W.: Refractive change induced by the LASIK flap in a biomechanical finite element model. J. Refract. Surg. 22(3), 286–292 (2006)

    Google Scholar 

  10. Edmund, C.: Corneal tissue mass in normal and keratoconic eyes: in vivo estimation based on area of horizontal optical sections. Acta Ophthalmol. (Copenh.) 66(3), 305–308 (1988)

    Article  Google Scholar 

  11. Edmund, C.: Corneal topography and elasticity in normal and keratoconic eyes: a methodological study concerning the pathogenesis of keratoconus. Acta Ophthalmol. Suppl. 193, 1–36 (1989)

    Google Scholar 

  12. Emara, B., Probst, L.E., Tingey, D.P., Kennedy, D.W., Willms, L.J., Machat, J.: Correlation of intraocular pressure and central corneal thickness in normal myopic eyes and after laser in situ keratomileusis. J. Cataract Refract. Surg. 24(10), 1320–1325 (1998)

    Google Scholar 

  13. Gallagher, B., Maurice, D.: Striations of light scattering in the corneal stroma. J. Ultrastruct. Res. 61(1), 100–114 (1977)

    Article  Google Scholar 

  14. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)

    Article  Google Scholar 

  15. Gefen, A., Shalom, R., Elad, D., Mandel, Y.: Biomechanical analysis of the keratoconic cornea. J. Mech. Behav. Biomed. Mater. 2(3), 224–236 (2009)

    Article  Google Scholar 

  16. Govindarajan, S.M., Hurtado, J.A.: Anisotropic Hyperelastic Models in Abaqus. In: Heinrich, G., Kaliske, M., Lion, A., Reese, S. (eds.) Constitutive Models for Rubber VI, vol. 59, pp. 365–369. CRC Press, Oxford (2010)

    Google Scholar 

  17. Grytz, R., Meschke, G.: A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech. Model. Mechanobiol. 9(2), 225–235 (2010)

    Article  Google Scholar 

  18. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61(1–3), 1–48 (2000)

    Google Scholar 

  19. Hjortdal, J.O.: Regional elastic performance of the human cornea. J. Biomech. 29(7), 931–942 (1996)

    Article  Google Scholar 

  20. Ihalainen, A.: Clinical and epidemiological features of keratoconus genetic and external factors in the pathogenesis of the disease. Acta Ophthalmol. Suppl. 178, 1–64 (1986)

    Google Scholar 

  21. Kamiya, K., Aizawa, D., Igarashi, A., Komatsu, M., Shimizu, K.: Effects of antiglaucoma drugs on refractive outcomes in eyes with myopic regression after laser in situ keratomileusis. Am. J. Ophthalmol. 145(2), 233–238 (2008)

    Article  Google Scholar 

  22. Knupp, C., Pinali, C., Lewis, P.N., Parfitt, G.J., Young, R.D., Meek, K.M., Quantock, A.J.: The architecture of the cornea and structural basis of its transparency. Adv. Protein Chem. Struct. Biol. 78, 25–49 (2009)

    Google Scholar 

  23. Li, L.Y., Tighe, B.: The anisotropic material constitutive models for the human cornea. J. Struct. Biol. 153(3), 223–230 (2006)

    Article  Google Scholar 

  24. Mandell, R.B., Polse, K.A.: Keratoconus: spatial variation of corneal thickenss as a diagnostic test. Arch. Ophthalmol. 82(2), 182–188 (1969)

    Article  Google Scholar 

  25. Maurice, D.M.: The cornea and sclera. In: Davson, H. (ed.) The Eye, pp. 489–600. Academic Press, New York (1969)

    Google Scholar 

  26. Maurice, D.M., Davson, E.: The Cornea and Sclera. In: Davson, H. (ed.) The Eye, pp. 1–158. Academic Press, Orlando (1984)

    Google Scholar 

  27. Newton, R.H., Meek, K.M.: The integration of the corneal and limbal fibrils in the human eye. Biophys. J. 75(5), 2508–2512 (1998)

    Article  Google Scholar 

  28. Orssengo, G.J., Pye, D.C.: Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull. Math. Biol. 61(3), 551–572 (1999)

    Article  Google Scholar 

  29. Pandolfi, A., Manganiello, F.: A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5(4), 237–246 (2006)

    Article  Google Scholar 

  30. Pandolfi, A., Fotia, G., Manganiello, F.: Finite element simulations of laser refractive corneal surgery. Eng. Comput. 25(1), 15–24 (2008)

    Article  Google Scholar 

  31. Pandolfi, A., Holzapfel, G.A.: Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J. Biomech. Eng. 130(6), 061006 (2008)

    Article  Google Scholar 

  32. Pinsky, P.M., Datye, D.V.: A microstructurally-based finite element model of the incised human cornea. J. Biomech. 24(10), 907–922 (1991)

    Article  Google Scholar 

  33. Polack, F.M.: Contributions of electron microscopy to the study of corneal pathology. Surv. Ophthalmol. 20(6), 375–414 (1976)

    Article  Google Scholar 

  34. Pouliquen, Y.B., Graf, Y., Kozak, J., Bisson, J., Faure, F., Bourles, F.: Etude morphologique et biochimique de kératocone. I. Etude morphologique, Arch. Ophtalmol. 30, 497–532 (1970)

    Google Scholar 

  35. Roberts, C.J., Zuger, B.J.: The advantage and principle of dual scheimpflug imaging for analyzing the anterior segment of the human eye. www.ziemergroup.com (2006)

  36. Roy, A.S., Dupps Jr, W.J.: Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J. Biomech. Eng. 133(1), 011002 (2011)

    Article  Google Scholar 

  37. Sayers, Z., Koch, M.H., Whitburn, S.B., Meek, K.M., Elliott, G.F., Harmsen, A.: Synchrotron X-ray diffraction study of corneal stroma. J. Mol. Biol. 160(4), 593–607 (1982)

    Article  Google Scholar 

  38. CC, T.E.N.G.: Electron microscope study of the pathology of keratoconus: I. Am. J. Ophthalmol. 55, 18–47 (1963)

    Google Scholar 

  39. Yarker, Y.E., Hukins, D.W., Nave, C.: X-ray diffraction studies of tibial plateau cartilage using synchrotron radiation. Connect. Tissue Res. 12(3–4), 337–343 (1984)

    Article  Google Scholar 

  40. Yaylali, V., Kaufman, S.C., Thompson, H.W.: Corneal thickness measurements with the Orbscan Topography System and ultrasonic pachymetry. J. Cataract Refract. Surg. 23(9), 1345–1350 (1997)

    Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the help of Sharon Sherry for the technical editing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Asher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asher, R., Gefen, A., Varssano, D. (2011). Patient-Specific Modeling of the Cornea. In: Gefen, A. (eds) Patient-Specific Modeling in Tomorrow's Medicine. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 09. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_106

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_106

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24617-3

  • Online ISBN: 978-3-642-24618-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics