Skip to main content

Recent Advances in Microparticle and Nanoparticle Delivery Vehicles for Mucosal Vaccination

  • Chapter
  • First Online:
Book cover Mucosal Vaccines

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 354))

Abstract

The great potential of mucosal vaccination is widely accepted but progress in the clinical development of subunit mucosal vaccines has been disappointing. Of the available approaches, the use of polymer-based microparticles is attractive because these delivery vehicles can be specifically tailored for vaccines and they offer the potential for integration of adjuvant. Here we address recent developments in the use of particulates as mucosal vaccines and the potential of novel targeting strategies, formulation approaches and adjuvant combinations to enhance the efficacy of particle-based mucosal vaccines. This review discusses the current status of mucosal vaccines based on particles and highlights several of the strategies that are currently under investigation for improving their immunogenicity. These include enhancing the stability of formulations in the luminal environment, increasing uptake by specifically targeting particles to mucosal inductive sites, and augmenting immunogenicity through co-formulation with immunostimulatory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado MT, Lambert PH (1992) Controlled-release vaccines–biodegradable polylactide/polyglycolide (PL/PG) microspheres as antigen vehicles. Immunobiology 184:113–125

    PubMed  CAS  Google Scholar 

  • Akagi T, Kawamura M, Ueno M et al (2003) Mucosal immunization with inactivated HIV-1-capturing nanospheres induces a significant HIV-1-specific vaginal antibody response in mice. J Med Virol 69:163–172

    PubMed  Google Scholar 

  • Allaoui-Attarki K, Pecquet S, Fattal E et al (1997) Protective immunity against Salmonella typhimurium elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly(dl-lactide-co-glycolide) microspheres. Infect Immun 65:853–857

    PubMed  CAS  Google Scholar 

  • Almeida AJ, Alpar HO (1996) Nasal delivery of vaccines. J Drug Target 3:455–467

    PubMed  CAS  Google Scholar 

  • Ando S, Putnam D, Pack DW et al (1999) PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. J Pharm Sci 88:126–130

    PubMed  CAS  Google Scholar 

  • Beier R, Gebert A (1998) Kinetics of particle uptake in the domes of Peyer’s patches. Am J Physiol 275:G130–G137

    PubMed  CAS  Google Scholar 

  • Bejon P, Lusingu J, Olotu A et al (2008) Efficacy of RTS, S/AS01E vaccine against malaria in children 5 to 17 months of age. N Engl J Med 359:2521–2532

    PubMed  CAS  Google Scholar 

  • Boland G, Beran J, Lievens M et al (2004) Safety and immunogenicity profile of an experimental hepatitis B vaccine adjuvanted with AS04. Vaccine 23:316–320

    PubMed  CAS  Google Scholar 

  • Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed 1:117–128

    CAS  Google Scholar 

  • Brandtzaeg P, Johansen F-E (2008) The mucosal B-cell system. In: Vajdy M (ed) Immunity against mucosal pathogens. Springer-Verlag, New York, pp 33–76

    Google Scholar 

  • Brayden DJ (2001) Oral vaccination in man using antigens in particles: current status. Eur J Pharm Sci 14:183–189

    PubMed  CAS  Google Scholar 

  • Brooking J, Davis SS, Illum L (2001) Transport of nanoparticles across the rat nasal mucosa. J Drug Target 9:267–279

    PubMed  CAS  Google Scholar 

  • Cahill ES, O’Hagan DT, Illum L et al (1995) Immune responses and protection against Bordetella pertussis infection after intranasal immunization of mice with filamentous haemagglutinin in solution or incorporated in biodegradable microparticles. Vaccine 13:455–462

    PubMed  CAS  Google Scholar 

  • Carcaboso AM, Hernandez RM, Igartua M et al (2003) Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int J Pharm 260:273–282

    PubMed  CAS  Google Scholar 

  • Carcaboso AM, Hernandez RM, Igartua M et al (2004) Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 22:1423–1432

    PubMed  CAS  Google Scholar 

  • Cario E, Rosenberg IM, Brandwein SL et al (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164:966–972

    PubMed  CAS  Google Scholar 

  • Carpenter ZK, Williamson ED, Eyles JE (2005) Mucosal delivery of microparticle encapsulated ESAT-6 induces robust cell-mediated responses in the lung milieu. J Control Release 104:67–77

    PubMed  CAS  Google Scholar 

  • Chabot S, Wagner JS, Farrant S et al (2006) TLRs regulate the gatekeeping functions of the intestinal follicle-associated epithelium. J Immunol 176:4275–4283

    PubMed  CAS  Google Scholar 

  • Challacombe SJ, Rahman D, Jeffery H et al (1992) Enhanced secretory IgA and systemic IgG antibody responses after oral immunization with biodegradable microparticles containing antigen. Immunology 76:164–168

    PubMed  CAS  Google Scholar 

  • Chen F, Zhang ZR, Yuan F et al (2008) In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm 349:226–233

    PubMed  CAS  Google Scholar 

  • Chourasia MK, Jain SK (2003) Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci 6:33–66

    PubMed  CAS  Google Scholar 

  • Clark MA, Blair H, Liang L et al (2001) Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 20:208–217

    PubMed  CAS  Google Scholar 

  • Cleland JL (1999) Single-administration vaccines: controlled-release technology to mimic repeated immunizations. Trends Biotechnol 17:25–29

    PubMed  CAS  Google Scholar 

  • Conway MA, Madrigal-Estebas L, McClean S et al (2001) Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19:1940–1950

    PubMed  CAS  Google Scholar 

  • Coombes AG, Lavelle EC, Davis SS (1999) Biodegradable lamellar particles of poly(lactide) induce sustained immune responses to a single dose of adsorbed protein. Vaccine 17:2410–2422

    PubMed  CAS  Google Scholar 

  • Cranage MP, Manoussaka M (2009) Modern mucosal vaccines, adjuvants and microbicides. Expert Rev Anti Infect Ther 7:21–23

    PubMed  Google Scholar 

  • Cu Y, Saltzman WM (2009) Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm 6:173–181

    PubMed  CAS  Google Scholar 

  • Czerkinsky C, Holmgren J (2011) Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Curr Top Microbiol Immunol (in press)

    Google Scholar 

  • Dailey LA, Wittmar M, Kissel T (2005) The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. J Control Release 101:137–149

    PubMed  CAS  Google Scholar 

  • Damge C, Aprahamian M, Marchais H et al (1996) Intestinal absorption of PLAGA microspheres in the rat. J Anat 189(Pt 3):491–501

    PubMed  CAS  Google Scholar 

  • Dea-Ayuela MA, Rama-Iniguez S, Torrado-Santiago S et al (2006) Microcapsules formulated in the enteric coating copolymer Eudragit L100 as delivery systems for oral vaccination against infections by gastrointestinal nematode parasites. J Drug Target 14:567–575

    PubMed  CAS  Google Scholar 

  • Delgado A, Lavelle EC, Hartshorne M et al (1999) PLG microparticles stabilised using enteric coating polymers as oral vaccine delivery systems. Vaccine 17:2927–2938

    PubMed  CAS  Google Scholar 

  • Desai MP, Labhasetwar V, Amidon GL et al (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845

    PubMed  CAS  Google Scholar 

  • Dong Z, Yang Z, Wang C (2005) Expression of TLR2 and TLR4 messenger RNA in the epithelial cells of the nasal airway. Am J Rhinol 19:236–239

    PubMed  Google Scholar 

  • Douce G, Giannelli V, Pizza M et al (1999) Genetically detoxified mutants of heat-labile toxin from Escherichia coli are able to act as oral adjuvants. Infect Immun 67:4400–4406

    PubMed  CAS  Google Scholar 

  • Elamanchili P, Diwan M, Cao M et al (2004) Characterization of poly(d, l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22:2406–2412

    PubMed  CAS  Google Scholar 

  • Eldridge JH, Meulbroek JA, Staas JK et al (1989) Vaccine-containing biodegradable microspheres specifically enter the gut-associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Adv Exp Med Biol 251:191–202

    PubMed  CAS  Google Scholar 

  • Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK et al (1990) Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J Controlled Release 11:205–214

    CAS  Google Scholar 

  • Fattal E, Pecquet S, Couvreur P et al (2002) Biodegradable microparticles for the mucosal delivery of antibacterial and dietary antigens. Int J Pharm 242:15–24

    PubMed  CAS  Google Scholar 

  • Florence AT, Hillery AM, Hussain N et al (1995) Factors affecting the oral uptake and translocation of polystyrene nanoparticles: histological and analytical evidence. J Drug Target 3:65–70

    PubMed  CAS  Google Scholar 

  • Florindo HF, Pandit S, Goncalves LM et al (2009) New approach on the development of a mucosal vaccine against strangles: systemic and mucosal immune responses in a mouse model. Vaccine 27:1230–1241

    PubMed  CAS  Google Scholar 

  • Foged C, Brodin B, Frokjaer S et al (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298:315–322

    PubMed  CAS  Google Scholar 

  • Foster N, Hirst BH (2005) Exploiting receptor biology for oral vaccination with biodegradable particulates. Adv Drug Deliv Rev 57:431–450

    PubMed  CAS  Google Scholar 

  • Foster N, Clark MA, Jepson MA et al (1998) Ulex europaeus 1 lectin targets microspheres to mouse Peyer’s patch M-cells in vivo. Vaccine 16:536–541

    PubMed  CAS  Google Scholar 

  • Fujimura Y (2000) Evidence of M cells as portals of entry for antigens in the nasopharyngeal lymphoid tissue of humans. Virchows Arch 436:560–566

    PubMed  CAS  Google Scholar 

  • Fujimura Y, Akisada T, Harada T et al (2006) Uptake of microparticles into the epithelium of human nasopharyngeal lymphoid tissue. Med Mol Morphol 39:181–186

    PubMed  Google Scholar 

  • Gallichan WS, Woolstencroft RN, Guarasci T et al (2001) Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol 166:3451–3457

    PubMed  CAS  Google Scholar 

  • Garinot M, Fievez V, Pourcelle V et al (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120:195–204

    PubMed  CAS  Google Scholar 

  • Giannasca PJ, Giannasca KT, Falk P et al (1994) Regional differences in glycoconjugates of intestinal M cells in mice: potential targets for mucosal vaccines. Am J Physiol 267:G1108–G1121

    PubMed  CAS  Google Scholar 

  • Giudice EL, Campbell JD (2006) Needle-free vaccine delivery. Adv Drug Deliv Rev 58:68–89

    PubMed  CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    PubMed  CAS  Google Scholar 

  • Gupta RK, Singh M, O’Hagan DT (1998) Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv Drug Deliv Rev 32:225–246

    PubMed  Google Scholar 

  • Gupta PN, Khatri K, Goyal AK et al (2007) M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 15:701–713

    PubMed  CAS  Google Scholar 

  • Gutierro I, Hernandez RM, Igartua M et al (2002) Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 21:67–77

    PubMed  CAS  Google Scholar 

  • Haltner E, Easson JH, Lehr CM (1997) Lectins and bacterial invasion factors for controlling endo- and transcytosis of bioadhesive drug carrier systems. Eur J Pharm Biopharm 44:3–13

    CAS  Google Scholar 

  • Hamashin C, Spindler L, Russell S et al (2003) Identification of novel small-molecule Ulex europaeus I mimetics for targeted drug delivery. Bioorg Med Chem 11:4991–4997

    PubMed  CAS  Google Scholar 

  • He Q, Mitchell AR, Johnson SL et al (2000) Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol 7:899–903

    PubMed  CAS  Google Scholar 

  • He Q, Mitchell A, Morcol T et al (2002) Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol 9:1021–1024

    PubMed  CAS  Google Scholar 

  • Heritage PL, Brook MA, Underdown BJ et al (1998) Intranasal immunization with polymer-grafted microparticles activates the nasal-associated lymphoid tissue and draining lymph nodes. Immunology 93:249–256

    PubMed  CAS  Google Scholar 

  • Herrmann JE, Chen SC, Jones DH et al (1999) Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles. Virology 259:148–153

    PubMed  CAS  Google Scholar 

  • Hussain N, Florence AT (1998) Utilizing bacterial mechanisms of epithelial cell entry: invasin-induced oral uptake of latex nanoparticles. Pharm Res 15:153–156

    PubMed  CAS  Google Scholar 

  • Illum L, Farraj NF, Davis SS (1994) Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res 11:1186–1189

    PubMed  CAS  Google Scholar 

  • Iqbal M, Lin W, Jabbal-Gill I et al (2003) Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine 21:1478–1485

    PubMed  CAS  Google Scholar 

  • Jaganathan KS, Vyas SP (2006) Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine 24:4201–4211

    PubMed  CAS  Google Scholar 

  • Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    PubMed  CAS  Google Scholar 

  • Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    PubMed  CAS  Google Scholar 

  • Jani PU, Florence AT, McCarthy DE (1992) Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int J Pharm 84:245–252

    CAS  Google Scholar 

  • Jepson MA, Simmons NL, O’Hagan DT et al (1993a) Comparison of poly(dl-lactide-co-glycolide) and polystyrene microsphere targeting to intestinal M cells. J Drug Target 1:245–249

    PubMed  CAS  Google Scholar 

  • Jepson MA, Simmons NL, Savidge TC et al (1993b) Selective binding and transcytosis of latex microspheres by rabbit intestinal M cells. Cell Tissue Res 271:399–405

    PubMed  CAS  Google Scholar 

  • Jones DH, McBride BW, Thornton C et al (1996) Orally administered microencapsulated Bordetella pertussis fimbriae protect mice from B. pertussis respiratory infection. Infect Immun 64:489–494

    PubMed  CAS  Google Scholar 

  • Jung T, Kamm W, Breitenbach A et al (2001) Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18:352–360

    PubMed  CAS  Google Scholar 

  • Kaneko H, Bednarek I, Wierzbicki A et al (2000) Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology 267:8–16

    PubMed  CAS  Google Scholar 

  • Kang ML, Cho CS, Yoo HS (2009) Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv 27:857–865

    PubMed  CAS  Google Scholar 

  • Katz DE, DeLorimier AJ, Wolf MK et al (2003) Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen. Vaccine 21:341–346

    PubMed  CAS  Google Scholar 

  • Kawamura M, Naito T, Ueno M et al (2002) Induction of mucosal IgA following intravaginal administration of inactivated HIV-1-capturing nanospheres in mice. J Med Virol 66:291–298

    PubMed  CAS  Google Scholar 

  • Kazzaz J, Neidleman J, Singh M, Ott G, O’Hagan DT (2000) Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J Control Release 67:347–356

    PubMed  CAS  Google Scholar 

  • Kazzaz J, Singh M, Ugozzoli M et al (2006) Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release 110:566–573

    PubMed  CAS  Google Scholar 

  • Kende M, Yan C, Hewetson J et al (2002) Oral immunization of mice with ricin toxoid vaccine encapsulated in polymeric microspheres against aerosol challenge. Vaccine 20:1681–1691

    PubMed  CAS  Google Scholar 

  • Kerr JR (1999) Cell adhesion molecules in the pathogenesis of and host defence against microbial infection. Mol Pathol 52:220–230

    PubMed  CAS  Google Scholar 

  • Kwon YJ, James E, Shastri N et al (2005) In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci USA 102:18264–18268

    PubMed  CAS  Google Scholar 

  • Lai SK, O’Hanlon DE, Harrold S et al (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 104:1482–1487

    PubMed  CAS  Google Scholar 

  • Lambert JS, Keefer M, Mulligan MJ et al (2001) A Phase I safety and immunogenicity trial of UBI microparticulate monovalent HIV-1 MN oral peptide immunogen with parenteral boost in HIV-1 seronegative human subjects. Vaccine 19:3033–3042

    PubMed  CAS  Google Scholar 

  • Lambkin I, Pinilla C, Hamashin C et al (2003) Toward targeted oral vaccine delivery systems: selection of lectin mimetics from combinatorial libraries. Pharm Res 20:1258–1266

    PubMed  CAS  Google Scholar 

  • Lavelle EC (2001) Targeted delivery of drugs to the gastrointestinal tract. Crit Rev Ther Drug Carrier Syst 18:341–386

    PubMed  CAS  Google Scholar 

  • Lavelle EC (2005) Generation of improved mucosal vaccines by induction of innate immunity. Cell Mol Life Sci 62:2750–2770

    PubMed  CAS  Google Scholar 

  • Li H, Willingham SB, Ting JP et al (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181:17–21

    PubMed  CAS  Google Scholar 

  • Lin SY, Chen KS, Teng HH et al (2000) In vitro degradation and dissolution behaviours of microspheres prepared by three low molecular weight polyesters. J Microencapsul 17:577–586

    PubMed  CAS  Google Scholar 

  • Lunsford L, McKeever U, Eckstein V et al (2000) Tissue distribution and persistence in mice of plasmid DNA encapsulated in a PLGA-based microsphere delivery vehicle. J Drug Target 8:39–50

    PubMed  CAS  Google Scholar 

  • Luzardo-Alvarez A, Blarer N, Peter K et al (2005) Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. J Control Release 109:62–76

    PubMed  CAS  Google Scholar 

  • Macpherson AJ, McCoy KD, Johansen FE et al (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22

    PubMed  CAS  Google Scholar 

  • Maloy KJ, Donachie AM, O’Hagan DT et al (1994) Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology 81:661–667

    PubMed  CAS  Google Scholar 

  • Matsuno K, Ezaki T, Kudo S et al (1996) A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J Exp Med 183:1865–1878

    PubMed  CAS  Google Scholar 

  • McClean S, Prosser E, Meehan E et al (1998) Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci 6:153–163

    PubMed  CAS  Google Scholar 

  • McCluskie MJ, Weeratna RD, Krieg AM et al (2000) CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine 19:950–957

    PubMed  CAS  Google Scholar 

  • Mestecky J, Russell MW (2009) Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol Lett 124:57–62

    PubMed  CAS  Google Scholar 

  • Minne A, Louahed J, Mehauden S et al (2007) The delivery site of a monovalent influenza vaccine within the respiratory tract impacts on the immune response. Immunology 122:316–325

    PubMed  CAS  Google Scholar 

  • Minor P (2009) Vaccine-derived poliovirus (VDPV): impact on poliomyelitis eradication. Vaccine 27:2649–2652

    PubMed  Google Scholar 

  • Misumi S, Masuyama M, Takamune N et al (2009) Targeted delivery of immunogen to primate m cells with tetragalloyl lysine dendrimer. J Immunol 182:6061–6070

    PubMed  CAS  Google Scholar 

  • Miyake A, Akagi T, Enose Y et al (2004) Induction of HIV-specific antibody response and protection against vaginal SHIV transmission by intranasal immunization with inactivated SHIV-capturing nanospheres in macaques. J Med Virol 73:368–377

    PubMed  CAS  Google Scholar 

  • Moldoveanu Z, Novak M, Huang WQ et al (1993) Oral immunization with influenza virus in biodegradable microspheres. J Infect Dis 167:84–90

    PubMed  CAS  Google Scholar 

  • Monie A, Hung CF, Roden R et al (2008) Cervarix: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics 2:97–105

    PubMed  Google Scholar 

  • Monteleone I, Platt AM, Jaensson E et al (2008) IL-10-dependent partial refractoriness to Toll-like receptor stimulation modulates gut mucosal dendritic cell function. Eur J Immunol 38:1533–1547

    PubMed  CAS  Google Scholar 

  • Moore A, McGuirk P, Adams S et al (1995) Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8+ cytotoxic T lymphocytes and CD4+ Th1 cells. Vaccine 13:1741–1749

    PubMed  CAS  Google Scholar 

  • Morcol T, Nagappan P, Nerenbaum L et al (2004) Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin. Int J Pharm 277:91–97

    PubMed  CAS  Google Scholar 

  • Muir A, Soong G, Sokol S et al (2004) Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 30:777–783

    PubMed  CAS  Google Scholar 

  • Naisbett B, Woodley J (1994) The potential use of tomato lectin for oral drug delivery. 1. Lectin binding to rat small intestine in vitro. Int J Pharm 107:223–230

    CAS  Google Scholar 

  • Neutra MR, Kraehenbuhl JP (1992) Transepithelial transport and mucosal defence I: the role of M cells. Trends Cell Biol 2:134–138

    PubMed  CAS  Google Scholar 

  • Newman KD, Elamanchili P, Kwon GS et al (2002) Uptake of poly(d, l-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. J Biomed Mater Res 60:480–486

    PubMed  CAS  Google Scholar 

  • Nochi T, Takagi H, Yuki Y et al (2007) Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci USA 104:10986–10991

    PubMed  CAS  Google Scholar 

  • O’Hagan DT (1996) The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat 189(Pt 3):477–482

    PubMed  Google Scholar 

  • O’Hagan DT (1998) Recent advances in vaccine adjuvants for systemic and mucosal administration. J Pharm Pharmacol 50:1–10

    PubMed  Google Scholar 

  • O’Hagan DT, De Gregorio E (2009) The path to a successful vaccine adjuvant—‘the long and winding road’. Drug Discov Today 14:541–551

    PubMed  Google Scholar 

  • O’Hagan DT, Singh M, Ulmer JB (2006) Microparticle-based technologies for vaccines. Methods 40:10–19

    PubMed  Google Scholar 

  • Pappo J, Ermak TH, Steger HJ (1991) Monoclonal antibody-directed targeting of fluorescent polystyrene microspheres to Peyer’s patch M cells. Immunology 73:277–280

    PubMed  CAS  Google Scholar 

  • Park TG, Lu W, Crotts G (1995) Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly (d, l-lactic acid-co-glycolic acid) microspheres. J Controlled Release 33:211–222

    CAS  Google Scholar 

  • Pun PB, Bhat AA, Mohan T et al (2009) Intranasal administration of peptide antigens of HIV with mucosal adjuvant CpG ODN coentrapped in microparticles enhances the mucosal and systemic immune responses. Int Immunopharmacol 9:468–477

    PubMed  CAS  Google Scholar 

  • Reece JC, Vardaxis NJ, Marshall JA et al (2001) Uptake of HIV and latex particles by fresh and cultured dendritic cells and monocytes. Immunol Cell Biol 79:255–263

    PubMed  CAS  Google Scholar 

  • Roth-Walter F, Bohle B, Scholl I et al (2005) Targeting antigens to murine and human M-cells with Aleuria aurantia lectin-functionalized microparticles. Immunol Lett 100:182–188

    PubMed  CAS  Google Scholar 

  • Roy K, Mao HQ, Huang SK et al (1999) Oral gene delivery with chitosan—DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387–391

    PubMed  CAS  Google Scholar 

  • Russell-Jones GJ (2001) The potential use of receptor-mediated endocytosis for oral drug delivery. Adv Drug Deliv Rev 46:59–73

    PubMed  CAS  Google Scholar 

  • Rydell N, Stertman L, Stalenheim G et al (2006) Use of an oral diphtheria vaccine in human. Vaccine 24:5928–5930

    PubMed  CAS  Google Scholar 

  • Saint-Lu N, Tourdot S, Razafindratsita A et al (2009) Targeting the allergen to oral dendritic cells with mucoadhesive chitosan particles enhances tolerance induction. Allergy 64:1003–1013

    PubMed  CAS  Google Scholar 

  • Salerno-Goncalves R, Pasetti MF, Sztein MB (2002) Characterization of CD8(+) effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol 169:2196–2203

    PubMed  CAS  Google Scholar 

  • Salman HH, Gamazo C, Agueros M, Irache JM (2007) Bioadhesive capacity and immunoadjuvant properties of thiamine-coated nanoparticles. Vaccine 25:8123–8132

    PubMed  CAS  Google Scholar 

  • Salman HH, Irache JM, Gamazo C (2009) Immunoadjuvant capacity of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine 27:4784–4790

    PubMed  CAS  Google Scholar 

  • Sass W, Dreyer HP, Seifert J (1990) Rapid insorption of small particles in the gut. Am J Gastroenterol 85:255–260

    PubMed  CAS  Google Scholar 

  • Seong SY, Cho NH, Kwon IC et al (1999) Protective immunity of microsphere-based mucosal vaccines against lethal intranasal challenge with Streptococcus pneumoniae. Infect Immun 67:3587–3592

    PubMed  CAS  Google Scholar 

  • Sharp FA, Ruane D, Claass B et al (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA 106:870–875

    PubMed  CAS  Google Scholar 

  • Shimosato T, Tohno M, Kitazawa H et al (2005) Toll-like receptor 9 is expressed on follicle-associated epithelia containing M cells in swine Peyer’s patches. Immunol Lett 98:83–89

    PubMed  CAS  Google Scholar 

  • Shreedhar VK, Kelsall BL, Neutra MR (2003) Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T- and B-cell areas of Peyer’s patches. Infect Immun 71:504–509

    PubMed  CAS  Google Scholar 

  • Singh M, Briones M, Ott G et al (2000) Cationic microparticles: A potent delivery system for DNA vaccines. Proc Natl Acad Sci USA 97:811–816

    PubMed  CAS  Google Scholar 

  • Singla AK, Chawla M (2001) Chitosan: some pharmaceutical and biological aspects—an update. J Pharm Pharmacol 53:1047–1067

    PubMed  CAS  Google Scholar 

  • Spit BJ, Hendriksen EG, Bruijntjes JP et al (1989) Nasal lymphoid tissue in the rat. Cell Tissue Res 255:193–198

    PubMed  CAS  Google Scholar 

  • Tabata Y, Ikada Y (1988) Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9:356–362

    PubMed  CAS  Google Scholar 

  • Tabata Y, Inoue Y, Ikada Y (1996) Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine 14:1677–1685

    PubMed  CAS  Google Scholar 

  • Tacket CO, Reid RH, Boedeker EC et al (1994) Enteral immunization and challenge of volunteers given enterotoxigenic. E.coli CFA/II encapsulated in biodegradable microspheres. Vaccine 12:1270–1274

    PubMed  CAS  Google Scholar 

  • Tafaghodi M, Sajadi Tabassi SA, Jaafari MR (2006) Induction of systemic and mucosal immune responses by intranasal administration of alginate microspheres encapsulated with tetanus toxoid and CpG-ODN. Int J Pharm 319:37–43

    PubMed  CAS  Google Scholar 

  • Takahata H, Lavelle EC, Coombes AG et al (1998) The distribution of protein associated with poly(dl-lactide co-glycolide) microparticles and its degradation in simulated body fluids. J Control Release 50:237–246

    PubMed  CAS  Google Scholar 

  • Tango M, Suzuki E, Gejyo F et al (2000) The presence of specialized epithelial cells on the bronchus-associated lymphoid tissue (BALT) in the mouse. Arch Histol Cytol 63:81–89

    PubMed  CAS  Google Scholar 

  • Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    PubMed  CAS  Google Scholar 

  • Thiele L, Merkle HP, Walter E (2003) Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm Res 20:221–228

    PubMed  CAS  Google Scholar 

  • Thompson AH, McRoberts JG, Crowe SR et al (1999) Optimal induction of upper respiratory tract immunity to reovirus 1/L by combined upper and lower respiratory tract inoculation. Vaccine 17:1404–1415

    PubMed  CAS  Google Scholar 

  • Tobio M, Gref R, Sanchez A et al (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15:270–275

    PubMed  CAS  Google Scholar 

  • Tobio M, Sanchez A, Vila A et al (2000) The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B Biointerfaces 18:315–323

    PubMed  CAS  Google Scholar 

  • Ugozzoli M, O’Hagan DT, Ott GS (1998) Intranasal immunization of mice with herpes simplex virus type 2 recombinant gD2: the effect of adjuvants on mucosal and serum antibody responses. Immunology 93:563–571

    PubMed  CAS  Google Scholar 

  • Vajdy M, O’Hagan DT (2001) Microparticles for intranasal immunization. Adv Drug Deliv Rev 51:127–141

    PubMed  CAS  Google Scholar 

  • van Broekhoven CL, Parish CR, Demangel C et al (2004) Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 64:4357–4365

    PubMed  Google Scholar 

  • van Duin D, Medzhitov R, Shaw AC (2006) Triggering TLR signaling in vaccination. Trends Immunol 27:49–55

    PubMed  Google Scholar 

  • Vila A, Sanchez A, Perez C, Alonso MJ (2002a) PLA-PEG nanospheres: new carriers for transmucosal delivery of proteins and plasmid DNA. Polym Adv Technol 13:851–858

    CAS  Google Scholar 

  • Vila A, Sanchez A, Tobio M et al (2002b) Design of biodegradable particles for protein delivery. J Control Release 78:15–24

    PubMed  CAS  Google Scholar 

  • Vila A, Gill H, McCallion O et al (2004a) Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release 98:231–244

    PubMed  CAS  Google Scholar 

  • Vila A, Sanchez A, Evora C et al (2004b) PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med 17:174–185

    PubMed  CAS  Google Scholar 

  • Vyas SP, Gupta PN (2007) Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev Vaccines 6:401–418

    PubMed  CAS  Google Scholar 

  • Wagner S, Lynch NJ, Walter W et al (2003) Differential expression of the murine mannose-binding lectins A and C in lymphoid and nonlymphoid organs and tissues. J Immunol 170:1462–1465

    PubMed  CAS  Google Scholar 

  • Wang YY, Lai SK, Suk JS et al (2008) Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl 47:9726–9729

    PubMed  CAS  Google Scholar 

  • Watts PJ, Davies MC, Melia CD (1990) Microencapsulation using emulsification/solvent evaporation: an overview of techniques and applications. Crit Rev Ther Drug Carrier Syst 7:235–259

    PubMed  CAS  Google Scholar 

  • Whittum-Hudson JA, An LL, Saltzman WM et al (1996) Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection. Nat Med 2:1116–1121

    PubMed  CAS  Google Scholar 

  • Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113:171–199

    PubMed  CAS  Google Scholar 

  • Yeh MK, Liu YT, Chen JL et al (2002) Oral immunogenicity of the inactivated Vibrio cholerae whole-cell vaccine encapsulated in biodegradable microparticles. J Control Release 82:237–247

    PubMed  CAS  Google Scholar 

  • Yue Y, Xu W, Hu L et al (2009) Enhanced resistance to coxsackievirus B3-induced myocarditis by intranasal co-immunization of lymphotactin gene encapsulated in chitosan particle. Virology 386:438–447

    PubMed  CAS  Google Scholar 

  • Yuki Y, Tokuhara D, Nochi T et al (2009) Oral MucoRice expressing double-mutant cholera toxin A and B subunits induces toxin-specific neutralising immunity. Vaccine 27:5982–5988

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Edel McNeela is funded by Enterprise Ireland and Sigmoid Pharma through the Innovation Partnerships Programme (IP20090046). Ed Lavelle’s work on danger signals, mucosal immunity and vaccines is also funded by Science Foundation Ireland (08/RFP/BMT1363, 07/RFP/BICF537, 07/SRC/B1144), and the Meningitis Research Foundation (0610.0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. McNeela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McNeela, E.A., Lavelle, E.C. (2011). Recent Advances in Microparticle and Nanoparticle Delivery Vehicles for Mucosal Vaccination. In: Kozlowski, P. (eds) Mucosal Vaccines. Current Topics in Microbiology and Immunology, vol 354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_140

Download citation

Publish with us

Policies and ethics