Skip to main content

Inhibition of NF-κB Signaling as a Strategy in Disease Therapy

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 349))

Abstract

As described extensively in this issue, NF-κB transcription factors regulate a number of important physiological processes, including inflammation and immune responses, cell growth and survival, and the expression of certain viral genes. Moreover, NF-κB activity is elevated in and contributes to the pathology of several human diseases, including many cancers and chronic inflammatory diseases. Therefore, there has been great interest in the characterization and development of methods to limit NF-κB signaling for pharmacological intervention. This article describes some of the approaches that have been employed to inhibit NF-κB using in vitro and in vivo experimental models. Moreover, some examples of the clinical use of NF-κB inhibitors are discussed, primarily for the treatment of two B-cell malignancies, multiple myeloma and diffuse large B-cell lymphoma. Finally, the rationale and strategies for inhibiting specific NF-κB subunit activity for disease therapy are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5:417–421

    Article  PubMed  CAS  Google Scholar 

  • Agou F, Courtois G, Chiaravalli J, Baleux F, Coïc YM, Traincard F, Israël A, Véron M (2004) Inhibition of NF-κB activation by peptides targeting NF-κB essential modulator (NEMO) oligomerization. J Biol Chem 279:54248–54257

    Article  PubMed  CAS  Google Scholar 

  • Arkan MC, Greten FR (2010) IKK and NF-κB mediated functions in carcinogenesis. Current topics in microbiology and immunology. Springer, Berlin (this issue)

    Google Scholar 

  • Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM (1998) The NF-κB/Rel family of proteins mediates Aβ-induced neurotoxicity and glial activation. Brain Res Mol Brain Res 57:63–72

    Article  PubMed  CAS  Google Scholar 

  • Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Fröhling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, Hahn WC (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112

    Article  PubMed  CAS  Google Scholar 

  • Bassères D, Baldwin AS (2006) Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830

    Article  PubMed  Google Scholar 

  • Bhat-Nakshatri P, Sweeney CJ, Nakshatri H (2002) Identification of signal transduction pathways involved in constitutive activation in breast cancer cells. Oncogene 21:2066–2078

    Article  PubMed  CAS  Google Scholar 

  • Bidère N, Ngo VN, Lee J, Collins C, Zheng L, Wan F, Davis RE, Lenz G, Anderson DE, Arnoult D, Vazquez A, Sakai K, Zhang J, Meng Z, Veenstra TD, Staudt LM, Lenardo MJ (2009) Casein kinase 1α governs antigen-receptor-induced NF-κB activation and human lymphoma cell survival. Nature 458:92–96

    Article  PubMed  Google Scholar 

  • Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF, Sjostrom SK, Garraway LA, Weremowicz S, Richardson AL, Greulich H, Stewart CJ, Mulvey LA, Shen RR, Ambrogio L, Hirozane-Kishikawa T, Hill DE, Vidal M, Meyerson M, Grenier JK, Hinkle G, Root DE, Roberts TM, Lander ES, Polyak K, Hahn WC (2007) Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129:1065–1079

    Article  PubMed  CAS  Google Scholar 

  • Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF, McIntyre KW, Yang X, Iotzova VS, Clarke W, Strnad J, Qiu Y, Zusi FC (2003) BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J Biol Chem 278:1450–1456

    Article  PubMed  CAS  Google Scholar 

  • Campbell IK, Gerondakis S, O’Donnell K, Wicks IP (2000) Distinct roles for the NF-κB1 (p50) and c-Rel transcription factors in inflammatory arthritis. J Clin Invest 105:1799–1806

    Article  PubMed  CAS  Google Scholar 

  • Clark K, Plater L, Peggie M, Cohen P (2009) Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IκB kinase ε: a distinct kinase mediates Ser-172 phosphorylation and activation. J Biol Chem 284:14136–14146

    Article  PubMed  CAS  Google Scholar 

  • Clément JF, Meloche S, Servant MJ (2008) The IKK-related kinase: from innate immunity to oncogenesis. Cell Res 18:889–899

    Article  PubMed  Google Scholar 

  • Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A, Bhagat G, Chadburn A, Dalla-Favera R, Pasqualucci L (2009) Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459:717–721

    Article  PubMed  CAS  Google Scholar 

  • Courtois G, Gilmore TD (2006) Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 25:6831–6843

    Article  PubMed  CAS  Google Scholar 

  • Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-κB inhibition. Cancer Res 61:3535–3540

    PubMed  CAS  Google Scholar 

  • Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194:1861–1874

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, Zhang YQ, Southall N, Staudt LM, Austin CP, Inglese J, Auld DS (2007) A cell-based assay for IκBα stabilization using a two-color dual luciferase-based sensor. Assay Drug Dev Technol 5:85–103

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W, Shaffer AL, Wright G, Xiao W, Powell J, Jiang JK, Thomas CJ, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Johnson NA, Rimsza LM, Campo E, Jaffe ES, Wilson WH, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pierce SK, Staudt LM (2010) Chronic active B-cell-receptor signaling in diffuse large B-cell lymphoma. Nature 463:88–92

    Article  PubMed  CAS  Google Scholar 

  • De Bosscher K, Vanden Berge W, Haegeman G (2006) Cross-talk between nuclear receptors and nuclear factor κB. Oncogene 25:6868–6886

    Article  PubMed  Google Scholar 

  • Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N, Shovlin M, Jaffe ES, Janik JE, Staudt LM, Wilson WH (2009) Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 113:6069–6076

    Article  PubMed  CAS  Google Scholar 

  • Eddy SF, Guo S, Demicco EG, Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Sonenshein GE (2005) Inducible IκB kinase/IκB kinase ε expression is induced by CK2 and promotes aberrant nuclear factor-κB activation in breast cancer cells. Cancer Res 65:11375–11383

    Article  PubMed  CAS  Google Scholar 

  • Edwards MR, Bartlett NW, Clarke D, Birrell M, Belvisi M, Johnston SL (2009) Targeting the NF-κB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther 121:1–13

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich LC, Hu S, Peterson PK, Chao CC (1998) IL-10 down-regulates human microglial IL-8 by inhibition of NF-κB activation. Neuroreport 9:1723–1726

    Article  PubMed  CAS  Google Scholar 

  • Eyre S, Hinks A, Flynn E, Martin P, Wilson AG, Maxwell JR, Morgan AW, Emery P, Steer S, Hocking LJ, Reid DM, Harrison P, Wordsworth P, Thomson W, Worthington J, Barton A (2010) Confirmation of association of the REL locus with rheumatoid arthritis susceptibility in the UK population. Ann Rheum Dis 69:1407–1408

    Article  PubMed  Google Scholar 

  • Fagerlund R, Melén K, Cao X, Julkunen I (2008) NF-kB p52, RelB and c-Rel are transported into the nucleus via a subset of importin alpha molecules. Cell Signal 20:1442–1451

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Dutta J, Gupta N, Fan G, Gélinas C (2008) Regulation of programmed cell death by NF-κB and its role in tumorigenesis and therapy. Adv Exp Med Biol 615:223–250

    Article  PubMed  CAS  Google Scholar 

  • Fenteany G, Schreiber SL (1998) Lactacystin, proteasome function, and cell fate. J Biol Chem 273:8545–8548

    Article  PubMed  CAS  Google Scholar 

  • Folmer F, Jaspars DM, Diederich M (2008) Marine natural products as targeted modulators of the transcription factor NF-κB. Biochem Pharmacol 75:603–617

    Article  PubMed  CAS  Google Scholar 

  • Garber K (2009) Ariad’s NFκB patent claims shot down on appeal. Nat Biotechnol 27:494–495

    Article  PubMed  CAS  Google Scholar 

  • García-Piñeres AJ, Lindenmeyer MT, Merfort I (2004) Role of cysteine residues of p65/NF-κB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci 75:841–856

    Article  PubMed  Google Scholar 

  • Gilmore TD (2007) Multiple myeloma: lusting for NF-κB. Cancer Cell 12:95–97

    Article  PubMed  CAS  Google Scholar 

  • Gilmore TD, Herscovitch M (2006) Inhibitors of NF-κB signaling: 785 and counting. Oncogene 25:6887–6899

    Article  PubMed  CAS  Google Scholar 

  • Gilmore TD, Kalaitzidis D, Liang M-C, Starczynowski DT (2004) The c-Rel transcription factor and B-cell proliferation: a deal with the devel. Oncogene 23:2275–2286

    Article  PubMed  CAS  Google Scholar 

  • Godl K, Gruss OJ, Eickhoff J, Wissing J, Blencke S, Weber M, Degen H, Brehmer D, Õrfi L, Horváth Z, Kéri G, Müller S, Cotton M, Ullrich A, Daub H (2005) Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Res 65:6919–6926

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, Kastner DL, Seldin MF, Criswell LA, Plenge RM, Holers VM, Mikuls TR, Sokka T, Moreland LW, Bridges Jr SL, Xie G, Begovich AB, Siminovitch KA (2009) REL, encoding a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet 41:820–823

    Article  PubMed  CAS  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132:344–362

    Article  PubMed  CAS  Google Scholar 

  • Grisham MB, Palombella VJ, Elliott PJ, Conner EM, Brand S, Wong HL, Pien C, Mazzola LM, Destree A, Parent L, Adams J (1999) Inhibition of NF-κB activation in vitro and in vivo: role of 26S proteasome. Methods Enzymol 300:345–363

    Article  PubMed  CAS  Google Scholar 

  • Guo G, Wang T, Gao Q, Tamae D, Wong P, Chen T, Chen WC, Shively JE, Wong JY, Li JJ (2004) Expression of ErbB2 enhances radiation-induced NF-κB activation. Oncogene 23:535–545

    Article  PubMed  CAS  Google Scholar 

  • Hayes CJ, Sherlock AE, Selby MD (2006) Enantioselective total syntheses of (-)-clasto-lactacystin β-lactone and 7-epi-(-)-clasto-lactacystin β-lactone. Org Biomol Chem 4:193–195

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC (2002) NF-κB as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647

    Article  PubMed  CAS  Google Scholar 

  • Hiscott J, Nguyen T-LA, Arguello M, Nakhaei P, Paz S (2006) Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene 25:6844–6867

    Article  PubMed  CAS  Google Scholar 

  • Jagannath S, Kyle RA, Palumbo A, Siegel DS, Cunningham S, Berenson J (2010) The current status and future of multiple myeloma in the clinic. Clin Lymphoma Myeloma 10:E1–E16

    Google Scholar 

  • Jobin C, Hellerbrand C, Licato LL, Brenner DA, Sartor RB (1998) Mediation by NF-κB of cytokine induced expression of intercellular adhesion molecule 1 (ICAM-1) in an intestinal epithelial cell line, a process blocked by proteasome inhibitors. Gut 42:779–787

    Article  PubMed  CAS  Google Scholar 

  • Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-κB. Trends Endocrinol Metab 16:46–52

    Article  PubMed  CAS  Google Scholar 

  • Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY, Karin M (2000) Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IκB kinase. J Biol Chem 275:36062–36066

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    Article  PubMed  CAS  Google Scholar 

  • Keino H, Watanabe T, Sato Y, Niikura M, Wada Y, Okada A (2008) Therapeutic effect of the potent IL-12/IL-23 inhibitor STA-5326 on experimental autoimmune uveoretinitis. Arthritis Res Ther 10:R122

    Article  PubMed  Google Scholar 

  • Khanna D, Sethi G, Ahn KS, Pandey MK, Kunnumakkara AB, Sung B, Aggarwal A, Aggarwal BB (2007) Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 7:344–351

    Article  PubMed  CAS  Google Scholar 

  • Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM (2001) The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinase. Chem Biol 8:759–766

    Article  PubMed  CAS  Google Scholar 

  • Lai C, Jiang X, Li X (2006) Development of luciferase reporter-based cell assays. Assay Drug Dev Technol 4:307–315

    Article  PubMed  CAS  Google Scholar 

  • Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M, Nong Y, Wen D, Adams J, Dang L, Staudt LM (2005) Small molecule inhibitors of IκB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 11:28–40

    Article  PubMed  CAS  Google Scholar 

  • Lam LT, Davis RE, Ngo VN, Lenz G, Wright G, Xu W, Zhao H, Yu X, Dang L, Staudt LM (2008) Compensatory IKKα activation of classical NF-κB signaling during IKKβ inhibition identified by an RNA interference sensitization screen. Proc Natl Acad Sci USA 105:20798–20803

    Article  PubMed  CAS  Google Scholar 

  • Laubach JP, Mitsiades CS, Mahindra A, Schlossman RL, Hideshima T, Chauhan D, Carreau NA, Ghobrial IM, Raje N, Munshi NC, Anderson KC, Richardson PG (2009) Novel therapies in the treatment of multiple myeloma. Nat Rev Clin Oncol 6:596–603

    Article  Google Scholar 

  • Lee DF, Hung MC (2008) Advances in targeting IKK and IKK-related kinases for cancer therapy. Clin Cancer Res 14:5656–5662

    Article  PubMed  CAS  Google Scholar 

  • Lentsch AB, Shanley TP, Sarma V, Ward PA (1997) In vivo suppression of NF-κB and preservation of IκBα by interleukin-10 and interleukin-13. J Clin Invest 100:2443–2448

    Article  PubMed  CAS  Google Scholar 

  • Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald, A, Ott G, Müller-Hermelink H-K, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smelan EB, Fisher RI, Chan WC, Staudt LM (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319:1676–1679

    Article  PubMed  CAS  Google Scholar 

  • Letoha T, Somlai C, Takacs T, Szabolcs A, Jarmay K, Rakonczay Z Jr, Hegyi P, Varga I, Kaszaki J, Krizbai I, Boros I, Duda E, Kusz E, Penke B (2005) A nuclear import inhibitory peptide ameliorates the severity of cholecystokinin-induced acute pancreatitis. World J Gasteroenterol 11:990–999

    CAS  Google Scholar 

  • Liang M-C, Bardhan S, Li C, Pace EA, Porco JA Jr, Gilmore TD (2003) Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor κB by inhibiting the inhibitor of κB kinase. Mol Pharmacol 64:123–131

    Article  PubMed  CAS  Google Scholar 

  • Liang M-C, Bardhan S, Pace EA, Rosman D, Beutler JA, Porco JA Jr, Gilmore TD (2006) Inhibition of transcription factor NF-κB signaling proteins IKKβ and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochem Pharmacol 71:634–645

    Article  PubMed  CAS  Google Scholar 

  • Lin YZ, Yao SY, Veach RA, Torgerson TR, Hawiger J (1995) Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 270:14255–14258

    Article  PubMed  CAS  Google Scholar 

  • Luedde T, Bereza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, Roskams T, Trautwein C, Pasparakis M (2007) Deletion of NEMO/IKKγ in liver parenchymal cells causes steatoheptatis and hepatocellular carincoma. Cancer Cell 11:119–132

    Article  PubMed  CAS  Google Scholar 

  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78:773–785

    Article  PubMed  CAS  Google Scholar 

  • Pande V, Sousa SF, Ramos MJ (2009) Direct covalent modification as a strategy to inhibit nuclear factor-κB. Curr Med Chem 16:4261–4273

    Article  PubMed  CAS  Google Scholar 

  • Park SJ, Lee MY, Bon BS, Youn HS (2009) TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger. Biosci Biotechnol Biochem 73:1474–1478

    Article  PubMed  CAS  Google Scholar 

  • Pasparakis M (2009) Regulation of tissue homeostasis by NF-κB signaling: implications for inflammatory diseases. Nat Rev Immunol 9:778–788

    Article  PubMed  CAS  Google Scholar 

  • Perkins ND (2006) Post-translational modifications regulating the activity and function of the nuclear factor κB pathway. Oncogene 25:6717–6730

    Article  PubMed  CAS  Google Scholar 

  • Pianetti S, Arsura M, Romieu-Mourez R, Coffey RJ, Sonenshein GE (2001) Her-1/Neu overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IκB-α that can be inhibited by the tumor suppressor PTEN. Oncogene 20: 1287–1299

    Article  PubMed  CAS  Google Scholar 

  • Ríos JL, Recio MC, Escandell JM, Andújar I (2009) Inhibition of transcription factors by plant-derived compounds and their implications in inflammation and cancer. Curr Pharm Des 15:1212–1237

    Article  PubMed  Google Scholar 

  • Sakurai T, Maeda S, Chang L, Karin M (2006) Loss of hepatic NF-κB activity enhances chemical carcionogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci USA 103:10544–10551

    Article  PubMed  CAS  Google Scholar 

  • Scheidereit C (2006) IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25:6685–6705

    Article  PubMed  CAS  Google Scholar 

  • Sen J, Venkataraman L, Shinkai Y, Pierce JW, Alt FW, Burakoff SJ, Sen R (1995) Expression and induction of nuclear factor-κB-related proteins in thymocytes. J Immunol 154:3213–3221

    PubMed  CAS  Google Scholar 

  • Shishodia S, Sethi G, Konopleva M, Andreeff M, Aggarwal BB (2006) A synthetic triterpenoid, CDDO-Me, inhibits IκBα kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor κB-regulated gene products in human leukemic cells. Clin Cancer Res 12:1828–1838

    Article  PubMed  CAS  Google Scholar 

  • Skaug B, Jiang X, Chen ZJ (2009) The role of ubiquitin in NF-κB regulatory pathways. Annu Rev Biochem 78:769–796

    Article  PubMed  CAS  Google Scholar 

  • Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang C-H, Sengchanthalangsy LL, Ghosh G, Glass CK (2000) 15-deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc Natl Acad Sci USA 97:4844–4849

    Article  PubMed  CAS  Google Scholar 

  • Strickland I, Ghosh S (2006) Use of cell permeable NBD peptides for suppression of inflammation. Ann Rheum Dis 65(Suppl 3):iii75–iii82

    Google Scholar 

  • Su Y, Amiri KI, Horton LW, Yu Y, Ayers GD, Koehler E, Kelley MC, Puzanov I, Richmond A, Sosman JA (2010) A phase I trial of bortezomib with temozolomide in patients with advanced melanoma: toxicities, antitumor effects, and modulation of therapeutic targets. Clin Cancer Res 16:348–357

    Article  PubMed  CAS  Google Scholar 

  • Sun S-C, Cesarman E (2010) NF-κB as a target for oncogenic viruses. In: Current topics in microbiology and immunology. Springer, Berlin (this issue)

    Google Scholar 

  • Swinney DC, Xu Y-Z, Scarafia LE, Lee I, Mak AY, Gan Q-F, Ramesha CS, Mulkins MA, Dunn J, So O-Y, Biegel T, Dinh M, Volkel P, Barnett J, Dalrymple SA, Lee S, Huber M (2002) A small molecule ubiquitination inhibitor blocks NF-κB-dependent cytokine expression in cells and rats. J Biol Chem 277:23573–23581

    Article  PubMed  CAS  Google Scholar 

  • Takigawa N, Vaziri SA, Grabowski DR, Chikamori K, Rybicki LR, Bukowski RM, Ganapathi MK, Ganapathi R, Mekhail T (2006) Proteasome inhibition with bortezomib enhances activity of topoisomerase I-targeting drugs by NF-κB-independent mechanisms. Anticancer Res 26:1869–1876

    PubMed  CAS  Google Scholar 

  • Tang W, Li Y, Yu D, Thomas-Tikhonenko A, Spiegelman VS, Fuchs SY (2005) Targeting β-transducin repeat-containing protein E3 ubiquitin ligase augments the effects of antitumor drugs on breast cancer cells. Cancer Res 65:1904–1908

    Article  PubMed  CAS  Google Scholar 

  • Taylor PC, Feldmann (2009) Anti-TNF biologic agents still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 5:578–582

    Article  PubMed  CAS  Google Scholar 

  • Tian W, Liou H-C (2009) RNAi-mediated c-Rel silencing leads to apoptosis of B cell tumor cells and suppresses antigenic immune response in vivo. PLoS ONE 4:e5028

    Article  PubMed  Google Scholar 

  • Torgerson TR, Colosia AD, Donahue JP, Lin Y-Z, Hawiger J (1998) Regulation of NF-κB, AP-1, NFAT, and STAT1 nuclear import in T lymphocytes by noninvasive delivery of peptide carrying the nuclear localization sequence of NF-κB p50. J Immunol 161:6084–6092

    PubMed  CAS  Google Scholar 

  • Tran TA, McCoy MK, Sporn MB, Tansey MG (2008) The synthetic triterpenoid CDDO-methyl ester modulates microglial activities, inhibits TNF production, and provides dopaminergic neuroprotection. J Neuroinflammation 5:14

    Article  PubMed  Google Scholar 

  • Trepicchio WL, Dorner AJ (1998) The therapeutic utility of Interleukin-11 in the treatment of inflammatory disease. Expert Opin Investig Drugs 7:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto S, Takeuchi T, Rotinsulu H, Mangindaan RE, van Soest RW, Ukai K, Kobayashi H, Namikoshi M, Ohta T, Yokosawa H (2008) Leucettamol A: a new inhibitor of Ubc13-Uev1A interaction isolatd from a marine sponge, Leucetta aff. microrhaphis. Bioorg Med Chem Lett 18: 6319–6320

    Article  PubMed  CAS  Google Scholar 

  • Umezawa K, Chaicharoenpong C (2002) Molecular design and biological activities of NF-κB inhibitors. Mol Cells 14:163–167

    PubMed  CAS  Google Scholar 

  • Venkataraman L, Burakoff SJ, Sen R (1995) FK506 inhibits antigen receptor-mediated induction of c-rel in B and T lymphoid cells. J Exp Med 181:1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Nakashima M, Togano T, Higashihara M, Watanabe T, Umezawa K, Horie R (2008) Identification of the RelA domain responsible for action of a new NF-κB inhibitor DHMEQ. Biochem Biophys Res Commun 376:310–314

    Article  PubMed  CAS  Google Scholar 

  • Wiestner A, Staudt LM (2003) Towards molecular diagnosis and targeted therapy of lymphoid malignancies. Semin Hematol 40:296–307

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Rinderspacher A, Liu Y, Gong G, Smith DH, Wyler M, Brandén L, Deng SX (2009) Small-molecule modulators of the NF-κB pathway newly identified by a translocation-based cellular assay. Curr Top Med Chem 9:1172–1180

    Article  PubMed  CAS  Google Scholar 

  • Yaron A, Gonen H, Alkalay I, Hatzubai A, Jung S, Beyth S, Mercurio F, Manning AM, Ciechanover A, Ben-Neriah Y (1997) Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J 16:6486–6494

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Georgakis GV, Li Y, Bharti A, McConkey D, Aggarwal BB, Younes A (2004) Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of inhibitor of nuclear factor-κB mutations or activation of the CD30, CD40, and RANK receptors. Clin Cancer Res 10:3207–3215

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Monack DM, Kayagaki N, Wertz I, Yin J, Wolf B, Dixit VM (2005) Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-κB activation. J Exp Med 202:1327–1332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eric Widmaier (Boston University) for comments on the manuscript. Research in our laboratory is supported by NIH grants CA047763 and CA047763-21S3 (to TDG). For a comprehensive list of NF-κB inhibitors and their targets, see our lab website at www.nf-kb.org (click on Inhibitors).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Gilmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilmore, T.D., Garbati, M.R. (2010). Inhibition of NF-κB Signaling as a Strategy in Disease Therapy. In: Karin, M. (eds) NF-kB in Health and Disease. Current Topics in Microbiology and Immunology, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_105

Download citation

Publish with us

Policies and ethics