Skip to main content

Iminosugars: Therapeutic Applications and Synthetic Considerations

  • Chapter
  • First Online:
Carbohydrates as Drugs

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 12))

Abstract

Iminosugars, carbohydrate mimetics in which the endocyclic oxygen of the parent carbohydrate is replaced with nitrogen, are the most important class of carbohydrate mimetic reported to date with two marketed drugs and several in clinical development. Since their first isolation in the 1960s iminosugars have captured the imagination of both synthetic and medicinal chemists alike with recent therapeutic developments highlighting the need for improved routes of synthesis. The resurgence in the therapeutic application of iminosugars has arisen as a consequence of our growing understanding on the role that glycobiology plays in disease and development. There are myriad possible individual targets encompassing a range of therapeutic areas, all of which can potentially be addressed by iminosugars. This chapter presents the historcial development of this compound class before discussing some of the issues that iminosugars present as synthetic targets. The therapeutic potential of this class of compound with specific reference to the development of modulators of glucocerebrosidase activity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta G, Surolia A (2012) Glycomics: an overview of the complex glycocode. Adv Exp Med Biol 749:1–13

    CAS  Google Scholar 

  2. Furukawa K et al (2012) Fine tuning of cell signals by glycosylation. J Biochem 151(6):573–578

    CAS  Google Scholar 

  3. Zhang L, Ten Hagen KG (2011) The cellular microenvironment and cell adhesion: a role for O-glycosylation. Biochem Soc Trans 39(1):378–382

    CAS  Google Scholar 

  4. Neelamegham S, Liu G (2011) Systems glycobiology: biochemical reaction networks regulating glycan structure and function. Glycobiology 21(12):1541–1553

    CAS  Google Scholar 

  5. Gabius HJ et al (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36(6):298–313

    CAS  Google Scholar 

  6. Tian E, Ten Hagen KG (2009) Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj J 26(3):325–334

    CAS  Google Scholar 

  7. Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol Biosyst 5(10):1087–1104

    CAS  Google Scholar 

  8. Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360

    CAS  Google Scholar 

  9. Alavi A, Axford JS (2008) Sweet and sour: the impact of sugars on disease. Rheumatology (Oxford) 47(6):760–770

    CAS  Google Scholar 

  10. Gabius HJ (2009) The sugar code: fundamentals of glycosciences. Wiley, Weinheim

    Google Scholar 

  11. Moran AP, Holst O, Brennan PJ, von Itzstein M (2009) Microbial glycobiology. Academic, London

    Google Scholar 

  12. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (2008) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  13. Rabinovich G, Cobb B, van Kooyk Y (2012) Glycobiology of the immune response. Wiley, Weinheim

    Google Scholar 

  14. Wang B, Boons G-J (2011) Carbohydrate recognition: biological problems, methods, and applications. Wiley, Hoboken

    Google Scholar 

  15. Fukuda M, Rutishauser U, Schnaar R (2005) Neuroglycobiology. Oxford University Press, London

    Google Scholar 

  16. Fukuda M (2012) Recent progress in carbohydrate biosynthesis and function in relation to tumor biology. Biol Pharm Bull 35(10):1622–1625

    CAS  Google Scholar 

  17. Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113(3):236–247

    CAS  Google Scholar 

  18. Cazet A et al (2010) Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 12(3):204

    Google Scholar 

  19. Abbott KL (2010) Glycomic analysis of ovarian cancer: past, present, and future. Cancer Biomark 8(4–5):273–280

    CAS  Google Scholar 

  20. Saldova R et al (2008) Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Markers 25(4–5):219–232

    CAS  Google Scholar 

  21. Ohyama C (2008) Glycosylation in bladder cancer. Int J Clin Oncol 13(4):308–313

    CAS  Google Scholar 

  22. Chandra S et al (2010) Glycobiology of the Leishmania parasite and emerging targets for antileishmanial drug discovery. Expert Opin Ther Targets 14(7):739–757

    CAS  Google Scholar 

  23. Lefebvre T et al (2010) Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 1800(2):67–79

    CAS  Google Scholar 

  24. Barone R et al (2012) Glycomics of pediatric and adulthood diseases of the central nervous system. J Proteomics 75(17):5123–5139

    CAS  Google Scholar 

  25. Boomkamp SD, Butters TD (2008) Glycosphingolipid disorders of the brain. Subcell Biochem 49:441–467

    Google Scholar 

  26. Sugahara K, Mikami T (2007) Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 17(5):536–545

    CAS  Google Scholar 

  27. Freeze HH (2007) Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. Curr Mol Med 7(4):389–396

    CAS  Google Scholar 

  28. Endo T (2007) Dystroglycan glycosylation and its role in alpha-dystroglycanopathies. Acta Myol 26(3):165–170

    CAS  Google Scholar 

  29. Nash RJ et al (2011) Iminosugars as therapeutic agents: recent advances and promising trends. Future Med Chem 3(12):1513–1521

    CAS  Google Scholar 

  30. Nash RJ (2011) Advances in pharmaceutical applications of iminosugars. Spec Publ R Soc Chem 320:129–139 (Functional Molecules from Natural Sources)

    Google Scholar 

  31. Winchester BG (2009) Iminosugars: from botanical curiosities to licensed drugs. Tetrahedron Asymmetry 20(6–8):645–651

    CAS  Google Scholar 

  32. Asano N (2007) Naturally occurring iminosugars and related alkaloids: structure, activity and applications. In: Compain P, Martin OR (eds) Iminosugars. Wiley, West Sussex, pp 7–24

    Google Scholar 

  33. Stutz AE, Wrodnigg TM (2011) Imino sugars and glycosyl hydrolases: historical context, current aspects, emerging trends. Adv Carbohydr Chem Biochem 66:187–298

    Google Scholar 

  34. Horne G et al (2011) Iminosugars past, present and future: medicines for tomorrow. Drug Discov Today 16(3/4):107–118

    CAS  Google Scholar 

  35. Horne G, Wilson FX (2011) Therapeutic applications of iminosugars: current perspectives and future opportunities. Prog Med Chem 50:135–176

    CAS  Google Scholar 

  36. Nishikawa T, Ishida N (1965) A new antibiotic R-468 active against drug-resistant Shigella. J Antibiot (Tokyo) 18:132–133

    CAS  Google Scholar 

  37. Ishida N et al (1967) Nojirimycin, a new antibiotic. II. Isolation, characterization and biological activity. J Antibiot (Tokyo) 20(2):66–71

    CAS  Google Scholar 

  38. Ishida N et al (1967) Nojirimycin, a new antibiotic. I. Taxonomy and fermentation. J Antibiot (Tokyo) 20(2):62–65

    CAS  Google Scholar 

  39. Inouye S, Tsuruoka T, Nida T (1966) The structure of nojirimycin, a piperidinose sugar antibiotic. J Antibiot (Tokyo) 19(6):288–292

    CAS  Google Scholar 

  40. Niwa T et al (1984) Novel glycosidase inhibitors, nojirimycin B and D-mannonic-delta-lactam. Isolation, structure determination and biological property. J Antibiot (Tokyo) 37(12):1579–1586

    CAS  Google Scholar 

  41. Miyake Y, Ebata M (1987) Galactostatin, a new beta-galactosidase inhibitor from Streptomyces lydicus. J Antibiot (Tokyo) 40(1):122–123

    CAS  Google Scholar 

  42. Colegate SM, Dorling PR, Huxtable CR (1979) A spectroscopic investigation of swainsonine: an α-mannosidase inhibitor isolated from Swainsona canescens. Aust J Chem 32(10):2257–2264

    CAS  Google Scholar 

  43. Hohenschutz LD et al (1981) Castanospermine, a 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of Castanospermum australe. Phytochem (Elsevier) 20(4):811–814

    CAS  Google Scholar 

  44. Nash RJ et al (1988) Isolation from Alexa leiopetala and X-ray crystal structure of Alexine, (1r,2r,3r,7s,8s)-3-hydroxymethyl-1,2,7-trihydroxypyrrolizidine [(2r,3r,4r,5s,6s)-2-hydroxymethyl-1-azabicyclo[3.3.0]octan-3,4,6-triol], a unique pyrrolizidine alkaloid. Tetrahedron Lett 29(20):2487–2490

    CAS  Google Scholar 

  45. Molyneux RJ et al (1988) Australine, a novel pyrrolizidine alkaloid glucosidase inhibitor from Castanospermum australe. J Nat Prod 51(6):1198–1206

    CAS  Google Scholar 

  46. Nash RJ et al (1995) Casuarine: a very highly oxygenated pyrrolizidine alkaloid. Tetrahedron Lett 35(42):7849–7852

    Google Scholar 

  47. Kato A et al (1999) Polyhydroxylated pyrrolidine and pyrrolizidine alkaloids from hyacinthoides non-scripta and Scilla campanulata. Carbohydr Res 316(1–4):95–103

    CAS  Google Scholar 

  48. Tepfer D et al (1988) A plasmid of rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of calystegium sepium. J Bacteriol 170(3):1153–1161

    CAS  Google Scholar 

  49. Michalik A et al (2010) Steviamine, a new indolizidine alkaloid from Stevia rebaudiana. Phytochem Lett 3(3):136–138

    CAS  Google Scholar 

  50. Zhu J-S et al (2013) Synthesis of eight stereoisomers of pochonicine: nanomolar inhibition of β-N-acetylhexosaminidases. J Org Chem 78(20):10298–10309

    CAS  Google Scholar 

  51. Aoyagi T et al (1992) Nagstatin, a new inhibitor of N-acetyl-β-D-glucosaminidase, produced by Streptomyces amakusaensis MG846-fF3. Taxonomy, production, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 45(9):1404–1408

    CAS  Google Scholar 

  52. Marlier M, Dardenne GA, Casimir J (1972) 4,5-Dihydroxy-L-pipecolic acid from Calliandra haematocephala. Phytochem (Elsevier) 11(8):2597–2599

    CAS  Google Scholar 

  53. Shibano M et al (2001) Two new pyrrolidine alkaloids, radicamines A and B, as inhibitors of α-glucosidase from Lobelia chinensis Lour. Chem Pharma Bull 49(10):1362–1365

    CAS  Google Scholar 

  54. Campbell SJ et al (2010) Visualizing the drug target landscape. Drug Discov Today 15:3–15

    CAS  Google Scholar 

  55. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets derived from NMR-based screening data. J Med Chem 48:2518–2525

    CAS  Google Scholar 

  56. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389

    CAS  Google Scholar 

  57. Schmidtke P, Barril X (2010) Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem 53:5858–5867

    CAS  Google Scholar 

  58. Sheridan RP et al (2010) Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and druglike ligands from the Protein Data Bank. J Chem Inf Model 50:2029–2040

    CAS  Google Scholar 

  59. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 2004:337–341

    Google Scholar 

  60. Lipinski CA et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 23:3–25

    CAS  Google Scholar 

  61. Proudfoot JR (2005) The evolution of synthetic oral drug properties. Bioorg Med Chem Lett 15:1087–1090

    CAS  Google Scholar 

  62. Vieth M et al (2004) Characteristic physical properties and structural fragments of marketed oral drugs. J Med Chem 47:224–232

    CAS  Google Scholar 

  63. Wenlock MC et al (2003) A comparison of physiochemical property profiles of development and marketed oral drugs. J Med Chem 46:1250–1256

    CAS  Google Scholar 

  64. Lipinski CA, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    CAS  Google Scholar 

  65. Gorse AD (2006) Diversity in medicinal chemistry space. Curr Top Med Chem 6(1):3–18

    CAS  Google Scholar 

  66. Ruddigkeit L et al (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52(11):2864–2875

    CAS  Google Scholar 

  67. Reymond JL, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3(19):649–657

    CAS  Google Scholar 

  68. Werz DB et al (2007) Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis. ACS Chem Biol 2(10):685–691

    CAS  Google Scholar 

  69. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102(2):439–469

    CAS  Google Scholar 

  70. Herget S et al (2008) Statistical analysis of the bacterial carbohydrate structure data base (BCSDB): characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans. BMC Struct Biol 8:35

    Google Scholar 

  71. O’Brien JS (1972) Sanfilippo syndrome. Profound deficiency of α-acetylglucosaminidase activity in organs and skin fibroblasts from type-B patients. Proc Natl Acad Sci U S A 69(7):1720–1722

    Google Scholar 

  72. Sandhoff K, Andreae WA, Jatzkewitz H (1968) Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs. Life Sci 7(6):283–288

    CAS  Google Scholar 

  73. Hart GW et al (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858

    CAS  Google Scholar 

  74. Darley-Usmar VM, Ball LE, Chatham JC (2012) Protein O-linked β-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol 52(3):538–549

    CAS  Google Scholar 

  75. Zachara NE (2012) The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 302(10):H1905–H1918

    CAS  Google Scholar 

  76. van Diggelen OP et al (1988) Alpha-N-acetylgalactosaminidase deficiency: a new lysosomal storage disorder. J Inherit Metab Dis 11(4):349–357

    Google Scholar 

  77. Dorfmueller HC et al (2010) Cell-penetrant, nanomolar O-GlcNAcase inhibitors selective against lysosomal hexosaminidases. Chem Biol 17:1250–1255

    CAS  Google Scholar 

  78. Heightman TD, Vasella AT (1999) Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases. Angew Chem Int Ed 38(6):750–770

    CAS  Google Scholar 

  79. Douroumis D, Fahr A (2013) Drug delivery strategies for poorly water-soluble drugs. Wiley, Oxford

    Google Scholar 

  80. Lachmann RH (2006) Miglustat: substrate reduction therapy for glycosphingolipid lysosomal storage disorders. Drugs Today (Barc) 42:29–38

    CAS  Google Scholar 

  81. Benito JM, García Fernández JM, Ortiz Mellet C (2011) Pharmacological chaperone therapy for Gaucher disease: a patent review. Expert Opin Ther Pat 21(6):885–903

    CAS  Google Scholar 

  82. Campbell LK, Baker DE, Campbell RK (2000) Miglitol: assessment of its role in the treatment of patients with diabetes mellitus. Ann Pharmacother 34(11):1291–1301

    CAS  Google Scholar 

  83. Dulsat C (2009) Gaucher’s disease. Drugs Future 34:147–149

    CAS  Google Scholar 

  84. Wraith JE, Imrie J (2009) New therapies in the management of Niemann-Pick type C disease: clinical utility of miglustat. Ther Clin Risk Manag 5:877–887

    CAS  Google Scholar 

  85. Sorbera LA, Castaner J, Bayes M (2003) Miglustat. Treatment of Gaucher’s disease, ceramide glucosyltransferase inhibitor, a-glucosidase inhibitor. Drugs Future 28:229–236

    CAS  Google Scholar 

  86. Abian O et al (2011) Therapeutic strategies for Gaucher disease: miglustat (NB-DNJ) as a pharmacological chaperone for glucocerebrosidase and the different thermostability of velaglucerase alfa and imiglucerase. Mol Pharm 8(6):2390–2397

    CAS  Google Scholar 

  87. Parenti G et al (2007) Pharmacological enhancement of mutated alpha-glucosidase activity in fibroblasts from patients with Pompe disease. Mol Ther 15:508–514

    CAS  Google Scholar 

  88. Sugawara K et al (2009) Molecular interaction of imino sugars with human alpha-galactosidase: insight into the mechanism of complex formation and pharmacological chaperone action in Fabry disease. Mol Genet Metab 96:233–238

    CAS  Google Scholar 

  89. Khanna R et al (2010) The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease. Mol Ther 18(1):23–33

    CAS  Google Scholar 

  90. Khanna R et al (2010) The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of β-glucosidase. Febs J 277(7):1618–1638

    CAS  Google Scholar 

  91. Flanagan JJ et al (2009) The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Hum Mutat 30(12):1683–1692

    CAS  Google Scholar 

  92. Khanna R et al (2012) The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. PLoS One 7(7):e40776

    CAS  Google Scholar 

  93. Benjamin ER et al (2012) Co-administration with the pharmacological chaperone AT1001 increases recombinant human α-galactosidase a tissue uptake and improves substrate reduction in Fabry mice. Mol Ther 20(4):717–726

    CAS  Google Scholar 

  94. Durantel D (2009) Celgosivir, an α-glucosidase I inhibitor for the potential treatment of HCV infection. Curr Opin Investig Drugs 10(8):860–870

    CAS  Google Scholar 

  95. Mehta AS et al (2004) α-Galactosylceramide and novel synthetic glycolipids directly induce the innate host defense pathway and have direct activity against hepatitis B and C viruses. Antimicrob Agents Chemother 48:2085–2090

    CAS  Google Scholar 

  96. Goss PE et al (1994) A phase I study of swainsonine in patients with advanced malignancies. Cancer Res 54(6):1450–1457

    CAS  Google Scholar 

  97. Pavlović D et al (2003) The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A 100(10):6104–6108

    Google Scholar 

  98. Soheili T et al (2012) Rescue of sarcoglycan mutations by inhibition of endoplasmic reticulum quality control is associated with minimal structural modifications. Hum Mutat 33(2):429–439

    CAS  Google Scholar 

  99. Bartoli M et al (2008) Mannosidase I inhibition rescues the human α-sarcoglycan R77C recurrent mutation. Hum Mol Genet 17(9):1214–1221

    CAS  Google Scholar 

  100. Takahata H (2012) Chiral synthesis of iminosugars. Heterocycles 85(6):1351–1376

    CAS  Google Scholar 

  101. Dragutan I, Dragutan V, Demonceau A (2012) Targeted drugs by olefin metathesis: piperidine-based iminosugars. RSC Adv 2(3):719–736

    CAS  Google Scholar 

  102. Dragutan I et al (2011) Metathesis access to monocyclic iminocyclitol-based therapeutic agents. Beilstein J Org Chem 7(81):699–716

    CAS  Google Scholar 

  103. Kim IS, Jung YH (2011) Recent advances in the total synthesis of indolizidine iminosugars. Heterocycles 83(11):2489–2507

    CAS  Google Scholar 

  104. Stecko S et al (2011) Synthesis of iminosugars via 1,3-dipolar cycloaddition reactions of nitrones to α, β-unsaturated sugar aldonolactones. C R Chim 14(1):102–125

    CAS  Google Scholar 

  105. Stocker BL et al (2010) Recent developments in the synthesis of pyrrolidine-containing iminosugars. Eur J Org Chem 9:1615–1637

    Google Scholar 

  106. Compain P, Chagnault V, Martin OR (2009) Tactics and strategies for the synthesis of iminosugar C-glycosides: a review. Tetrahedron Asymmetry 20(6–8):672–711

    CAS  Google Scholar 

  107. Clapes P, Sprenger GA, Joglar J (2009) Novel strategies in aldolase-catalyzed synthesis of imino-sugars. Mod Biocatal 299–311

    Google Scholar 

  108. Lopez MD, Cobo J, Nogueras M (2008) Building bicyclic polyhydroxylated alkaloids: an overview from 1995 to the present. Curr Org Chem 12(9):718–750

    CAS  Google Scholar 

  109. La Ferla B, Cipolla L, Nicotra F (2007) General strategies for the synthesis of imino-sugars and new approaches towards imino-sugar libraries. In: Campain P, Martin OR (eds) Iminosugars, from synthesis to terapeutic applications. Wiley, West Sussex, pp 25–61

    Google Scholar 

  110. Behr J-B, Plantier-Royon R (2006) Addition of organometallics to aldimines, aldoximes and aldononitriles: a key step towards the synthesis of azasugars. Recent Res Dev Org Chem 10:23–52

    CAS  Google Scholar 

  111. Cipolla L, La Ferla B, Gregori M (2006) Combinatorial approaches to iminosugars as glycosidase and glycosyltransferase inhibitors. Comb Chem High Throughput Screen 9(8):571–582

    CAS  Google Scholar 

  112. Ayad T, Genisson Y, Baltas M (2004) Chemical approaches towards synthesis of some naturally occurring iminosugars. Curr Org Chem 8(13):1211–1233

    CAS  Google Scholar 

  113. El Ashry ESH, El Nemr A (2005) Synthesis of naturally occurring nitrogen heterocycles from carbohydrates. Wiley-Blackwell, Oxford

    Google Scholar 

  114. El-Ashry SH, El Nemr A (2003) Synthesis of mono- and di-hydroxylated prolines and 2-hydroxymethylpyrrolidines from non-carbohydrate precursors. Carbohydr Res 338(22):2265–2290

    CAS  Google Scholar 

  115. Kato A et al (2008) Iminosugars from Baphia nitida Lodd. Phytochem (Elsevier) 69:1261–1265

    CAS  Google Scholar 

  116. Nakagawa K et al (2010) Determination of iminosugars in mulberry leaves and silkworms using hydrophilic interaction chromatography-tandem mass spectrometry. Anal Biochem 404(2):217–222

    CAS  Google Scholar 

  117. Nuengchamnong N et al (2007) Quantitative determination of 1-deoxynojirimycin in mulberry leaves using liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 44(4):853–858

    CAS  Google Scholar 

  118. Fleet GWJ, Smith PW (1987) Methyl 2-azido-3-O-benzyl-2-deoxy-α-D-mannofuranoside as a divergent intermediate for the synthesis of polyhydroxylated piperidines and pyrrolidines. Synthesis of 2,5-dideoxy-2,5-imino-D-mannitol [2R,5R-bis(hydroxymethyl)-3R,4R-dihydroxypyrrolidine]. Tetrahedron Asymmetry 43(5):971–978

    CAS  Google Scholar 

  119. Kinast G, Schedel M (1981) A four-stage synthesis of 1-deoxynojirimycin with a biotransformation as the central reaction step. Angew Chem 93(9):799–800

    CAS  Google Scholar 

  120. Saeki H, Ohki E (1968) 5,6-Epimino-D-glucofuranose and synthesis of nojirimycin (5-amino-5-deoxy-D-glucose). Chem Pharm Bull 16(12):2477–2481

    CAS  Google Scholar 

  121. Bernotas RC, Ganem B (1984) Total syntheses of (+)-castanospermine and (+)-deoxynojirimycin. Tetrahedron Lett 25(2):165–168

    CAS  Google Scholar 

  122. Hamana H, Ikota N, Ganem B (1987) Chelate selectivity in chelation-controlled allylations. A new synthesis of castanospermine and other bioactive indolizidine alkaloids. J Org Chem 52(24):5492–5494

    CAS  Google Scholar 

  123. Hendry D, Hough L, Richardson AC (1988) Enantiospecific synthesis of polyhydroxylated indolizidines related to castanospermine: 1-deoxycastanospermine. Tetrahedron Asymmetry 44(19):6143–6152

    CAS  Google Scholar 

  124. Hendry D, Hough L, Richardson AC (1988) Enantiospecific synthesis of polyhydroxylated indolizidines related to castanospermine: (6R,7S,8aR)-6,7-dihydroxyindolizidine and (6R,7R,8S,8aR)-6,7,8-trihydroxyindolizidine. Tetrahedron Asymmetry 44(19):6153–6168

    CAS  Google Scholar 

  125. Suami T, Tadano K, Iimura Y (1984) Total synthesis of (−)-swainsonine, an α-mannosidase inhibitor isolated from Swainsona canescens. Chem Lett 4:513–516

    Google Scholar 

  126. Mezher HA, Hough L, Richardson AC (1984) A chiral synthesis of swainsonine from D-glucose. J Chem Soc Chem Commun (7):447–448

    Google Scholar 

  127. Bols M (1996) Carbohydrate building blocks. Wiley, Chichester

    Google Scholar 

  128. Hanessian S (1983) Total synthesis of natural products: “Chiron” approach. Pergamon Press, Oxford

    Google Scholar 

  129. Hanessian S, Giroux S, Merner BL (2013) Design and strategy in organic synthesis. Wiley, Weinheim

    Google Scholar 

  130. Donohoe TJ et al (2003) Flexibility in the partial reduction of 2,5-disubstituted pyrroles: application to the synthesis of DMDP. Org Lett 5(7):999–1002

    CAS  Google Scholar 

  131. Kim J-Y et al (2011) Efficient and stereoselective syntheses of DAB-1 and d-fagomine via chiral 1,3-oxazine. Tetrahedron 67(48):9426–9432

    CAS  Google Scholar 

  132. Choi HG et al (2013) An efficient synthesis of 1,4-dideoxy-1,4-imino-d- and l-arabinitol and 1,4-dideoxy-1,4-imino-d- and l-xylitol from chiral aziridines. Tetrahedron Lett 54(43):5775–5777

    CAS  Google Scholar 

  133. Singh S, Han H (2004) Stereodivergent total asymmetric synthesis of polyhydroxylated pyrrolidines via tandem allylic epoxidation and intramolecular cyclization reactions. Tetrahedron Lett 45(33):6349–6352

    CAS  Google Scholar 

  134. Restorp P, Fischer A, Somfai P (2006) Stereoselective synthesis of functionalized pyrrolidines via a [3 + 2]-annulation of N-Ts-α-amino aldehydes and 1,3-Bis(silyl)propenes. J Am Chem Soc 128(39):12646–12647

    CAS  Google Scholar 

  135. Kondo Y et al (2012) Enantioselective construction of a polyhydroxylated pyrrolidine skeleton from 3-vinylaziridine-2-carboxylates: synthesis of (+)-DMDP and a potential common intermediate for (+)-hyacinthacine A1 and (+)-1-epi-australine. J Org Chem 77(18):7988–7999

    CAS  Google Scholar 

  136. Izquierdo I et al (2010) Total synthesis of natural (+)-hyacinthacine A6 and non-natural (+)-7a-epi-hyacinthacine A1 and (+)-5,7a-diepi-hyacinthacine A6. Tetrahedron 66(21):3788–3794

    CAS  Google Scholar 

  137. Izquierdo I et al (2008) Synthesis of (+)-1-epi-castanospermine from L-sorbose. Tetrahedron 64(34):7910–7913

    CAS  Google Scholar 

  138. Wang N, Zhang L-H, Ye X-S (2010) A new synthetic access to bicyclic polyhydroxylated alkaloid analogues from pyranosides. Org Biomol Chem 8(11):2639–2649

    CAS  Google Scholar 

  139. Kalamkar NB, Puranik VG, Dhavale DD (2011) Synthesis of C1– and C8a-epimers of (+)-castanospermine from D-glucose derived γ, δ-epoxyazide: intramolecular 5-endo epoxide opening approach. Tetrahedron 67(15):2773–2778

    CAS  Google Scholar 

  140. Kalamkar NB, Dhavale DD (2011) Chiron approach strategy to the bicyclic oxazolidinylpiperidine: a building block for preparing mono- and bi-cyclic imino-sugars. Tetrahedron Lett 52(48):6363–6365

    CAS  Google Scholar 

  141. Dhand V et al (2013) A short, organocatalytic formal synthesis of (−)-swainsonine and related alkaloids. Org Lett 15(8):1914–1917

    CAS  Google Scholar 

  142. Zhang H-K et al (2012) A flexible enantioselective approach to 3,4-dihydroxyprolinol derivatives by SmI2-mediated reductive coupling of chiral nitrone with ketones/aldehydes. Tetrahedron 68(33):6656–6664

    CAS  Google Scholar 

  143. Archibald G et al (2012) A divergent approach to 3-piperidinols: a concise syntheses of (+)-swainsonine and access to the 1-substituted quinolizidine skeleton. J Org Chem 77(18):7968–7980

    CAS  Google Scholar 

  144. Yun H et al (2012) Asymmetric syntheses of 1-deoxy-6,8a-di-epi-castanospermine and 1-deoxy-6-epi-castanospermine. J Org Chem 77(12):5389–5393

    CAS  Google Scholar 

  145. Ameijde JV et al (2006) Isolation synthesis and glycosidase inhibition profile of 3-epi-casuarine. Tetrahedron Asymmetry 17(18):2702–2712

    Google Scholar 

  146. Ritthiwigrom T, Willis AC, Pyne SG (2010) Total synthesis of uniflorine a, casuarine, australine, 3-epi-australine, and 3,7-Di-epi-australine from a common precursor. J Org Chem 75(3):815–824

    CAS  Google Scholar 

  147. Liu X-K et al (2011) SmI2-mediated radical cross-couplings of α-hydroxylated Aza-hemiacetals and N, S-acetals with α, β-unsaturated compounds. Asymmetric synthesis of (+)-hyacinthacine A2, (−)-uniflorine A, and (+)-7-epi-casuarine. J Org Chem 76(12):4952–4963

    CAS  Google Scholar 

  148. Ribes C et al (2007) Stereoselective synthesis of the glycosidase inhibitor australine through a one-pot, double-cyclization strategy. Org Lett 9(1):77–80

    CAS  Google Scholar 

  149. Davies SG et al (2013) Asymmetric syntheses of (−)-1-deoxymannojirimycin and (+)-1-deoxyallonojirimycin via a ring-expansion approach. Org Lett 15(8):2042–2045

    CAS  Google Scholar 

  150. Jenkinson SF et al (2011) Looking-glass synergistic pharmacological chaperones: DGJ and L-DGJ from the enantiomers of tagatose. Org Lett 13(15):4064–4067

    CAS  Google Scholar 

  151. Donohoe TJ et al (2008) Flexible strategy for the synthesis of pyrrolizidine alkaloids. Org Lett 10(16):3615–3618

    CAS  Google Scholar 

  152. Gilles P, Py S (2012) SmI2-mediated cross-coupling of nitrones with β-silyl acrylates: synthesis of (+)-australine. Org Lett 14(4):1042–1045

    CAS  Google Scholar 

  153. Moriyama H et al (2003) Structure–activity relationships of azasugar-based MMP/ADAM inhibitors. Bioorg Med Chem Lett 13(16):2737–2740

    CAS  Google Scholar 

  154. Moriyama H et al (2003) Design, synthesis and evaluation of novel azasugar-based MMP/ADAM inhibitors. Bioorg Med Chem Lett 13(16):2741–2744

    CAS  Google Scholar 

  155. Moriyama H et al (2004) Azasugar-based MMP/ADAM inhibitors as antipsoriatic agents. J Med Chem 47:1930–1938

    CAS  Google Scholar 

  156. Chikaraishi Y et al (2009) CB-12181, a new azasugar-based matrix metalloproteinase/tumor necrosis factor-alpha converting enzyme inhibitor, inhibits vascular endothelial growth factor-induced angiogenesis in vitro and retinal neovascularization in vivo. Curr Neurovasc Res 6(3):140–147

    CAS  Google Scholar 

  157. Cox TM, Schofield JP (1997) Gaucher’s disease: clinical features and natural history. Baillieres Clin Haematol 10:657–689

    CAS  Google Scholar 

  158. Velayati A, Yu WH, Sidransky E (2010) The role of glucocerebrosidase mutations in Parkinson disease and Lewy body disorders. Curr Neurol Neurosci Rep 10:190–198

    CAS  Google Scholar 

  159. Lwin A et al (2004) Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab 81:70–73

    CAS  Google Scholar 

  160. Neumann J et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794

    Google Scholar 

  161. Setó-Salvia N et al (2011) Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson’s disease course. Mov Disord 27:393–399

    Google Scholar 

  162. Mazzulli JR et al (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52

    CAS  Google Scholar 

  163. Boyd RE et al (2013) Pharmacological chaperones as therapeutics for lysosomal storage diseases. J Med Chem 56(7):2705–2725

    CAS  Google Scholar 

  164. Maegawa GHB et al (2009) Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. J Biol Chem 284:23502–23516

    CAS  Google Scholar 

  165. Tropak MB et al (2008) Identification of pharmacological chaperones for Gaucher disease and characterization of their effects on β-glucocerebrosidase by hydrogen/deuterium exchange mass spectrometry. ChemBioChem 9:2650–2662

    CAS  Google Scholar 

  166. Zheng W et al (2007) Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease. Proc Natl Acad Sci U S A 104:13192–13197

    CAS  Google Scholar 

  167. Marugan JJ et al (2011) Evaluation of quinazoline analogues as glucocerebrosidase inhibitors with chaperone activity. J Med Chem 54:1033–1058

    CAS  Google Scholar 

  168. Patnaik S, Marugan JJ (2012) Discovery, SAR, and biological evaluation of non-inhibitory small molecule chaperones of glucocerebrosidase. J Med Chem 55:5734–5748

    CAS  Google Scholar 

  169. Fan J-Q (2007) Iminosugars as active-site-specific chaperones for the treatment of lysosomal storage disorders. In: Compain P, Martin OR (eds) Iminosugars: from synthesis to therapeutic applications. Wiley, West Sussex

    Google Scholar 

  170. Svennerholm L, Vanier MT, Månsson JE (1980) Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. J Lipid Res 21(1):53–64

    CAS  Google Scholar 

  171. Lieberman Raquel L et al (2007) Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat Chem Biol 3(2):101–107

    CAS  Google Scholar 

  172. Brumshtein B et al (2007) Crystal structures of complexes of N-butyl- and N-nonyl-deoxynojirimycin bound to acid β-glucosidase: insights into the mechanism of chemical chaperone action in Gaucher disease. J Biol Chem 282(39):29052–29058

    CAS  Google Scholar 

  173. Deane JE et al (2011) Insights into Krabbe disease from structures of galactocerebrosidase. Proc Natl Acad Sci U S A 108(37):15169–15173

    CAS  Google Scholar 

  174. Diot JD et al (2011) Amphiphilic 1-deoxynojirimycin derivatives through click strategies for chemical chaperon in N370S Gaucher cells. J Org Chem 76(19):7757–7768

    CAS  Google Scholar 

  175. Yu L et al (2006) α-1-C-octyl-1-deoxynojirimycin as a pharmacological chaperone for Gaucher disease. Bioorg Med Chem 14(23):7736–7744

    CAS  Google Scholar 

  176. Sawkar AR et al (2002) Chemical chaperones increase the cellular activity of N370S β-glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci U S A 99:15428–15433

    CAS  Google Scholar 

  177. Fröhlich RFG et al (2010) 1-Deoxynojirimycins with dansyl capped N substituents as probes for morbus Gaucher affected cell lines. Carbohydr Res 345:1371–1376

    Google Scholar 

  178. Luan Z et al (2010) A fluorescent sp2-iminosugar with pharmacological chaperone activity for Gaucher disease: synthesis and intracellular distribution studies. ChemBioChem 11(17):2453–2464

    CAS  Google Scholar 

  179. Chang HH et al (2006) Hydrophilic iminosugar active-site-specific chaperones increase residual glucocerebrosidase activity in fibroblasts from Gaucher patients. FEBS J 273(17):4082–4092

    CAS  Google Scholar 

  180. Zhu X et al (2005) Rational design and synthesis of highly potent beta-glucocerebrosidase inhibitors. Angew Chem Int Ed Engl 44(45):7450–7453

    CAS  Google Scholar 

  181. Yu Z et al (2007) Isofagomine- and 2,5-anhydro-2,5-imino-D-glucitol-based glucocerebrosidase pharmacological chaperones for Gaucher disease intervention. J Med Chem 50(1):94–100

    CAS  Google Scholar 

  182. Hill T et al (2011) Synthesis, kinetic evaluation and cell-based analysis of C-alkylated isofagomines as chaperones of β-glucocerebrosidase. ChemBioChem 12(14):2151–2154

    CAS  Google Scholar 

  183. Boyd R, Lee G, Rybczynski P (2011) Novel compositions for preventing and/or treating lysosomal storage disorders using piperidine diol derivatives. Amicus Therapeutics, Inc., USA. Application: US. p 34

    Google Scholar 

  184. Boyd R, Lee G, Rybczynski P (2011) Novel compositions for preventing and/or treating degenerative disorders of the central nervous system. Amicus Therapeutics, Inc., USA. Application: US. p 38

    Google Scholar 

  185. Rademacher TW, Parekh RB, Dwek RA (1988) Glycobiology. Annu Rev Biochem 57:785–838

    CAS  Google Scholar 

  186. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    CAS  Google Scholar 

  187. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    CAS  Google Scholar 

  188. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    CAS  Google Scholar 

  189. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    CAS  Google Scholar 

  190. Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7:537–551

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Horne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horne, G. (2014). Iminosugars: Therapeutic Applications and Synthetic Considerations. In: Seeberger, P., Rademacher, C. (eds) Carbohydrates as Drugs. Topics in Medicinal Chemistry, vol 12. Springer, Cham. https://doi.org/10.1007/7355_2014_50

Download citation

Publish with us

Policies and ethics