Skip to main content

Cytoskeletal and Vacuolar Dynamics During Plant Cell Division: Approaches Using Structure-Visualized Cells

  • Chapter
  • First Online:
Cell Division Control in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 9))

Abstract

During cell cycle progression, intra-cellular cytoskeletal and membrane structures undergo dynamicchanges in their form and localization, which in turn regulate further progress of the cell cycle. Despitethe considerable insights into these intra-cellular structures obtained from immuno-fluorescence microscopy,the need for chemical fixation has limited the acquired images to only static ones. In contrast, more recentfluorescent protein techniques used to visualize these structures in living cell systems have allowed investigationsof their dynamics. The visualization of microtubules (MTs) by using the green fluorescent protein (GFP)and the analysis of MT-associated proteins will be presented. In addition, to further understand plantcell cycle progression, dynamics of actin microfilaments (MFs) and vacuolar membranes (VMs) visualized withfluorescent proteins are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570

    PubMed  PubMed Central  CAS  Google Scholar 

  • Andersen SSL (1999) Molecular characteristics of the centrosome. Int Rev Cytol 187:51–109

    PubMed  CAS  Google Scholar 

  • Andrews PD, Knatko E, Moore WJ, Swedlow JR (2003) Mitotic mechanics: the auroras come into view. Curr Opin Cell Biol 15:672–683

    PubMed  CAS  Google Scholar 

  • Asada T, Kuriyama R, Shibaoka H (1997) TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci 110:179–189

    PubMed  CAS  Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    PubMed  CAS  Google Scholar 

  • Binarová P, Cenklova V, Prochazkova J, Doskocilova A, Volc J, Vrlik M, Bogre L (2006) γ-Tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18:1199–1212

    PubMed  PubMed Central  Google Scholar 

  • Charrasse S, Schroeder M, Gauthier-Rouviere C, Ango F, Cassimeris L, Gard DL, Larroque C (1998) The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J Cell Sci 111:1371–1383

    PubMed  CAS  Google Scholar 

  • Cleary AL (1995) F-actin redistributions at the division site in living Tradescantia stomatal complexes as revealed by microinjection of rhodamine-phalloidin. Protoplasma 185:152–165

    Google Scholar 

  • Cleary AL, Gunning BES, Wasteneys GO, Hepler PK (1992) Microtubule and F-actin dynamics at the division site in living Tradescantia stamen hair cells. J Cell Sci 103:977–988

    CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and function of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    PubMed  CAS  Google Scholar 

  • Criqui MC, Parmentier Y, Derevier A, Shen WH, Dong A, Genschik P (2000) Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY-2 cells. Plant J 24:763–773

    PubMed  CAS  Google Scholar 

  • Genschik P, Criqui MC, Parmentier Y, Derevier A, Fleck J (1998) Cell cycle-dependent proteolysis in plants: identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10:2063–2075

    PubMed  PubMed Central  CAS  Google Scholar 

  • Giddings TH, Staehelin LA (1991) Microtubule-mediated control of microfibril deposition; a re-examination of the hypothesis. In: Lloyd CW (ed) The Cytoskeletal basis of plant growth and form. Academic Press, London, pp 85–100

    Google Scholar 

  • Granger CL, Cyr RJ (2000) Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD. Planta 210:502–509

    PubMed  CAS  Google Scholar 

  • Hamada T (2007) Microtubule-associated proteins in higher plants. J Plant Res 120:79–98

    PubMed  CAS  Google Scholar 

  • Hamada T, Igarashi H, Itoh TJ, Shimmen T, Sonobe S (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol 45:1233–1242

    PubMed  CAS  Google Scholar 

  • Hasezawa S, Hogetsu T, Syono K (1989) Changes of actin filaments and cellulose fibrils in elongating cells derived from tobacco protoplasts. J Plant Physiol 134:115–119

    Google Scholar 

  • Hasezawa S, Marc J, Palevitz BA (1991) Microtubule reorganization during the cell cycle in synchronized BY-2 tobacco suspensions. Cell Motil Cytoskeleton 18:94–106

    CAS  Google Scholar 

  • Hasezawa S, Ueda K, Kumagai F (2000) Time-sequence observations of microtubule dynamics throughout mitosis in living cell suspensions of stable transgenic Arabidopsis – direct evidence for the origin of cortical microtubules at M/G1 interface. Plant Cell Physiol 41:244–250

    PubMed  CAS  Google Scholar 

  • Hawes C, Saint-Jore CM, Brandizzi F, Zheng H, Andreeva AV, Boevink P (2001) Cytoplasmic illuminations, in planta targeting of fluorescent proteins to cellular organelles. Protoplasma 215:77–88

    PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    PubMed  CAS  Google Scholar 

  • Higaki T, Kutsuna N, Okubo E, Sano T, Hasezawa S (2006) Actin microfilaments regulate vacuolar structures and dynamics: dual observation of actin microfilaments and vacuolar membrane in living tobacco BY-2 cells. Plant Cell Physiol 47:839–852

    PubMed  CAS  Google Scholar 

  • Hoshino H, Yoneda A, Kumagai F, Hasezawa S (2003) Roles of actin-depleted zone and preprophase band in determining the division site of higher-plant cells, a tobacco BY-2 cell line expressing GFP-tubulin. Protoplasma 222:157–165

    PubMed  CAS  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and Xenopus MAP-215-like protein, MOR1. Plant Mol Biol 50:915–924

    PubMed  CAS  Google Scholar 

  • Jiang C-J, Sonobe S (1993) Identification and preliminary characterization of a 65 kDa higher plant microtubule-associated protein. J Cell Sci 105:891–901

    CAS  Google Scholar 

  • Job D, Valiron O, Oakley B (2003) Microtubule nucleation. Curr Opin Cell Biol 15:111–117

    PubMed  CAS  Google Scholar 

  • Kawabe A, Matsunaga S, Nakagawa K, Kurihara D, Yoneda A, Hasezawa S, Uchiyama S, Fukui K (2005) Characterization of plant Aurora kinases during mitosis. Plant Mol Biol 58:1–13

    PubMed  CAS  Google Scholar 

  • Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140:102–114

    PubMed  PubMed Central  CAS  Google Scholar 

  • Keating TJ, Borisy GG (2000) Immunostructural evidence for the template mechanism of microtubule nucleation. Nat Cell Biol 2:352–357

    PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P, Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualize the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    PubMed  CAS  Google Scholar 

  • Kovar DR, Staiger CJ, Weaver EA, McCurdy DW (2000) AtFim1 is an actin filament crosslinking protein from Arabidopsis thaliana. Plant J 24:625–636

    PubMed  CAS  Google Scholar 

  • Kumagai F, Yoneda A, Tomida T, Sano T, Nagata T, Hasezawa S (2001) Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol 42:723–732

    PubMed  CAS  Google Scholar 

  • Kumagai F, Nagata T, Yahara N, Moriyama Y, Horio T, Naoi K, Hashimoto T, Murata T, Hasezawa S (2003) γ-tubulin distribution during cortical microtubule reorganization at the M/G1 interface in tobacco BY-2 cells. Eur J Cell Biol 82:43–51

    PubMed  CAS  Google Scholar 

  • Kutsuna N, Hasezawa S (2002) Dynamic organization of vacuolar and microtubule structures during cell cycle progression in synchronized tobacco BY-2 cells. Plant Cell Physiol 43:965–973

    CAS  Google Scholar 

  • Kutsuna N, Hasezawa S (2005) Morphometrical study of plant vacuolar dynamics in single cells using three-dimensional reconstruction from optical sections. Microsc Res Tech 68:296–306

    PubMed  Google Scholar 

  • Kutsuna N, Kumagai F, Sato MH, Hasezawa S (2003) Three-dimensional reconstruction of tubular structures of vacuolar membrane throughout mitosis in living tobacco cells. Plant Cell Physiol 44:1045–1054

    PubMed  CAS  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Palevitz BA (1992) Organization of cortical microfilaments in dividing root cells. Cell Motil Cytoskel 23:252–264

    Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell-cycle dependent manner. J Cell Sci 104:1217–1228

    PubMed  CAS  Google Scholar 

  • Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) γ-tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Joshi HC, Palevitz BA (1995) Experimental manipulation of γ-tubulin distribution in Arabidopsis using anti-microtubule drugs. Cell Motil Cytoskel 31:113–129

    CAS  Google Scholar 

  • Mao G, Chan J, Calder G, Doonan JH, Lloyd CW (2005) Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division. Plant J 43:469–478

    PubMed  CAS  Google Scholar 

  • Marc J, Granger CL, Brincat J, Fisher DD, Kao T-H, McCubbin AG, Cyr RJ (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1939

    PubMed  PubMed Central  CAS  Google Scholar 

  • Marty F (1999) Plant vacuoles. Plant Cell 11:587–599

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mathur J, Spielhofer P, Kost B, Chua N-H (1999) The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126:5559–5568

    PubMed  CAS  Google Scholar 

  • McCurdy DW, Kovar DR, Staiger CJ (2001) Actin and actin-binding proteins in higher plants. Protoplasma 215:89–104

    PubMed  CAS  Google Scholar 

  • Mineyuki Y (1999) The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int Rev Cytol 187:1–49

    Google Scholar 

  • Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T, Margolis RL (2002) PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol 157:1175–1186

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moritz M, Braunfeld MB, Guenebaut V, Heuser J, Agard DA (2000) Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol 2:365–370

    PubMed  CAS  Google Scholar 

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat Cell Biol 7:961–968

    PubMed  CAS  Google Scholar 

  • Nagata T (2004) When I encountered tobacco BY-2 cells! In: Nagata T, Hasezawa S, Inze D (eds) Tobacco BY-2 cells: Biotech Agricul Forest, vol 53. Springer-Verlag, Berlin Heidelberg New York, pp 1–6

    Google Scholar 

  • Nagata T, Kumagai F (1999) Plant cell biology through the window of the highly synchronized tobacco BY-2 cell line. Method Cell Sci 21:123–127

    CAS  Google Scholar 

  • Nagata T, Nemoto Y, Haswzawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    CAS  Google Scholar 

  • Oda Y, Hasezawa S (2006) Cytoskeletal organization during xylem cell differentiation. J Plant Res 119:167–177

    PubMed  Google Scholar 

  • Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137:1027–1036

    PubMed  PubMed Central  CAS  Google Scholar 

  • Oka M, Yanagawa Y, Asada T, Yoneda A, Hasezawa S, Sato T, Nakagawa H (2004) Inhibition of proteasome by MG-132 treatment causes extra phragmoplast formation and cortical microtubule disorganization during M/G1 transition in synchronized tobacco cells. Plant Cell Physiol 45:1623–1632

    PubMed  CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    PubMed  CAS  Google Scholar 

  • Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard JL, Schmit AC, Guerche P, Bouchez D (2006) γ-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18:1412–1425

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saito C, Ueda T, Abe H, Wada Y, Kuroiwa T, Hisada A, Furuya M, Nakano A (2002) A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J 29:245–255

    PubMed  Google Scholar 

  • Sano T, Higaki T, Oda Y, Hayashi T, Hasezawa S (2005) Appearance of actin microfilament “twin peaks” in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J 44:595–605

    PubMed  CAS  Google Scholar 

  • Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi S, Itoh TJ, Hidaka M, Machida Y (2006) Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20:1004–1014

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schiebel E (2000) γ-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation. Curr Opin Cell Biol 12:113–118

    PubMed  CAS  Google Scholar 

  • Schmit AC, Lambert AM (1990) Microinjected fluorescent phalloidin in vivo reveals the F-actin dynamics and assembly in higher plant mitotic cells. Plant Cell 2:129–138

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schuyler SC, Liu JY, Pellman D (2003) The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J Cell Biol 160:517–528

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sheahan MB, Rose RJ, McCurdy DW (2004a) Organelle inheritance in plant cell division: the actin cytoskeleton is required for unbiased inheritance of chloroplasts, mitochondria and endoplasmic reticulum in dividing protoplasts. Plant J 37:379–390

    PubMed  CAS  Google Scholar 

  • Sheahan MB, Staiger CJ, Rose RJ, McCurdy DW (2004b) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136:3968–3978

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2:750–753

    PubMed  CAS  Google Scholar 

  • Smertenko AP, Chang H-Y, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd CW, Hauser M-T, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling capacity. Plant Cell 16:2035–2047

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sonobe S, Yokota E, Shimmen T (2004) Tobacco BY-2 cells as an ideal material for biochemical studies of plant cytoskeletal proteins. In: Nagata T, Hasezawa S, Inze D (eds) Tobacco BY-2 cells: Biotech Agricul Forest, vol 53. Springer-Verlag, Berlin Heidelberg New York, pp 98–115

    Google Scholar 

  • Tournebize R, Popov A, Kinoshita K, Ashford AJ, Rybina S, Pozniakovsky A, Mayer TU, Walczak CE, Karsenti E, Hyman AA (2000) Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2:13–19

    PubMed  CAS  Google Scholar 

  • Traas JA, Doonan JH, Rawlins DJ, Shaw PJ, Watts J, Lloyd CW (1987) An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol 105:387–395

    PubMed  CAS  Google Scholar 

  • Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711–714

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda K, Matsuyama T, Hashimoto T (1999) Visualization of microtubules in living cells of transgenic Arabidopsis thaliana. Protoplasma 206:201–206

    Google Scholar 

  • Uemura T, Yoshimura SH, Takeyasu K, Sato MH (2002) Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein. Gene Cell 7:743–753

    CAS  Google Scholar 

  • Vantard M, Cowling R, Delichère C (2000) Cell cycle regulation of the microtubular cytoskeleton. Plant Mol Biol 43:691–703

    PubMed  CAS  Google Scholar 

  • Vaughn KC, Harper JDI (1998) Microtubule-organizing centers and nucleating sites in land plants. Int Rev Cytol 181:75–149

    PubMed  CAS  Google Scholar 

  • Voigt B, Timmers AC, Samaj J, Muller J, Baluska F, Menzel D (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84:595–608

    PubMed  CAS  Google Scholar 

  • Wink M (1993) The plant vacuole: a multifunctional compartment. J Exp Bot Suppl 44:231–246

    CAS  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    PubMed  CAS  Google Scholar 

  • Wiese C, Zheng Y (2000) A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat Cell Biol 2:358–364

    PubMed  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    PubMed  CAS  Google Scholar 

  • Yanagawa Y, Hasezawa S, Kumagai F, Oka M, Fujimuro M, Naito T, Makino T, Yokosawa H, Tanaka K, Komamine A, Hashimoto J, Sato T, Nakagawa H (2002) Cell-cycle dependent dynamic change of 26S proteasome distribution in tobacco BY-2 cells. Plant Cell Physiol 43:604–613

    PubMed  CAS  Google Scholar 

  • Yasuhara H, Muraoka M, Shogaki H, Mori H, Sonobe S (2002) TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MOR1 homologue. Plant Cell Physiol 43:595–603

    PubMed  CAS  Google Scholar 

  • Zhang D, Wadsworth P, Hepler PK (1990) Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87:8820–8824

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Sano .

Editor information

Desh Pal S. Verma Zonglie Hong

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sano, T. et al. (2007). Cytoskeletal and Vacuolar Dynamics During Plant Cell Division: Approaches Using Structure-Visualized Cells. In: Verma, D.P.S., Hong, Z. (eds) Cell Division Control in Plants. Plant Cell Monographs, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_125

Download citation

Publish with us

Policies and ethics