Skip to main content

Functional and Pharmacological MRI in Understanding Brain Function at a Systems Level

  • Chapter
  • First Online:
Molecular and Functional Models in Neuropsychiatry

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 7))

Abstract

Functional magnetic resonance imaging (fMRI) methods have been extensively applied to study the human brain and its functional organization in healthy and disease states. A strong rationale exists for the extension of this approach to animal models as a translational tool to bridge clinical and preclinical research. Specifically, the development of pharmacological MRI (phMRI), i.e., the use of fMRI to map spatiotemporal patterns of brain activity induced by pharmacological agents, has provided a robust and flexible tool to resolve brain circuits and mechanism-specific functional changes produced by selective intervention in different neurotransmitter systems in vivo. This chapter describes the methodological aspects of fMRI and phMRI in preclinical species, and some of the key findings, with a special emphasis on the translational potential of these methods in neuropharmacological research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine

Acb:

Nucleus accumbens

BOLD:

Blood oxygen level dependent

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

CRF:

Corticotropin-releasing factor

EEG:

Electro-encephalogram

FDG:

18F-fluoro-deoxy-glucose

fMRI:

Functional magnetic resonance imaging

GABA:

γ-Aminobutyric acid

GlyT-1:

Glycine transporter type-I

mCPP:

1-(m-Chlorophenyl) piperazine

MEG:

Magneto-encephalography

mPFC:

Medial prefrontal cortex

MRI:

Magnetic resonance imaging

nAChR:

Nicotinic acetylcholine receptor

NK1:

Neurokinin 1 (NK1)

NMDAR:

N-methyl-d-aspartate receptor

PCP:

Phencyclidine

PET:

Positron emitting tomography

phMRI:

Pharmacological magnetic resonance imaging

rCBV:

Relative cerebral blood volume

VTA:

Ventral tegmental area

References

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:e17

    PubMed  Google Scholar 

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72

    PubMed  CAS  Google Scholar 

  • Adey WR, Walter DO, Hendrix CE (1961) Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior. Exp Neurol 3:501–524

    PubMed  CAS  Google Scholar 

  • Anand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A et al (2000) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry 57:270–276

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994) Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci 14:4467–4480

    PubMed  CAS  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    PubMed  CAS  Google Scholar 

  • Bartlett EJ, Brown JW, Wolf AP, Brodie JD (1987) Correlations between glucose metabolic rates in brain regions of healthy male adults at rest and during language stimulation. Brain Lang 32:1–18

    PubMed  CAS  Google Scholar 

  • Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152

    PubMed  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    PubMed  Google Scholar 

  • Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D et al (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30:2393–2400

    PubMed  CAS  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    PubMed  CAS  Google Scholar 

  • Carlsson A, Waters N, Carlsson ML (1999) Neurotransmitter interactions in schizophrenia–herapeutic implications. Biol Psychiatry 46:1388–1395

    PubMed  CAS  Google Scholar 

  • Cavazzuti M, Porro CA, Biral GP, Benassi C, Barbieri GC (1987) Ketamine effects on local cerebral blood flow and metabolism in the rat. J Cereb Blood Flow Metab 7:806–811

    PubMed  CAS  Google Scholar 

  • Ceolin L, Schwarz A, Giarola A, Reese T, Gozzi A, Bifone A (2004). Temporal dynamics of brain tissue pO2, blood flow and blood volume in phMRI of cocaine. In: Proceedings of Thirteenth ISMRM scientific meeting and exhibition: 226

    Google Scholar 

  • Cervo L, Cocco A, Petrella C, Heidbreder CA (2007) Selective antagonism at dopamine D3 receptors attenuates cocaine-seeking behaviour in the rat. Int J Neuropsychopharmacol 10:167–181

    PubMed  CAS  Google Scholar 

  • Chen YC, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O et al (1997) Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med 38:389–398

    PubMed  CAS  Google Scholar 

  • Chen YI, Choi JK, Jenkins BG (2005a) Mapping interactions between dopamine and adenosine A2a receptors using pharmacologic MRI. Synapse 55:80–88

    PubMed  CAS  Google Scholar 

  • Chen Z, Silva AC, Yang J, Shen J (2005b) Elevated endogenous GABA level correlates with decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase. J Neurosci Res 79:383–391

    PubMed  CAS  Google Scholar 

  • Chen CH, Ridler K, Suckling J, Williams S, Fu CH, Merlo-Pich E et al (2007) Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol Psychiatry 62:407–414

    PubMed  CAS  Google Scholar 

  • Choi J, Chen Y-CI, Hamel E, Jenkins BG (2003). Coupling of hemodynamic changes induced by dopamine drugs with dopamine receptor distribution on the cerebral microvasculature. In: Book of abstracts: Eleventh annual meeting of the international society of magnetic resonance in medicine: 356

    Google Scholar 

  • Clinton SM, Meador-Woodruff JH (2004) Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res 69:237–253

    PubMed  Google Scholar 

  • Congestri F, Formenti F, Sonntag V, Hedou G, Crespi F (2009) Selective D3 receptor antagonist sb-277011-a potentiates the effect of cocaine on extracellular dopamine in the nucleus accumbens: a dual core-shell voltammetry study in anesthetized rats. Sensors 8:6936–6951

    Google Scholar 

  • Deakin JFW, Lees J, McKie S, Hallak JEC, Williams SR, Dursun SM (2008) Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry 65:154–164

    PubMed  Google Scholar 

  • Dixon AL, Prior M, Morris PM, Shah YB, Joseph MH, Young AMJ (2005) Dopamine antagonist modulation of amphetamine response as detected using pharmacological MRI. Neuropharmacology 48:236–245

    PubMed  CAS  Google Scholar 

  • Duncan GE, Leipzig JN, Mailman RB, Lieberman JA (1998a) Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Res 812:65–75

    PubMed  CAS  Google Scholar 

  • Duncan GE, Moy SS, Knapp DJ, Mueller RA, Breese GR (1998b) Metabolic mapping of the rat brain after subanesthetic doses of ketamine: potential relevance to schizophrenia. Brain Res 787:181–190

    PubMed  CAS  Google Scholar 

  • Duncan GE, Zorn S, Lieberman JA (1999) Mechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia. Mol Psychiatry 4:418–428

    PubMed  CAS  Google Scholar 

  • Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102

    PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    PubMed  CAS  Google Scholar 

  • Everitt BJ, Landau S, Leese M (2001) Cluster analysis. Arnold, London

    Google Scholar 

  • Farber NB (2003) The NMDA receptor hypofunction model of psychosis. Ann N Y Acad Sci 1003:119–130

    PubMed  CAS  Google Scholar 

  • Febo M, Segarra AC, Tenney JR, Brevard ME, Duong TQ, Ferris CF (2004) Imaging cocaine-induced changes in the mesocorticolimbic dopaminergic system of conscious rats. J Neurosci Methods 139:167–176

    PubMed  CAS  Google Scholar 

  • Febo M, Segarra AC, Nair G, Schmidt K, Duong TQ, Ferris CF (2005) The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsychopharmacology 30:936–943

    PubMed  CAS  Google Scholar 

  • Flecknell P (1987) Laboratory animal anesthesia. Academic, Cambridge

    Google Scholar 

  • Frahm J, Bruhn H, Merbolt K, Hanicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. Magn Reson Imag 2:501–505

    CAS  Google Scholar 

  • Friston KJ (1996) Statistical parametric mapping and other analyses of functional imaging data. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, San Deigo, pp 363–386

    Google Scholar 

  • Friston KJ (1997) Analyzing brain images: principles and overview. In: Frackowiak RSJ, Friston KJ, Frith C, Dolan R, Mazziotta JC (eds) Human brain function. Academic, London, pp 25–41

    Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. JCBFM 13:5–14

    CAS  Google Scholar 

  • Friston KJ, Jezzard P, Turner R (1994) Analysis of functional MRI time-series. Hum Brain Map 1:153–171

    Google Scholar 

  • Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J et al (2004) Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry 61:877–889

    PubMed  Google Scholar 

  • Gerstein GL, Perkel DH (1969) Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 164:828–830

    PubMed  CAS  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    PubMed  Google Scholar 

  • Gozzi A, Schwarz AJ, Reese T, Crestan V, Bertani S, Turrini G et al (2004) Brain functional imaging of intracerebroventricular injection of Corticotropin-releasing factor (CRF) in the anaesthetised rat. In: Book of abstracts – Twelfth ISMRM Scientific Meeting and Exhibition, Kyoto 12: 226

    Google Scholar 

  • Gozzi A, Schwarz AJ, Reese T, Crestan V, Bertani S, Turrini G et al (2005) Functional magnetic resonance mapping of intracerebroventricular infusion of a neuroactive peptide in the anaesthetised rat. J Neurosci Methods 142:115–124

    PubMed  CAS  Google Scholar 

  • Gozzi A, Ceolin L, Schwarz AJ, Bertani S, Reese T, Bifone A (2006a). PhMRI of brain deactivation: effects of the antiepileptic agent tiagabine on cerebral haemodynamics. In: Book of abstracts: 14th Annual Meeting of the International Society of Magnetic Resonance in Medicine, P-802: 307

    Google Scholar 

  • Gozzi A, Schwarz A, Reese T, Bertani S, Crestan V, Bifone A (2006b) Region-specific effects of nicotine on brain activity: a pharmacological MRI study in the drug-naïve rat. Neuropsychopharmacology 31:1690–1703

    PubMed  CAS  Google Scholar 

  • Gozzi A, Ceolin L, Schwarz A, Reese T, Bertani S, Bifone A (2007) A multimodality investigation of cerebral haemodynamics and autoregulation in phMRI. Magn Reson Imaging 25:826–833

    PubMed  Google Scholar 

  • Gozzi A, Herdon H, Schwarz A, Bertani S, Crestan V, Turrini G et al (2008a) Pharmacological stimulation of NMDA receptors via co-agonist site suppresses fMRI response to phencyclidine in the rat. Psychopharmacology 201:273–284

    PubMed  CAS  Google Scholar 

  • Gozzi A, Large C, Schwarz A, Bertani S, Crestan V, Bifone A (2008b) Differential effects of antipsychotic and glutamatergic agents on the phMRI response to phencyclidine. Neuropsychopharmacology 33:1690–1703

    PubMed  CAS  Google Scholar 

  • Gozzi A, Schwarz AJ, Reese T, Crestan V, Bifone A (2008c) Drug-anaesthetic interaction in phMRI: the case of the pyschotomimetic agent phencyclidine. Magn Reson Imaging 26:999–1006

    PubMed  CAS  Google Scholar 

  • Gozzi A, Crestan V, Turrini G, Clemens M, Bifone A (2010a) Antagonism at serotonin 5-HT2A receptors modulates functional activity of fonto-hippocampal circuit. Psychopharmacology 209:37–50

    PubMed  CAS  Google Scholar 

  • Gozzi A, Apar J, Giovanelli A, Bertollini C, Crestan V, Schwarz AJ et al (2010b) A neural switch for active and passive fear. Neuron 67:656–666

    PubMed  CAS  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    PubMed  CAS  Google Scholar 

  • Heidbreder CA, Gardner EL, Xi ZX, Thanos PK, Mugnaini M, Hagan JJ et al (2005) The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res Brain Res Rev 49:77–105

    PubMed  CAS  Google Scholar 

  • Homayoun H, Jackson ME, Moghaddam B (2005) Activation of metabotropic glutamate 2/3 receptors reverses the effects of nmda receptor hypofunction on prefrontal cortex unit activity in awake rats. J Neurophysiol 93:1989–2001

    PubMed  CAS  Google Scholar 

  • Horovitz SG, Fukunaga M, De Zwart JA, Van Gelderen P, Fulton SC, Balkin TJ et al (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29:671–682

    PubMed  Google Scholar 

  • Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19:466–470

    PubMed  Google Scholar 

  • Horwitz B, Duara R, Rapoport SI (1984) Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input. J Cereb Blood Flow Metab 4:484–499

    PubMed  CAS  Google Scholar 

  • Jenkins BG, Chen Y-CI, Mandeville JB (2003) Pharmacological magnetic resonance imaging (phMRI). In: van Bruggen N, Roberts T (eds) Biomedical imaging in experimental neuroscience. CRC, New York, pp 155–209

    Google Scholar 

  • Kalisch R, Salome N, Platzer S, Wigger A, Czisch M, Sommer W et al (2004) High trait anxiety and hyporeactivity to stress of the dorsomedial prefrontal cortex: a combined phMRI and Fos study in rats. NeuroImage 23:382–391

    PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM (2000) The principles of neural science. Mac Graw-Hill Medical, New York

    Google Scholar 

  • Kannurpatti SS, Biswal BB, Kim YR, Rosen BR (2008) Spatio-temporal characteristics of low-frequency BOLD signal fluctuations in isoflurane-anesthetized rat brain. Neuroimage 40:1738–1747

    PubMed  Google Scholar 

  • Kauer JA (2005) Neuroscience: a home for the nicotine habit. Nature 436:31–32

    PubMed  CAS  Google Scholar 

  • Kinon BJ, Zhang L, Williams JE, Osuntokun OO, Millen BA, Kollack-Walker S (2010) LY2140023 monohydrate: an agonist at the mglu2/3 receptor for the treatment of schizophrenia. Schizophr Res 117:379

    Google Scholar 

  • Kircher TT, Thienel R (2005) Functional brain imaging of symptoms and cognition in schizophrenia. Prog Brain Res 150:299–308

    PubMed  Google Scholar 

  • Kiviniemi VJ, Haanpää H, Kantola JH, Jauhiainen J, Vainionpää V, Alahuhta S et al (2005) Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magn Reson Imag 23:531–537

    CAS  Google Scholar 

  • Knutson B, Gibbs S (2007) Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology 191:813–822

    PubMed  CAS  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    PubMed  CAS  Google Scholar 

  • Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH (2007) NMDA receptors and schizophrenia. Curr Opin Pharmacol 7:48–55

    PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Krystal JH, D'Souza DC, Karper LP, Bennett A, Abi-Dargham A, Abi-Saab D et al (1999) Interactive effects of subanesthetic ketamine and haloperidol in healthy humans. Psychopharmacology (Berl) 145:193–204

    CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff R, Poncelet BP et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    PubMed  CAS  Google Scholar 

  • Langsjo JW, Kaisti KK, Aalto S, Hinkka S, Aantaa R, Oikonen V et al (2003) Effects of subanesthetic doses of ketamine on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:614–623

    PubMed  Google Scholar 

  • Large CH (2007) Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J Psychopharmacol 21:283–301

    PubMed  CAS  Google Scholar 

  • LeDoux J (2003) The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 23:727–738

    PubMed  Google Scholar 

  • Leslie RA, James MF (2000) Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol Sci 21:314–318

    PubMed  CAS  Google Scholar 

  • Levin ED (2002) Nicotinic receptor subtypes and cognitive function. J Neurobiol 53:633–640

    PubMed  CAS  Google Scholar 

  • Levin ED, Rezvani AH (2002) Nicotinic treatment for cognitive dysfunction. Curr Drug Targets CNS Neurol Disord 1:423–431

    PubMed  CAS  Google Scholar 

  • Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 138:217–230

    CAS  Google Scholar 

  • Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG (2002) Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 225:253–259

    PubMed  Google Scholar 

  • Liddle PF, Lane CJ, Ngan E (2000) Immediate effects of risperidone on cortico–striato–thalamic loops and the hippocampus. Br J Psychiatry 177:402–407

    PubMed  CAS  Google Scholar 

  • Littlewood CL, Diana C, Dixon AL, Dix SL, White CT, O'neill MJ et al (2006) Using the BOLD MR signal to differentiate the stereoisomers of ketamine in the rat. NeuroImage 32:1733–1746

    PubMed  Google Scholar 

  • Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP (2002) Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224:184–192

    PubMed  Google Scholar 

  • Lu H, Zuo Y, Gu H, Waltz JA, Zhan W, Scholl CA et al (2007) Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci USA 104:18265–18269

    PubMed  CAS  Google Scholar 

  • Luo F, Wu G, Li Z, Li S-J (2003) Characterisation of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in the rat brain. Magn Reson Med 49:264–270

    PubMed  Google Scholar 

  • Luria A (1973) The working brain. Basic Books, New York

    Google Scholar 

  • Majeed W, Magnuson M, Keilholz SD (2009) Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat. J Magn Reson Imaging 30:384–393

    PubMed  Google Scholar 

  • Marota JJA, Mandeville JB, Weisskoff R, Moskowitz MA, Rosen B, Kosofsky BE (2000) Cocaine activation discriminates dopaminergic projections by temporal response: An fMRI study in rat. NeuroImage 11:13–23

    PubMed  CAS  Google Scholar 

  • Mathieu-Kia AM, Pages C, Besson MJ (1998) Inducibility of c-Fos protein in visuo-motor system and limbic structures after acute and repeated administration of nicotine in the rat. Synapse 29:343–354

    PubMed  CAS  Google Scholar 

  • McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ et al (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188

    PubMed  CAS  Google Scholar 

  • Medoff DR, Holcomb HH, Lahti AC, Tamminga CA (2001) Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11:543–550

    PubMed  CAS  Google Scholar 

  • Meltzer HY (1996) Pre-clinical pharmacology of atypical antipsychotic drugs: a selective review. Br J Psychiatry Suppl:23–31

    Google Scholar 

  • Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in modular organization of human brain functional networks. NeuroImage 44:715–723

    PubMed  Google Scholar 

  • Micheli F, Bonanomi G, Blaney FE, Braggio S, Capelli AM, Checchia A et al (2007) 1, 2, 4-triazol-3-yl-thiopropyl-tetrahydrobenzazepines: a series of potent and selective dopamine D(3) receptor antagonists. J Med Chem 50:5076–5089

    PubMed  CAS  Google Scholar 

  • Mitelman SA, Shihabuddin L, Brickman AM, Hazlett EA, Buchsbaum MS (2005) Volume of the cingulate and outcome in schizophrenia. Schizophr Res 72:91–108

    PubMed  Google Scholar 

  • Miyamoto S, Leipzig JN, Lieberman JA, Duncan GE (2000) Effects of ketamine, MK-801, and amphetamine on regional brain 2-deoxyglucose uptake in freely moving mice. Neuropsychopharmacology 22:400–412

    PubMed  CAS  Google Scholar 

  • Morris BJ, Cochran SM, Pratt JA (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106

    PubMed  CAS  Google Scholar 

  • Mosso A (1881) Ueber den Kreislauf des Blutes im menschlichen Gehirn. Verlag von Veit, Leipzig

    Google Scholar 

  • Nagata K Shinohara I, Kanno I, Hatazawa J, Domino EF (1995) In: Domino EF (ed) Effects of tobacco cigarette smoking on cerebral blood flow in normal adults. NPP Books, Ann Arbor, Michigan, pp 95–108

    Google Scholar 

  • Nakki R, Sharp FR, Sagar SM, Honkaniemi J (1996) Effects of phencyclidine on immediate early gene expression in the brain. J Neurosci Res 45:13–27

    PubMed  CAS  Google Scholar 

  • Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582

    PubMed  CAS  Google Scholar 

  • Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys 69:026113

    PubMed  CAS  Google Scholar 

  • Ngan ETC, Lane CJ, Ruth TJ, Liddle PF (2002) Immediate and delayed effects of risperidone on cerebral metabolism in neuroleptic naive schizophrenic patients: correlations with symptom change. J Neurol Neurosurg Psychiatry 72:106–110

    PubMed  CAS  Google Scholar 

  • Nguyen TV, Brownell A-L, Chen Y-CI, Livni E, Coyle JT, Rosen B et al (2000) Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse 36:57–65

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Nat Acad Sci USA 87:9868–9872

    PubMed  CAS  Google Scholar 

  • Parellada E, Catafau AM, Bernardo M, Lomena F, Gonzalez-Monclus E, Setoain J (1994) Prefrontal dysfunction in young acute neuroleptic-naive schizophrenic patients: a resting and activation SPECT study. Psychiatry Res 55:131–139

    PubMed  CAS  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    PubMed  CAS  Google Scholar 

  • Pawela CP, Biswal BB, Cho YR, Kao DS, Li R, Jones SR et al (2008) Resting-state functional connectivity of the rat brain. Magn Reson Med 59:1021–1029

    PubMed  Google Scholar 

  • Pawela CP, Biswal BB, Hudetz AG, Schulte ML, Li R, Jones SR et al (2009) A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. NeuroImage 46:1137–1147

    PubMed  Google Scholar 

  • Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS et al (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8:828–834

    PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Andrew C (1999) Event-related changes of band power and coherence: methodology and interpretation. J Clin Neurophysiol 16:512–519

    PubMed  CAS  Google Scholar 

  • Picciotto MR (2003) Nicotine as a modulator of behavior: beyond the inverted U. Trends Pharmacol Sci 24:493–499

    PubMed  CAS  Google Scholar 

  • Posner MI, Petersen SE, Fox PT, Raichle ME (1988) Localization of cognitive operations in the human brain. Science 240:1627–1631

    PubMed  CAS  Google Scholar 

  • Preece MA, Sibson NR, Raley JM, Blamire A, Styles P, Sharp T (2007) Region-specific effects of a tyrosine-free amino acid mixture on amphetamine-induced changes in BOLD fMRI signal in the rat brain. Synapse 61:925–932

    PubMed  CAS  Google Scholar 

  • Ramnani N, Behrens TE, Penny W, Matthews PM (2004) New approaches for exploring anatomical and functional connectivity in the human brain. Biol Psychiatry 56:613–619

    PubMed  Google Scholar 

  • Reese T, Bjelke B, Porszasz R, Baumann D, Bochelen D, Sauter A et al (2000) Regional brain activation by bicuculline visualized by functional magnetic resonance imaging. Time-resolved assessment of bicuculline-induced changes in local cerebral blood volume using an intravascular contrast agent. NMR Biomed 13:43–49

    PubMed  CAS  Google Scholar 

  • Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267

    PubMed  CAS  Google Scholar 

  • Roberts TJ, Williams SCR, Modo M (2008) A pharmacological MRI assessment of dizocilpine (MK-801) in the 3-nitroproprionic acid-lesioned rat. Neurosci Lett 444:42–47

    PubMed  CAS  Google Scholar 

  • Rogers BP, Morgan VL, Newton AT, Gore JC (2007) Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging 25:1347–1357

    PubMed  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11:85–158

    PubMed  CAS  Google Scholar 

  • Salvador R, Suckling J, Schwarzbauer C, Bullmore E (2005) Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci 360:937–946

    PubMed  Google Scholar 

  • Scanley BE, Kennan RP, Gore JC (2001) Changes in rat cerebral blood volume due to modulation of the 5-HT1A receptor measured with susceptibility enhanced contrast MRI. Brain Res 913:149–155

    PubMed  CAS  Google Scholar 

  • Schmidt K, Febo M, Shen Q, Luo F, Sicard K, Ferris C et al (2006) Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI. Psychopharmacology 185:479–486

    PubMed  CAS  Google Scholar 

  • Schwarz AJ, Reese T, Gozzi A, Bifone A (2003) Functional MRI using intravascular contrast agents: detrending of the relative cerebrovascular (rCBV) time course. Magn Reson Imaging 21:1191–1200

    PubMed  CAS  Google Scholar 

  • Schwarz A, Gozzi A, Reese T, Bertani S, Crestan V, Hagan J et al (2004a) Selective dopamine D(3) receptor antagonist SB-277011-A potentiates phMRI response to acute amphetamine challenge in the rat brain. Synapse 54:1–10

    PubMed  CAS  Google Scholar 

  • Schwarz AJ, Zocchi A, Reese T, Gozzi A, Varnier G, Girlanda E et al (2004b). The relationship between local dopamine changes and phMRI response to acute cocaine challenge in the rat revealed by concurrent in situ microdialysis. In: Book of abstracts: Twelfth annual meeting of the international society of magnetic resonance in medicine, vol 12

    Google Scholar 

  • Schwarz AJ, Zocchi A, Reese T, Gozzi A, Garzotti M, Varnier G et al (2004c) Concurrent pharmacological MRI and in situ microdialysis of cocaine reveal a complex relationship between the central hemodynamic response and local dopamine concentration. NeuroImage 23:296–304

    PubMed  CAS  Google Scholar 

  • Schwarz A, Whitcher B, Reese T, Gozzi A, Bifone A (2005) Group-level data-driven phMRI analysis. In: Book of abstracts: Thirteenth annual meeting of the international society of magnetic resonance in medicine, vol 13, p 157

    Google Scholar 

  • Schwarz AJ, Danckaert A, Reese T, Gozzi A, Paxinos G, Watson C et al (2006a) A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI. NeuroImage 32:538–550

    PubMed  Google Scholar 

  • Schwarz AJ, Whitcher B, Gozzi A, Reese T, Bifone A (2006b) Study-level wavelet cluster analysis and data-driven signal models in pharmacological MRI. J Neurosci Methods 159:346–360

    PubMed  Google Scholar 

  • Schwarz AJ, Gozzi A, Reese T, Bifone A (2007a) Functional connectivity in the pharmacologically activated brain: resolving networks of correlated responses to d-amphetamine. Magn Reson Med 57:704–713

    PubMed  Google Scholar 

  • Schwarz AJ, Gozzi A, Reese T, Bifone A (2007b) In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI. NeuroImage 34:1627–1636

    PubMed  Google Scholar 

  • Schwarz AJ, Gozzi A, Reese T, Heidbreder CA, Bifone A (2007c) Pharmacological modulation of functional connectivity: the correlation structure underlying the phMRI response to d-amphetamine modified by selective dopamine D3receptor antagonist SB277011A. Magn Reson Imaging 25:811–820

    PubMed  CAS  Google Scholar 

  • Schwarz AJ, Gozzi A, Bifone A (2008) Community structure and modularity in networks of correlated brain activity. Magn Reson Imaging 26:914–920

    PubMed  Google Scholar 

  • Schwarz AJ, Gozzi A, Bifone A (2009) Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI. NeuroImage 47:302–311

    PubMed  Google Scholar 

  • Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50:651–658

    PubMed  CAS  Google Scholar 

  • Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S et al (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature 378:176–179

    PubMed  CAS  Google Scholar 

  • Skoubis PD, Hradil V, Chin CL, Luo Y, Fox GB, McGaraughty S (2006) Mapping brain activity following administration of a nicotinic acetylcholine receptor agonist, ABT-594, using functional magnetic resonance imaging in awake rats. Neuroscience 137:583–591

    PubMed  CAS  Google Scholar 

  • Soncrant TT, Horwitz B, Holloway HW, Rapoport SI (1986) The pattern of functional coupling of brain regions in the awake rat. Brain Res 369:1–11

    PubMed  CAS  Google Scholar 

  • Soyka M, Koch W, Möller H, Rüther T, Tatsch K (2005) Hypermetabolic pattern in frontal cortex and other brain regions in unmedicated schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 255:308–312

    PubMed  CAS  Google Scholar 

  • Stahl SM (1998) Mechanism of action of serotonin selective reuptake inhibitors: serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 51:215–235

    PubMed  CAS  Google Scholar 

  • Stark JA, Davies KE, Williams SR, Luckman SM (2006) Functional magnetic resonance imaging and c-Fos mapping in rats following an anorectic dose of m-chlorophenylpiperazine. NeuroImage 31:1228–1237

    PubMed  Google Scholar 

  • Stark JA, McKie S, Davies KE, Williams SR, Luckman SM (2008) 5-HT(2C) antagonism blocks blood oxygen level-dependent pharmacological-challenge magnetic resonance imaging signal in rat brain areas related to feeding. Eur J Neurosci 27:457–465

    PubMed  Google Scholar 

  • Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG et al (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155:1009–1015

    PubMed  CAS  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    PubMed  CAS  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    PubMed  CAS  Google Scholar 

  • Tsetsenis T, Ma XH, Lo Iacono L, Beck SG, Gross C (2007) Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nat Neurosci 10:896–902

    PubMed  CAS  Google Scholar 

  • Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17

    PubMed  Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC et al (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F (2007) Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol 64:1575–1579

    PubMed  Google Scholar 

  • Warburton DM (1990) Psychopharmacological apsects of nicotine. Oxford University Press, New York, pp 77–111

    Google Scholar 

  • Xi ZX, Wu G, Stein EA, Li SJ (2004) Opiate tolerance by heroin self-administration: an fMRI study in rat. Magn Reson Med 52:108–114

    PubMed  CAS  Google Scholar 

  • Xu H, Li S-J, Bodurka J, Zhao X, Xi Z-X, Stein EA (2000) Heroin-induced neuronal activation in rat brain assessed by functional MRI. NeuroReport 11:1085–1092

    PubMed  CAS  Google Scholar 

  • Zhao F, Zhao T, Zhou L, Wu Q, Hu X (2008) BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. Neuroimage 39:248–260

    PubMed  Google Scholar 

  • Zhou Y, Shu N, Liu Y, Song M, Hao Y, Liu H et al (2008) Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 100:120–132

    PubMed  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T et al (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Bifone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bifone, A., Gozzi, A. (2011). Functional and Pharmacological MRI in Understanding Brain Function at a Systems Level. In: Hagan, J. (eds) Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_103

Download citation

Publish with us

Policies and ethics