Skip to main content

Zinc, Cadmium, and Lead Resistance and Homeostasis

  • Chapter
  • First Online:
Book cover Molecular Microbiology of Heavy Metals

Part of the book series: Microbiology Monographs ((MICROMONO,volume 6))

Abstract

Metals such as zinc are required for life but can be toxic in excess. Other metals such as cadmium and lead have almost no known biological function, and can lead to cell damage and death even at low concentrations. Interestingly, all three metals are often recognized by the same gene regulators and membrane transporters. Therefore, an examination of the inherent chemical properties of these three metal ions is essential in understanding the basis of metal specificity displayed by target proteins responsible for metal homeostasis and resistance. The relationship between the chemical properties of these metals and similarities in structural responses they may elicit are discussed. The core elements regulating uptake, efflux, and sequestration of these metals are described and interpreted both biologically and chemically. Additional mechanisms aiding cell survival, such as precipitation of metal salts on the cell surface, are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akama H, Matsuura T, Kashiwagi S, Yoneyama H, Narita S, Tsukihara T, Nakagawa A, Nakae T (2004) Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J Biol Chem 279:25939–25942

    Article  PubMed  CAS  Google Scholar 

  2. Akanuma G, Nanamiya H, Natori Y, Nomura N, Kawamura F (2006) Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. J Bacteriol 188:2715–2720

    Article  PubMed  CAS  Google Scholar 

  3. Ansari AZ, Bradner JE, O'Halloran TV (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374:371–375

    Article  PubMed  CAS  Google Scholar 

  4. Anton A (2001) Genetische und biochemische Charakterisierung von CzcD und anderen Regulatoren der czc-vermittelten Schwermetallresistanz in Ralstonia metallidurans. Dissertation, Martin-Luther-Universität, Halle-Wittenberg

    Google Scholar 

  5. Anton A, Grosse C, Reissmann J, Pribyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181:6876–6881

    PubMed  CAS  Google Scholar 

  6. Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C, Nies DH (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans and Escherichia coli. J Bacteriol 186:7499–7507

    Article  PubMed  CAS  Google Scholar 

  7. Archibald FS, Duong MN (1984) Manganese acquisition by Lactobacillus plantarum. J Bacteriol 158:1–8

    PubMed  CAS  Google Scholar 

  8. Arguello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108

    Article  PubMed  CAS  Google Scholar 

  9. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. BioMetals 14:271–313

    Article  PubMed  CAS  Google Scholar 

  10. Banci L, Bertini I, Ciofi-Baffoni S, Finney LA, Outten CE, O'Halloran TV (2002) A new zinc–protein coordination site in intracellular metal trafficking: solution structure of the apo and Zn(II) forms of ZntA(46-118). J Mol Biol 323:883–897

    Article  PubMed  CAS  Google Scholar 

  11. Banci L, Bertini I, Ciofi-Baffoni S, Su XC, Miras R, Bal N, Mintz E, Catty P, Shokes JE, Scott RA (2006) Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA. J Mol Biol 356:638–650

    Article  PubMed  CAS  Google Scholar 

  12. Banerjee S, Wei B, Bhattacharyya-Pakresi M, Pakrasi HB, Smith TJ (2003) Structural determinants of metal specificity in the zinc transport protein ZnuA from Synechocystis 6803. J Mol Biol 333:1061–1069

    Article  PubMed  CAS  Google Scholar 

  13. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  14. Beard SJ, Hashim R, Membrillo-Hernandez J, Hughes MN, Poole RK (1997) Zinc(II) tolerance in Escherichia coli K12; evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol 25:883–891

    Article  PubMed  CAS  Google Scholar 

  15. Beard SJ, Hashim R, Wu G, Binet MRB, Hughes MN, Poole RK (2000) Evidence for the transport of zinc(II) ions via the Pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol Lett 184:231–235

    Article  PubMed  CAS  Google Scholar 

  16. Bhattacharyya P (1975) Active transport of manganese in isolated membrane vesicles of Bacillus subtilis. J Bacteriol 123:123–127

    PubMed  CAS  Google Scholar 

  17. Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    Article  PubMed  CAS  Google Scholar 

  18. Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432

    Article  PubMed  CAS  Google Scholar 

  19. Borremans B, Hobman JL, Provoost A, Brown NL, van der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:551–568

    Article  Google Scholar 

  20. Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902

    Article  PubMed  CAS  Google Scholar 

  21. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    Article  PubMed  CAS  Google Scholar 

  22. Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198

    Article  PubMed  CAS  Google Scholar 

  23. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  24. Dinh T, Paulsen IT, Saier MH Jr (1994) A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol 176:3825–3831

    PubMed  CAS  Google Scholar 

  25. Dong Q, Mergeay M (1994) Czc/Cnr efflux: a three-component chemiosmotic antiport pathway with a 12-transmembrane-helix protein. Mol Microbiol 14:185–187

    Article  PubMed  CAS  Google Scholar 

  26. Dreyer MK, Schulz GE (1993) The spatial structure of the class II l-fuculose-1-phosphate aldolase from Escherichia coli. J Mol Biol 231:549–553

    Article  PubMed  CAS  Google Scholar 

  27. Dutta SJ, Liu J, Mitra B (2005) Kinetics of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes. Biochemistry 44:14268–14274

    Article  PubMed  CAS  Google Scholar 

  28. Dutta SJ, Liu J, Hou Z, Mitra B (2006) Conserved Asp714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue. Biochemistry 45:5923–5931

    Article  PubMed  CAS  Google Scholar 

  29. Dutta SJ, Liu J, Stemmler AJ, Mitra B (2007) Conservative and non-conservative mutation of the cysteine residues of the transmembrane CPC motif in ZntA: effect on metal binding and activity. Biochemistry 46 (in press)

    Google Scholar 

  30. Esposito L, Sica F, Raia CA, Giordano A, Rossi M, Mazzarella L, Zagari A (2002) Crystal structure of the alcohol dehydrogenase from the hyperthermophile archaeon Sulfolobus solfataricus at 1.85 Åresolution. J Mol Biol 318:463–477

    Article  PubMed  CAS  Google Scholar 

  31. Gaballa A, Helmann JD (1998) Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180:5815–5821

    PubMed  CAS  Google Scholar 

  32. Grass G (2000) Molekulargenetische und biochemische Charakterisierung der cnr Cobalt/Nickel-Resistenz-Determinante aus Ralstonia metallidurans CH34. Dissertation, Martin-Luther-Universität, Halle-Wittenberg

    Google Scholar 

  33. Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908

    Article  PubMed  CAS  Google Scholar 

  34. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D (2005) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18

    Article  PubMed  CAS  Google Scholar 

  35. Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    Article  PubMed  Google Scholar 

  36. Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in functional understanding of the cation-diffusion-facilitator family. J Ind Microbiol Biotechnol 32:215–226

    Article  PubMed  CAS  Google Scholar 

  37. Hantke K (2005) Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202

    Article  PubMed  CAS  Google Scholar 

  38. Harvie DR, Andreini C, Cavallaro G, Meng W, Connolly BA, Yoshida KI, Fujita Y, Harwood CR, Radford DS, Tottey S, Cavet JS, Robinson NJ (2006) Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a non-effector metal. Mol Microbiol 59:1341–1356

    Article  PubMed  CAS  Google Scholar 

  39. Hassan MT, van der Lelie D, Springael D, Romling U, Ahmed N, Mergeay M (1999) Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238:417–425

    Article  PubMed  CAS  Google Scholar 

  40. Hobman JL, Wilkie J, Brown NL (2005) A design for life: prokaryotic metal-binding MerR family regulators. BioMetals 18:429–436

    Article  PubMed  CAS  Google Scholar 

  41. Kehres DG, Lawyer CH, Maguire ME (1998) The CorA magnesium transporter gene family. Microb Comp Genomics 3:151–169

    PubMed  CAS  Google Scholar 

  42. Kehres DG, Zaharik ML, Finlay BB, Maguire ME (2000) The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100

    Article  PubMed  CAS  Google Scholar 

  43. Korkhin Y, Kalb AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) NADP-dependent bacterial alcohol dehydrogenase: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Chlostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol 278:967–981

    Article  PubMed  CAS  Google Scholar 

  44. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919

    Article  PubMed  CAS  Google Scholar 

  45. Kuroda M, Hayashi H, Ohta T (1999) Chromosome-determined zinc-responsible operon czr in Staphylococcus aureus strain 912. Microbiol Immunol 43:115–125

    PubMed  CAS  Google Scholar 

  46. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FM (2005) Biochemistry: a cadmium enzyme from a marine diatom. Nature 435:42

    Article  PubMed  CAS  Google Scholar 

  47. Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, Paton JC (1998) The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6:1553–1561

    Article  PubMed  CAS  Google Scholar 

  48. Lee YH, Dorwart MR, Hazlett KR, Deka RK, Norgard MV, Radolf JD, Hasemann CA (2002) The crystal structure of Zn(II)-free Treponema pallidum TroA, a periplasmic metal-binding protein, reveals a closed conformation. J Bacteriol 184:2300–2304

    Article  PubMed  CAS  Google Scholar 

  49. Legatzki A, Grass G, Anton A, Rensing C, Nies DH (2003) Interplay of the Czc system and two P-type ATPases in conferring metal resistance in Ralstonia metallidurans. J Bacteriol 185:4354–4361

    Article  PubMed  CAS  Google Scholar 

  50. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  51. Liu T, Golden JW, Giedroc DP (2005a) A zinc(II)/lead(II)/cadmium(II)-inducible operon from the cyanobacterium Anabaena is regulated by AztR, an a3N ArsR/SmtB metalloregulator. Biochemistry 44:8673–8683

    Article  PubMed  CAS  Google Scholar 

  52. Liu J, Stemmler AJ, Fatima J, Mitra B (2005b) Metal-binding characteristics of the amino-terminal domain of ZntA: lead binds to different ligands compared to cadmium and zinc. Biochemistry 44:5159–5167

    Article  PubMed  CAS  Google Scholar 

  53. Liu J, Dutta SJ, Stemmler AJ, Mitra B (2006) Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Biochemistry 45:763–772

    Article  PubMed  CAS  Google Scholar 

  54. Magyar JS, Weng TC, Stern CM, Dye DF, Rous BW, Payne JC, Bridgewater BM, Mijovilovich A, Parkin G, Zaleski JM, Penner-Hahn JE, Godwin HA (2005) Reexamination of lead(II) coordination preferences in sulfur-rich sites: implications for a critical mechanism of lead poisoning. J Am Chem Soc 127:9495–9505

    Article  PubMed  CAS  Google Scholar 

  55. Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MF (2000) Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35:1065–1078

    Article  PubMed  CAS  Google Scholar 

  56. Mikolosko J, Bobyk K, Zgurskaya HI, Ghosh P (2006) Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14:577–587

    Article  PubMed  CAS  Google Scholar 

  57. Mitra B, Sharma R (2001) The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry 40:7694–7699

    Article  PubMed  CAS  Google Scholar 

  58. Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD (2005) Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol Microbiol 57:27–40

    Article  PubMed  CAS  Google Scholar 

  59. Morby AP, Turner JS, Huckle JW, Robinson NJ (1993) SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene SmtA: identification of a Zn-inhibited DNA–protein complex. Nucleic Acids Res 21:921–925

    Article  PubMed  CAS  Google Scholar 

  60. Munkelt D, Grass G, Nies DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186:8036–8043

    Article  PubMed  CAS  Google Scholar 

  61. Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593

    Article  PubMed  CAS  Google Scholar 

  62. Nies DH (1995) The cobalt, zinc and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation–proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    PubMed  CAS  Google Scholar 

  63. Outten CE, Outten FW, O'Halloran TV (1999) DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J Biol Chem 274:37517–37524

    Article  PubMed  CAS  Google Scholar 

  64. Outten CE, Tobin DA, Penner-Hahn JE, O'Halloran TV (2001) Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 40:10417–10423

    Article  PubMed  CAS  Google Scholar 

  65. Outten FW, Outten CE, Hale J, O'Halloran TV (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275:31024–31029

    Article  PubMed  CAS  Google Scholar 

  66. Panina EM, Mironov AA, Gelfand MS (2003) Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci USA 100:9912–9917

    Article  PubMed  CAS  Google Scholar 

  67. Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210

    Article  PubMed  CAS  Google Scholar 

  68. Patzer SI, Hantke K (2000) The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275:24321–24332

    Article  PubMed  CAS  Google Scholar 

  69. Paulsen IT, Saier MJ (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Article  PubMed  CAS  Google Scholar 

  70. Perry RD, Silver S (1982) Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. J Bacteriol 150:973–976

    PubMed  CAS  Google Scholar 

  71. Que Q, Helmann JD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35:1454–1468.

    Article  PubMed  CAS  Google Scholar 

  72. Rensing C (2005) Form and function in metal-dependent transcriptional regulation: dawn of the enlightenment. J Bacteriol 187:3909–3912

    Article  PubMed  CAS  Google Scholar 

  73. Rensing C, Mitra B, Rosen BP (1997a) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94:14326–14331

    Article  PubMed  CAS  Google Scholar 

  74. Rensing C, Pribyl T, Nies DH (1997b) New functions for the three subunits of the CzcCBA cation–proton antiporter. J Bacteriol 179:6871:6879

    PubMed  CAS  Google Scholar 

  75. Rensing C, Mitra B, Rosen BP (1998a) A Zn(II)-translocating P-type ATPase from Proteus mirabilis. Biochem Cell Biol 76:787–790

    Article  PubMed  CAS  Google Scholar 

  76. Rensing C, Sun Y, Mitra B, Rosen BP (1998b) Pb(II)-translocating P-type ATPases. J Biol Chem 273:32614–32617.

    Article  PubMed  CAS  Google Scholar 

  77. Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897

    PubMed  CAS  Google Scholar 

  78. Rutherford JC, Cavet JS, Robinson NJ (1999) Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J Biol Chem 274:25827–25832

    Article  PubMed  CAS  Google Scholar 

  79. Sharma R, Rensing C, Rosen BP, Mitra B (2000) The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem 275:3873–3878

    Article  PubMed  CAS  Google Scholar 

  80. Silver S (1998) Genes for all metals: a bacterial view of the Periodic Table. J Ind Microbiol Biotechnol 20:1–12

    Article  PubMed  CAS  Google Scholar 

  81. Silver S, Hobman JL (2007) Mercury Microbiology: Resistance Systems, Environmental Aspects, Methylation and Human Health. Springer, Heidelberg (in this volume)

    Google Scholar 

  82. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  PubMed  CAS  Google Scholar 

  83. Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186:7815–7817

    Article  PubMed  CAS  Google Scholar 

  84. Singh VK, Xiong A, Usgaard TR, Chakrabarti S, Deora R, Misra TK, Jayaswal RK (1999) ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol Microbiol 33:200–207

    Article  PubMed  CAS  Google Scholar 

  85. Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241

    Article  PubMed  CAS  Google Scholar 

  86. Strange RW, Antonyuk S, Hough MA, Doucette PA, Rodriguez JA, Hart J, Hayward LJ, Valentine JS, Hasnain SS (2003) The structure of holo and metal-deficient wild-type human Cu,Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. J Mol Biol 328:877–891

    Article  PubMed  CAS  Google Scholar 

  87. Thelwell C, Robinson NJ, Turner-Cavet JS (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci USA 95:10728–10733

    Article  PubMed  CAS  Google Scholar 

  88. Tsai KJ, Yoon KP, Lynn AR (1992) ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. J Bacteriol 174:116–121

    PubMed  CAS  Google Scholar 

  89. Utschig LM, Bryson JW, O'Halloran TV (1995) Mercury-199 NMR of the metal receptor site in MerR and its protein–DNA complex. Science 268:380–385

    Article  PubMed  CAS  Google Scholar 

  90. Vallee BL, Coleman JE, Auld DS (1991) Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc Natl Acad Sci USA 88:999–1003

    Article  PubMed  CAS  Google Scholar 

  91. Wei Y, Fu D (2005) Selective metal binding to a membrane-embedded aspartate in the Escherichia coli transporter YiiP (FieF). J Biol Chem 280:33716–33724

    Article  PubMed  CAS  Google Scholar 

  92. Xiong A, Jayaswal RK (1998) Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J Bacteriol 180:4024–4029

    PubMed  CAS  Google Scholar 

  93. Ye J, Kandegedara A, Martin P, Rosen BP (2005) Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J Bacteriol 187:4214–4221

    Article  PubMed  CAS  Google Scholar 

  94. Yu EW, McDermott G, Zgurskaya HI, Nikaido H, Koshland DE Jr (2003) Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300:976–980

    Article  PubMed  CAS  Google Scholar 

  95. Yu EW, Aires JR, McDermott G, Nikaido H (2005) A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J Bacteriol 187:6804–6815

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Rensing .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rensing, C., Mitra, B. (2007). Zinc, Cadmium, and Lead Resistance and Homeostasis. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_083

Download citation

Publish with us

Policies and ethics