Skip to main content

Nanostructured Scaffolds for Bone Tissue Engineering

  • Chapter
  • First Online:
Active Implants and Scaffolds for Tissue Regeneration

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 8))

Abstract

The field of tissue engineering is an emerging discipline that applies basic principles of life sciences and engineering for the repair and restoration of human tissues and organs. Among many tissue types, bone has attracted much attention since it is the second most transplanted tissue in clinics. Bone is a complex tissue where organic and inorganic components interact to maintain an appropriate physio-chemical balance to allow for its cellular and structural functions. Treating bone loss via tissue engineering approach requires the design, fabrication and characterization of biodegradable scaffolds that display similar characteristics as the bone. Scaffolds for bone tissue engineering should have nano/micro structural features similar to the bone extracellular matrix to mimic the bone environment and support the bone cell adhesion, proliferation and differentiation. This chapter mainly focuses on the 3D nanostructured scaffold fabrication techniques and the scaffold characterization for in vitro and in vivo bone tissue engineering. Further, the chapter highlights the various effects of nanofeatures on bone forming cell performance, as well the signaling cascades induced by nanotopography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appleford, M.R., Oh, S., Oh, N., Ong, J.L.: In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. J. Biomed. Mater. Res. A 89(4), 1019–1027 (2009)

    Google Scholar 

  2. Aubin, J.E.: Advances in the osteoblast lineage. Biochem. Cell Biol. 76(6), 899–910 (1998)

    Article  MathSciNet  Google Scholar 

  3. Aubin, J.E.: Bone stem cells. J. Cell Biochem. Suppl. 30–31, 73–82 (1998)

    Article  Google Scholar 

  4. Aubin, J.E.: Regulation of osteoblast formation and function. Rev. Endocr. Metab. Disord. 2(1), 81–94 (2001)

    Article  Google Scholar 

  5. Bilezikian, J.P., Lawrence, G.R., Gideon, A.R.: Ralph Erskine Conrad Memorial Fund. Principles of Bone Biology, 2nd ed. Academic Press, New York (2002)

    Google Scholar 

  6. Carter, D.R.: Mechanical loading histories and cortical bone remodeling. Calcified Tissue Int. 36, 19–24 (1984)

    Article  Google Scholar 

  7. Carter, D.R., Hayes, W.C.: The compressive behavior of bone as a two-phase porous structure. J Bone Jt Surg 59(7), 954 (1977)

    Google Scholar 

  8. Christenson, E.M., Anseth, K.S., van den Beucken, J.J., Chan, C.K., Ercan, B., Jansen, J.A., Laurencin, C.T., Li, W.J., Murugan, R., Nair, L.S., Ramakrishna, S., Tuan, R.S., Webster, T.J., Mikos, A.G.: Nanobiomaterial applications in orthopedics. J. Orthop. Res. 25(1), 11–22 (2007)

    Article  Google Scholar 

  9. Christenson, E.M., Soofi, W., Holm, J.L., Cameron, N.R., Mikos, A.G.: Biodegradable fumarate-based polyhipes as tissue engineering scaffolds. Biomacromolecules 8(12), 3806–3814 (2007)

    Article  Google Scholar 

  10. Clover, J., Dodds, R.A., Gowen, M.: Integrin subunit expression by human osteoblasts and osteoclasts in situ and in culture. J. Cell Sci. 103(Pt 1), 267–271 (1992)

    Google Scholar 

  11. Ducy, P.: Cbfa1: a molecular switch in osteoblast biology. Dev. Dyn. 219(4), 461–471 (2000)

    Article  Google Scholar 

  12. Ducy, P., Starbuck, M., Priemel, M., Shen, J., Pinero, G., Geoffroy, V., Amling, M., Karsenty, G.: A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 13(8), 1025–1036 (1999)

    Article  Google Scholar 

  13. Franz-Odendaal, T.A., Hall, B.K., Witten, P.E.: Buried alive: how osteoblasts become osteocytes. Dev. Dyn. 235(1), 176–190 (2006)

    Article  Google Scholar 

  14. Gibson, L.J.: The mechanical behaviour of cancellous bone. J. Biomech. 18(5), 317–328 (1985)

    Article  Google Scholar 

  15. Gronthos, S., Simmons, P.J., Graves, S.E., Robey, P.G.: Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 28(2), 174–181 (2001)

    Article  Google Scholar 

  16. Gronthos, S., Stewart, K., Graves, S.E., Hay, S., Simmons, P.J.: Integrin expression and function on human osteoblast-like cells. J. Bone Miner. Res. 12(8), 1189–1197 (1997)

    Article  Google Scholar 

  17. Hamilton, D.W., Brunette, D.M.: The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials 28(10), 1806–1819 (2007)

    Article  Google Scholar 

  18. Harada, S., Rodan, G.A.: Control of osteoblast function and regulation of bone mass. Nature 423(6937), 349–355 (2003)

    Article  Google Scholar 

  19. Harvey, E.J., Henderson, J.E., Vengallatore, S.T.: Nanotechnology and bone healing. J. Orthop. Trauma 24(Suppl 1), S25–S30 (2010)

    Article  Google Scholar 

  20. He, F.M., Yang, G.L., YN, Li, Wang, X.X., Zhao, S.F.: Early bone response to sandblasted, dual acid-etched and H2O2/HCL treated titanium implants: an experimental study in the rabbit. Int. J. Oral Maxillofac. Surg. 38(6), 677–681 (2009)

    Article  Google Scholar 

  21. Hilliard, T.J., Meadows, G., Kahn, A.J.: Lysozyme synthesis in osteoclasts. J. Bone Miner. Res. 5(12), 1217–1222 (1990)

    Article  Google Scholar 

  22. Lakes, R.S.: Materials with structural hierarchy. Nature, 361, 511–515 (1993)

    Article  Google Scholar 

  23. Ibbotson, K.J., Roodman, G.D., McManus, L.M., Mundy, G.R.: Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J. Cell Biol. 99(2), 471–480 (1984)

    Article  Google Scholar 

  24. Karsenty, G., Ducy, P., Starbuck, M., Priemel, M., Shen, J., Geoffroy, V., Amling, M.: Cbfa1 as a regulator of osteoblast differentiation and function. Bone 25(1), 107–108 (1999)

    Article  Google Scholar 

  25. Kartsogiannis, V., Ng, K.W.: Cell lines and primary cell cultures in the study of bone cell biology. Mol. Cell. Endocrinol. 228(1–2), 79–102 (2004)

    Article  Google Scholar 

  26. Katagiri, T., Takahashi, N.: Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 8(3), 147–159 (2002)

    Article  Google Scholar 

  27. Keller, T.S., Mao, Z., Spengler, D.M.: Young’s modulus, bending strength and tissue physical properties of human compact bone. J. Orthopaedic Res. 8(4), 592–603 (2005)

    Article  Google Scholar 

  28. Kim, J.B., Leucht, P., Luppen, C.A., Park, Y.J., Beggs, H.E., Damsky, C.H., Helms, J.A.: Reconciling the roles of FAK in osteoblast differentiation, osteoclast remodeling, and bone regeneration. Bone 41(1), 39–51 (2007)

    Article  Google Scholar 

  29. Kofron, M.D.: Bone tissue engineering using an ex vivo gene therapy approach. Ph.D. Thesis, University of Virginia (2007)

    Google Scholar 

  30. Langer, R., Vacanti, J.P.: Tissue engineering. Science 260(5110), 920–926 (1993)

    Article  Google Scholar 

  31. Laurencin, C.T., Ambrosio, A.M., Borden, M.D., Cooper Jr., J.A.: Tissue engineering: orthopedic applications. Annu. Rev. Biomed. Eng. 1, 19–46 (1999)

    Article  Google Scholar 

  32. Laurencin, C.T., Kumbar, S.G., Nukavarapu, S.P.: Nanotechnology and orthopedics: a personal perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(1), 6–10 (2009)

    Article  Google Scholar 

  33. Le Guehennec, L., Goyenvalle, E., Lopez-Heredia, M.A., Weiss, P., Amouriq, Y., Layrolle, P.: Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. Clin. Oral Implants Res. 19(11), 1103–1110 (2008)

    Article  Google Scholar 

  34. Le Guehennec, L., Martin, F., Lopez-Heredia, M.A., Louarn, G., Amouriq, Y., Cousty, J., Layrolle, P.: Osteoblastic cell behavior on nanostructured metal implants. Nanomedicine (Lond) 3(1), 61–71 (2008)

    Article  Google Scholar 

  35. Le Guéhennec, L., Soueidan, A., Layrolle, P., Amouriq, Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23(7), 844–854 (2007)

    Article  Google Scholar 

  36. Liu, X., Ma, P.X.: Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 32(3), 477–486 (2004)

    Article  Google Scholar 

  37. Liu, X., Smith, L.A., Hu, J., Ma, P.X.: Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30(12), 2252–2258 (2009)

    Article  Google Scholar 

  38. Ma, P.X., Elisseeff, J.H.: Scaffolding in Tissue Engineering. Taylor & Francis/CRC Press, London/Boca Raton (2006)

    Google Scholar 

  39. Malaval, L., Liu, F., Roche, P., Aubin, J.E.: Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J. Cell. Biochem. 74(4), 616–627 (1999)

    Article  Google Scholar 

  40. Meirelles, L., Arvidsson, A., Andersson, M., Kjellin, P., Albrektsson, T., Wennerberg, A.: Nano hydroxyapatite structures influence early bone formation. J. Biomed. Mater. Res. A 87(2), 299–307 (2008)

    Google Scholar 

  41. Mooney, D.J., Mazzoni, C.L., Breuer, C., McNamara, K., Hern, D., Vacanti, J.P., Langer, R.: Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 17(2), 115–124 (1996)

    Article  Google Scholar 

  42. Nakagawa, K., Abukawa, H., Shin, M.Y., Terai, H., Troulis, M.J., Vacanti, J.P.: Osteoclastogenesis on tissue-engineered bone. Tissue Eng. 10(1–2), 93–100 (2004)

    Article  Google Scholar 

  43. Nasatzky, E., Gultchin, J., Schwartz, Z., The role of surface roughness in promoting osteointegration. Refuat Hapeh Vehashinayim 20(3), 8–19, 98 (2003)

    Google Scholar 

  44. Nukavarapu, S.P., Kumbar, S.G., Brown, J.L., Krogman, N.R., Weikel, A.L., Hindenlang, M.D., Nair, L.S., Allcock, H.R., Laurencin, C.T.: Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 9(7), 1818–1825 (2008)

    Article  Google Scholar 

  45. Nukavarapu, S.P., Kumbar, S.G., Merrell, J.G., Laurencin, C.T.: Electrospun polymeric nanofiber scaffolds for tissue regeneration. Nanotechnology and Tissue Engineering: The Scaffold. Taylor & Francis, London (2008)

    Google Scholar 

  46. Nukavarapu, S.P., Kumbar, S.G., Nair, L.S., Laurencin, C.T.: Nanostructures for tissue engineering/regenerative medicine. Biomedical Nanostructures. Wiley, New York (2007)

    Google Scholar 

  47. Ramakrishna, S.: An Introduction to Electrospinning and Nanofibers. World Scientific, Singapore (2005)

    Google Scholar 

  48. Reddy, S.V., Roodman, G.D.: Control of osteoclast differentiation. Crit. Rev. Eukaryot. Gene Expr. 8(1), 1–17 (1998)

    Google Scholar 

  49. Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2), 92–102 (1998)

    Article  Google Scholar 

  50. Roehlecke, C., Witt, M., Kasper, M., Schulze, E., Wolf, C., Hofer, A., Funk, R.W.: Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs 168(3), 178–187 (2001)

    Article  Google Scholar 

  51. Roodman, G.D.: Cell biology of the osteoclast. Exp. Hematol. 27(8), 1229–1241 (1999)

    Article  Google Scholar 

  52. Roodman, G.D.: Regulation of osteoclast differentiation. Ann. NY Acad. Sci. 1068, 100–109 (2006)

    Article  Google Scholar 

  53. Schlaepfer, D.D., Hanks, S.K., Hunter, T., van der Geer, P.: Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372(6508), 786–791 (1994)

    Google Scholar 

  54. Shekaran, A., García, A.J.: Extracellular matrix-mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res. A 96(1), 261–272 (2011)

    Google Scholar 

  55. Shin, M., Yoshimoto, H., Vacanti, J.P.: In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 10(1–2), 33–41 (2004)

    Article  Google Scholar 

  56. Shin, S.Y., Park, H.N., Kim, K.H., Lee, M.H., Choi, Y.S., Park, Y.J., Lee, Y.M., Ku, Y., Rhyu, I.C., Han, S.B., Lee, S.J., Chung, C.P.: Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J. Periodontol. 76(10), 1778–1784 (2005)

    Article  Google Scholar 

  57. Siebers, M.C., ter Brugge, P.J., Walboomers, X.F., Jansen, J.A.: Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26(2), 137–146 (2005)

    Article  Google Scholar 

  58. Smith, I.O., Liu, X.H., Smith, L.A., Ma, P.X.: Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(2), 226–236 (2009)

    Article  Google Scholar 

  59. Smith, L.A., Liu, X., Hu, J., Ma, P.X.: The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 31(21), 5526–5535 (2010)

    Article  Google Scholar 

  60. Sun, H., Feng, K., Hu, J., Soker, S., Atala, A., Ma, P.X.: Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials 31(6), 1133–1139 (2010)

    Article  Google Scholar 

  61. Udagawa, N., Takahash, N.: Possible role of receptor activator of Nf-kappa B ligand(RANKL) in osteoclast differentiation and function. Nippon Rinsho 60(Suppl 3), 672–678 (2002)

    Google Scholar 

  62. Wang, H., Eliaz, N., Xiang, Z., Hsu, H.P., Spector, M., Hobbs, L.W.: Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy. Biomaterials 27(23), 4192–4203 (2006)

    Article  Google Scholar 

  63. Wei, G., Jin, Q., Giannobile, W.V., Ma, P.X.: The enhancement of osteogenesis by nano-fibrous scaffolds incorporating Rhbmp-7 nanospheres. Biomaterials 28(12), 2087–2096 (2007)

    Article  Google Scholar 

  64. Woo, K.M., Chen, V.J., Ma, P.X.: Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A 67(2), 531–537 (2003)

    Article  Google Scholar 

  65. Woo, K.M., Jun, J.H., Chen, V.J., Seo, J., Baek, J.H., Ryoo, H.M., Kim, G.S., Somerman, M.J., Ma, P.X.: Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 28(2), 335–343 (2007)

    Article  Google Scholar 

  66. Yim, E.K., Darling, E.M., Kulangara, K., Guilak, F., Leong, K.W.: Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 31(6), 1299–1306 (2010)

    Article  Google Scholar 

  67. Yokoi, H., Kinoshita, T., Zhang, S.: Dynamic reassembly of peptide Rada16 nanofiber scaffold. Proc. Natl. Acad. Sci. USA 102(24), 8414–8419 (2005)

    Article  Google Scholar 

  68. Zaidi, M., Troen, B., Moonga, B.S., Abe, E., Cathepsin, K.: Osteoclastic resorption, and osteoporosis therapy. J. Bone Miner. Res. 16(10), 1747–1749 (2001)

    Article  Google Scholar 

  69. Zinger, O., Anselme, K., Denzer, A., Habersetzer, P., Wieland, M., Jeanfils, J., Hardouin, P., Landolt, D.: Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25(14), 2695–2711 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cato Laurencin or Syam Nukavarapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Igwe, J., Amini, A., Mikael, P., Laurencin, C., Nukavarapu, S. (2011). Nanostructured Scaffolds for Bone Tissue Engineering. In: Zilberman, M. (eds) Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_60

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_60

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18064-4

  • Online ISBN: 978-3-642-18065-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics