Skip to main content

α-Acidic Isocyanides in Multicomponent Chemistry

  • Chapter
  • First Online:
Synthesis of Heterocycles via Multicomponent Reactions I

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 23))

Abstract

The exceptional reactivity connected to isocyanides, as discussed here, is unrivaled by other functional groups and has led to many synthetically useful novel reactions. This chapter deals with multicomponent reactions (MCRs) involving isocyanides as one of the inputs for the synthesis of heterocycles. We focus on the α-acidic isocyanides, which are an appealing class of versatile building blocks. Their use has led to a range of versatile isocyanide-based MCRs (IMCRs), as will become clear from this chapter. From a set of only three different types of α-acidic isocyanides, sometimes inspired by the early work of Schöllkopf and van Leusen, a wide range of novel reaction paths were discovered in the last decade. In this way a plethora of mainly heterocyclic scaffolds can be synthesized in a straightforward fashion. The IMCRs discussed are usually robust reactions that can be easily combined in very short sequences with other complexity-generating processes, like cycloadditions or even additional MCRs, leading to yet other classes of heterocyclic motifs. This offers exciting opportunities for library design of highly functionalized heterocyclic scaffolds employing diversity-oriented synthesis approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Initially, the presence of water and competition between the aldehyde and imine were expected to cause problems in the reaction setup.

  2. 2.

    .0 eq nBuLi seems important to suppress cyclodimerization of TosMIC see [121] for reference.

Abbreviations

Ac:

Acetyl

Ar:

Aryl

bmim:

1-Butyl-3-methylimidazolium

Bn:

Benzyl

Bu:

Butyl

chex:

Cyclohexyl

CR:

Component reaction

d:

Day(s)

DABCO:

1,4-Diazabicyclo[2.2.2]-octane

DBU:

1,8-Diazabicyclo[5.4.0]-undec-7-ene

DCM:

Dichloromethane

DHOP:

Dihydrooxazolopyridine

DMF:

Dimethylformamide

DOS:

Diversity-oriented synthesis

e.g.:

exempli gratia (for example)

eq.:

Equivalent(s)

Et:

Ethyl

EWG:

Electron withdrawing group

h:

Hour(s)

i.e.:

id est (that is)

iBu:

Isobutyl

IMCRs:

Isocyanide based multicomponent reactions

iPr:

Isopropyl

MCR:

Multicomponent reaction

Me:

Methyl

nBu:

Normal butyl

NHC:

N-heterocyclic carbene

NMR:

Nuclear magnetic resonance

Ph:

Phenyl

Pr:

Propyl

py:

Pyridine

RT:

Room temperature

SRR:

Single reactant replacement

TBAF:

Tetrabutylammonium fluoride

tBu:

tert-Butyl

THF:

Tetrahydrofuran

TMS:

Trimethylsilyl

Tol:

Tolyl, 4-methylphenyl

TosMIC:

p-Toluenesulfonylmethyl isocyanide

Ts:

Tosyl, 4-toluenesulfonyl

vL-3CR:

van Leusen 3-component reaction

References

  1. Dömling A, Ugi I (2000) Angew Chem 112:3300–3344

    Google Scholar 

  2. Hulme C, Gore V (2003) Curr Med Chem 10:51–80

    CAS  Google Scholar 

  3. Orru RVA, De Greef M (2003) Synthesis:1471–1499

    Google Scholar 

  4. Jacobi von Wangelin A, Neumann H, Gördes D, Klaus S, Strübing D, Beller M (2003) Chem Eur J 9:4286–4294

    Google Scholar 

  5. Nair V, Rajesh C, Vinod AU, Bindu S, Sreekanth AR, Mathen JS, Balagopal L (2003) Acc Chem Res 36:899–907

    CAS  Google Scholar 

  6. Zhu J (2003) Eur J Org Chem:1133–1144

    Google Scholar 

  7. Balme G, Bossharth E, Monteiro N (2003) Eur J Org Chem 4101–4111

    Google Scholar 

  8. Simon C, Constantieux T, Rodriguez J (2004) Eur J Org Chem:4957–4980

    Google Scholar 

  9. Ramón DJ, Yus M (2005) Angew Chem 117:1628–1661; (2005) Angew Chem Int Ed 44:1602–1634

    Google Scholar 

  10. Tempest P (2005) Curr Opin Drug Discov Devel 8:776–788

    CAS  Google Scholar 

  11. Dömling A (2006) Chem Rev 106:17–89

    Google Scholar 

  12. Godineau E, Landais Y (2009) Chem Eur J 15:3044–3055

    CAS  Google Scholar 

  13. Strecker A (1850) Liebigs Ann Chem 75:27

    Google Scholar 

  14. Strecker A (1850) Ann Chem Pharm 91:349

    Google Scholar 

  15. Hantzsch A (1882) Liebigs Ann Chem 215:1

    Google Scholar 

  16. Biginelli P (1891) Ber Dtsch Chem Ges 24:2962

    Google Scholar 

  17. Biginelli P (1893) Ber Dtsch Chem Ges 26:447

    Google Scholar 

  18. Mannich C, Krosche W (1912) Arch Pharm (Weinheim) 250:647

    CAS  Google Scholar 

  19. Passerini M (1922) Gazz Chim Ital 52:126–129

    Google Scholar 

  20. Passerini M (1922) Gazz Chim Ital 52:181–189

    Google Scholar 

  21. Ugi I, Meyr R (1958) Angew Chem 70:702–703

    CAS  Google Scholar 

  22. Ugi I, Meyr R, Steinbrückner C (1959) Angew Chem 71:386

    Google Scholar 

  23. Lieke W (1859) Liebigs Ann Chem 112:316

    Google Scholar 

  24. Ugi I, Betz W (1960) DE1177146; Chem Abstr 61:(14536e)

    Google Scholar 

  25. Beecham Group Ltd (1974) FR2260577; Chem Abstr 83:(206251)

    Google Scholar 

  26. van Leusen AM, Strating J (1970) Quart Rep Sulfur Chem 5:67

    Google Scholar 

  27. van Leusen AM, Boerma GJM, Helmholdt RB, Siderius H, Strating J (1972) Tetrahedron Lett 13:2367–2378

    Google Scholar 

  28. Schöllkopf U, Hoppe D, Jentsch R (1975) Chem Ber 108:1580–1592

    Google Scholar 

  29. Matsumoto K, Suzuki M, Yoneda N, Miyoshi M (1977) Synthesis:249–250

    Google Scholar 

  30. van Leusen AM, Bourma RJ, Possel O (1975) Tetrahedron Lett 16:3487–3488

    Google Scholar 

  31. Murakami M, Hasegawa N, Tomita I, Inouye M, Ito Y (1989) Tetrahedron Lett 30:1257–1260

    CAS  Google Scholar 

  32. Housseman C, Zhu J (2006) Synlett 11:1777–1779

    Google Scholar 

  33. Schöllkopf U, Hoppe D, Jentsch R (1971) Angew Chem 83:357–358; (1971) Angew Chem Int Ed Engl 10:331–332

    Google Scholar 

  34. Ito Y, Higuchi N, Murakami M (1988) Tetrahedron Lett 29:5151–5154

    CAS  Google Scholar 

  35. Ito Y, Sawamura M, Matsuoka M, Matsumoto Y, Hayashi T (1987) Tetrahedron Lett 28:4849–4852

    CAS  Google Scholar 

  36. Bonne D, Dekhane M, Zhu J (2007) Angew Chem Int Ed 46:2485–2488

    CAS  Google Scholar 

  37. van Leusen AM, Boerma GJM, Helmgoldt RB, Siderius H, Strating J (1972) Tetrahedron Lett 13:2367–2368

    Google Scholar 

  38. Matsumoto K, Suzuki M, Miyoshi M (1973) J Org Chem 38:2094–2096

    CAS  Google Scholar 

  39. Olijnsma T, Engberts JBFN, Strating J (1972) Recl Trav Chim Pays Bas 91:209

    CAS  Google Scholar 

  40. Hundscheid FJA, Tandon VK, Rouwette PHFM, van Leusen AM (1987) Tetrahedron 43:5073–5088

    CAS  Google Scholar 

  41. Barret AGM, Cramp SM, Hennessy AJ, Procopiou PA, Roberts RS (2001) Org Lett 3:271–274

    Google Scholar 

  42. Sisko J, Mellinger M, Sheldrake PW, Baine NH (1996) Tetrahedron Lett 37:8113–8116

    CAS  Google Scholar 

  43. Wright JJK, Cooper AB, McPhail AT, Merrill Y, Nagabhushan TL, Puar MS (1982) J Chem Soc Chem Commun 20:1188–1190

    Google Scholar 

  44. Urban R, Marquarding D, Seidel P, Ugi I, Weinelt A (1977) Chem Ber 110:2012–2015

    CAS  Google Scholar 

  45. Waki M, Meienhofer J (1977) J Org Chem 42:2019–2020

    CAS  Google Scholar 

  46. Kamer PCJ, Cleij MC, Nolte RJM, Harada T, Hezemans AMF, Drenth W (1988) J Am Chem Soc 110:1581–1587

    CAS  Google Scholar 

  47. Seebach D, Adam G, Gees T, Schiess M, Weigand W (1988) Chem Ber 121:507–518

    CAS  Google Scholar 

  48. Bowers MM, Carroll P, Joullie MM (1989) J Chem Soc Perkin Trans 1:857–865

    Google Scholar 

  49. Owens TD, Araldi G-L, Nutt RF, Semple JE (2001) Tetrahedron Lett 42:6271–6274

    CAS  Google Scholar 

  50. Wehner V, Stilz H-U, Osipov SN, Golubev AS, Sieler J, Burger K (2004) Tetrahedron 60:4295–4302

    CAS  Google Scholar 

  51. Horwell DC, Nichols PD, Roberts E (1994) Tetrahedron Lett 35:939–940

    CAS  Google Scholar 

  52. Obrecht R, Herrmann R, Ugi I (1985) Synthesis:400–402

    Google Scholar 

  53. Zhu J, Wu X, Danishefsky SJ (2009) Tetrahedron Lett 50:577–579

    CAS  Google Scholar 

  54. Pifferi G, LiBassi G, Broccali G (1976) Heterocycles 4:759–765

    CAS  Google Scholar 

  55. Skorna G, Ugi I (1977) Angew Chem 89:267–268; (1977) Angew Chem Int Ed Eng 16:259–260

    CAS  Google Scholar 

  56. van der Eijk JM, Nolte RJM, Richters VEM, Drenth W (1981) J Royal Netherlands Chem Soc 100:222–226

    Google Scholar 

  57. Nishimura S, Yasuda N, Sasaki H, Matsumoto Y, Kanimura T, Sakane K, Takaya T (1990) Bull Chem Soc Jpn 63:412–416

    CAS  Google Scholar 

  58. Ikota N (1990) Chem Pharm Bull 38:1601–1608

    CAS  Google Scholar 

  59. Creedon SM, Crowley HK, McCarthy DG (1998) J Chem Soc Perkin Trans 1 6:1015–1018

    Google Scholar 

  60. Banfi L, Guanti G, Riva R, Basso A, Calcagno E (2002) Tetrahedron Lett 43:4067–4070

    CAS  Google Scholar 

  61. de Witte PAJ, Castriciano M, Cornelissen JJLM, Scolaro LM, Nolte RJM, Rowan AE (2003) Chem Eur J 9:1775–1781

    Google Scholar 

  62. Zhao G, Bughin C, Bienayme H, Zhu J (2003) Synlett 8:1153–1154

    Google Scholar 

  63. Vriezema DM, Kros A, de Gelder R, Cornelissen JJLM, Rowan AE, Nolte RJM (2004) Macromolecules 37:4736–4739

    CAS  Google Scholar 

  64. Bughin C, Zhao G, Bienayme H, Zhu J (2006) Chem Eur J 12:1174–1184

    CAS  Google Scholar 

  65. Metselaar GA, Adams PJHM, Nolte RJM, Cornelissen JJLM, Rowan AE (2007) Chem Eur J 13:950–960

    CAS  Google Scholar 

  66. Schwartz E, Kitto HJ, de Gelder R, Nolte RJM, Rowan AE, Cornelissen JJLM (2007) J Mater Chem 17:1876–1884

    CAS  Google Scholar 

  67. Nunami K-I, Suzuki M, Hayashi K, Matsumoto K, Yoneda N, Takiguchi K (1985) Agric Biol Chem 49:3023–3028

    CAS  Google Scholar 

  68. Nunami K-I, Suzuki M, Matsumoto K, Yoneda N, Takiguchi K (1984) Agric Biol Chem 48:1073–1076

    CAS  Google Scholar 

  69. Takiguchi K, Yamada K, Suzuki M, Nunami K-I, Hayashi K, Matsumoto K (1989) Agr Biol Chem 53:77–82

    CAS  Google Scholar 

  70. Soloshonok VA, Hayashi T (1994) Tetrahedron Asymmetry 5:1091–1094

    CAS  Google Scholar 

  71. Beck B, Larbig G, Mejat B, Magnin-Lachaux M, Picard A, Herdtweck E, Dömling A (2003) Org Lett 5:1047–1050

    CAS  Google Scholar 

  72. van Leusen D, van Leusen AM (2001) Org React 57:417–679

    Google Scholar 

  73. Schöllkopf U (1977) Angew Chem 89:351–360; (1977) Angew Chem Int Ed Engl 16:339–348

    Google Scholar 

  74. Seagusa T, Ito Y, Kinoshita H, Tomita S (1971) J Org Chem 36:3316–3323

    Google Scholar 

  75. Hoppe D, Schöllkopf U (1972) Liebigs Ann Chem:1–16

    Google Scholar 

  76. Meyer R, Schöllkopf U, Böhme P (1977) Liebigs Ann Chem:1183–1193

    Google Scholar 

  77. Hayashi T, Kishi E, Soloshonok VA, Uozumi Y (1996) Tetrahedron Lett 37:4969–4972

    CAS  Google Scholar 

  78. Lin Y-R, Zhou X-T, Dai L-X, Sun J (1997) J Org Chem 62:1799–1803

    CAS  Google Scholar 

  79. Benito-Garagorri D, Bocokíc V, Kirchner K (2006) Tetrahedron Lett 47:8641–8644

    CAS  Google Scholar 

  80. Meyer R, Schöllkopf U, Madawinata K, Stafforst D (1978) Liebigs Ann Chem:1982–1989

    Google Scholar 

  81. Suzuki M, Iwasaki T, Matsumoto K, Okumura K (1972) Syn Commun 2:237

    CAS  Google Scholar 

  82. Suzuki M, Iwasaki T, Miyoshi M, Okumura K, Matsumoto K (1973) J Org Chem 38:3571–3575

    CAS  Google Scholar 

  83. Matsumoto K, Suzuki M, Yoneda N, Miyoshi M (1976) Synthesis:805–807

    Google Scholar 

  84. Nunami K-I, Suzuki M, Matsumoto K, Miyoshi M, Yoneda N (1979) Chem Pharm Bull 27:1373–1377

    CAS  Google Scholar 

  85. Henneke K-W, Schöllkopf U, Neudecker T (1979) Liebigs Ann Chem:1370–1387

    Google Scholar 

  86. Gerecke M, Kyburz E, Borer R, Gassner W (1994) Heterocycles 39:693–722

    CAS  Google Scholar 

  87. Matecka D, Wong G, Gu Z-Q, Skolnick P, Rice KC (1995) Med Chem Res 5:63–76

    CAS  Google Scholar 

  88. Jacobsen EJ, Stelzer LS, TenBrink RE, Belonga KL, Carter DB, Im HK, Bin Im W, Sethy VH, Tang AH, VonVoigtlander PF, Petke JD, Zhong W-Z, Mickelson JW (1999) J Med Chem 42:1123–1144

    CAS  Google Scholar 

  89. Grigg R, Lansdell MI, Thornton-Pett M (1999) Tetrahedron 55:2025–2044

    CAS  Google Scholar 

  90. Kanazawa C, Kamijo S, Yamamoto Y (2006) J Am Chem Soc 128:10662–10663

    CAS  Google Scholar 

  91. Bonin M-A, Giguere D, Roy R (2007) Tetrahedron 63:4912–4917

    CAS  Google Scholar 

  92. Suzuki M, Moriya T, Matsumoto K, Miyoshi M (1982) Synthesis:874–875

    Google Scholar 

  93. Solomon DM, Rizvi RK, Kaminski JJ (1987) Heterocycles 26:651–674

    CAS  Google Scholar 

  94. Boros EE, Johns BA, Garvey EP, Koble CS, Miller WH (2006) Bioorg Med Chem Lett 16:5668–5672

    CAS  Google Scholar 

  95. Suzuki M, Miyoshi M, Matsumoto K (1974) J Org Chem 39:1980

    CAS  Google Scholar 

  96. Matsumoto K, Suzuki M, Ozaki Y, Miyoshi M (1976) Argic Biol Chem 40:2271

    CAS  Google Scholar 

  97. Sakai K, Suzuki M, Nunami K-I, Yoneda N, Onoda Y, Iwasawa Y (1980) Chem Pharm Bull 8:2384–2393

    Google Scholar 

  98. Barton DHR, Zard SZ (1985) J Chem Soc Chem Commun:1098–1100

    Google Scholar 

  99. Ono N, Kawamura H, Maruyama K (1989) Bull Chem Soc Jpn 62:3386–3388

    CAS  Google Scholar 

  100. Barton DHR, Kervagoret J, Zard SZ (1990) Tetrahedron 46:7587–7598

    CAS  Google Scholar 

  101. Lash TD, Bellettini JR, Bastian JA, Couch KB (1994) Synthesis:170–172

    Google Scholar 

  102. Ono N, Katayama H, Nisyiyama S, Ogawa T (1994) J Heterocycl Chem 31:707–710

    CAS  Google Scholar 

  103. Uno H, Sakamoto K, Tominaga T, Ono N (1994) Bull Chem Soc Jpn 67:1441–1448

    CAS  Google Scholar 

  104. Vicente MGH, Tome AC, Walter A, Cavaleiro JAS (1997) Tetrahedron Lett 38:3639–3642

    CAS  Google Scholar 

  105. Schmidt W, Monforts F-P (1997) Synlett 8:903–904

    Google Scholar 

  106. Abel Y, Haake E, Haake G, Schmidt W, Struve D, Walter A, Monforts F-P (1998) Helv Chim Acta 81:1978–1996

    CAS  Google Scholar 

  107. Bullington JL, Wolff RR, Jackson PF (2002) J Org Chem 67:9439–9442

    CAS  Google Scholar 

  108. Kamijo S, Kanazawa C, Yamamoto Y (2005) Tetrahedron Lett 46:2563–2566

    CAS  Google Scholar 

  109. Kamijo S, Kanazawa C, Yamamoto Y (2005) J Am Chem Soc 127:9260–9266

    CAS  Google Scholar 

  110. Larionov OV, de Meijere A (2005) Angew Chem 117:5809–5813; (2005) Angew Chem Int Ed Eng 44:5664–5667

    Google Scholar 

  111. Guo C, Xue M-X, Zhu M-K, Gong L-Z (2008) Angew Chem 120:3462–3465; (2008) Angew Chem Int Ed Eng 47:3414–3417

    Google Scholar 

  112. Tsunenishi Y, Ishida H, Itoh K, Ohno M (2000) Synlett:1318–1320

    Google Scholar 

  113. Schöllkopf U, Porsch P-H (1973) Chem Ber 106:3382–3390

    Google Scholar 

  114. Schöllkopf U, Hantke K (1973) Liebigs Ann Chem:1571–1582

    Google Scholar 

  115. Possel O, van Leusen AM (1977) Heterocycles 7:77–80

    CAS  Google Scholar 

  116. Horne DA, Yakushijin K, Buechi G (1994) Heterocycles 39:139–54

    CAS  Google Scholar 

  117. Hundscheid FJA, Tandon VK, Rouwette PHFM, van Leusen AM (1987) Recl Trav Chim Pays Bas 106:159–160

    CAS  Google Scholar 

  118. Atkins JM, Vedejs E (2005) Org Lett 7:3351–3354

    CAS  Google Scholar 

  119. van Leusen AM, Wildeman J, Oldenziel OT (1977) J Org Chem 42:1153–1159

    Google Scholar 

  120. van Leusen AM, Siderius H, Hoogenboom BE, van Leusen D (1972) Tetrahedron Lett 13:5337–5340

    Google Scholar 

  121. ten Have R, Leusink FR, van Leusen AM (1996) Synthesis:871–876

    Google Scholar 

  122. Beaza A, Mendiola J, Burgos C, Alvarez-Builla J, Vaquero JJ (2005) J Org Chem 70:4879–4882

    Google Scholar 

  123. Hoppe I, Schöllkopf U (1976) Chem Ber 109:482–487

    CAS  Google Scholar 

  124. Ito Y, Sawamura M, Hamashima H, Emura T, Hayashi T (1989) Tetrahedron Lett 30:4681–4684

    CAS  Google Scholar 

  125. Ozaki Y, Maeda S, Iwasaki T, Matsumoto K, Odawara A, Sasaki Y, Morita T (1983) Chem Pharm Bull 31:4417–4424

    CAS  Google Scholar 

  126. Coffin AR, Roussell MA, Tserlin E, Pelkey ET (2006) J Org Chem 71:6678–6681

    CAS  Google Scholar 

  127. Chupp JP, Leschinsky KL (1980) J Heterocycl Chem 17:705–709

    CAS  Google Scholar 

  128. Chupp JP, Leschinsky KL (1980) J Heterocycl Chem 17:711–715

    CAS  Google Scholar 

  129. Schöllkopf U, Hausberg H-H, Hoppe I, Segal M, Reiter U (1978) Angew Chem 90:136–138; (1978) Angew Chem Int Ed Eng 17:117–119

    Google Scholar 

  130. Schöllkopf U, Hausberg H-H, Segal M, Reiter U, Hoppe I, Saenger W, Lindner K (1981) Liebigs Ann Chem 3:439–458

    Google Scholar 

  131. Sisko J (1998) J Org Chem 63:4529–4531

    CAS  Google Scholar 

  132. Gracias V, Gasiecki AF, Djuric SW (2005) Org Lett 7:3183–3186

    CAS  Google Scholar 

  133. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Keys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR (1994) Nature 372:739–746

    CAS  Google Scholar 

  134. Antuch W, Menon S, Chen Q-Z, Lu Y, Sakamuri S, Beck B, Schauer-Vukašinović V, Agarwal S, Hess S, Dömling A (2006) Bioorg Med Chem Lett 16:1740–1743

    CAS  Google Scholar 

  135. Neochoritis C, Stephanidou-Stephanatou J, Tsoleridis CA (2009) Synlett:302–305

    Google Scholar 

  136. Wu B, Wen J, Zhang J, Li J, Xiang Y-Z, Yu X-Q (2009) Synlett:500–504

    Google Scholar 

  137. Baxendale IR, Buckle CD, Ley SV, Tamborini L (2009) Synthesis:1485–1493

    Google Scholar 

  138. Sun X, Janvier P, Zhao G, Bienaymé H, Zhu J (2001) Org Lett 3:877–880

    CAS  Google Scholar 

  139. Lobrégat V, Alcaraz G, Bienaymé H, Vaultier M (2001) Chem Commun:817–818

    Google Scholar 

  140. Janvier P, Sun X, Bienaymé H, Zhu J (2002) J Am Chem Soc 124:2560–2567

    CAS  Google Scholar 

  141. Fayol A, Zhu J (2002) Angew Chem 114:3785–3787; (2002) Angew Chem Int Ed 41:3633–3635

    Google Scholar 

  142. Janvier P, Bienaymé H, Zhu J (2002) Angew Chem 114:4467–4470; (2002) Angew Chem Int Ed 41:4291–4294

    Google Scholar 

  143. Wang Q, Xia Q, Ganem B (2003) Tetrahedron Lett 44:6825–6827

    CAS  Google Scholar 

  144. Wang Q, Ganem B (2003) Tetrahedron Lett 44:6829–6832

    CAS  Google Scholar 

  145. Fayol A, Zhu J (2004) Org Lett 6:115–118

    CAS  Google Scholar 

  146. Cuny G, Gámez-Montano R, Zhu J (2004) Tetrahedron 60:4879–4885

    CAS  Google Scholar 

  147. Fayol A, Housseman C, Sun X, Janvier P, Bienaymé H, Zhu J (2005) Synthesis:161–165

    Google Scholar 

  148. Pirali T, Tron GC, Zhu J (2006) Org Lett 8:4145–4148

    CAS  Google Scholar 

  149. Mishchenco VV, Itov ZI, L’vova SD, Shostakovskaya GK, Gunar VI (1988) Phar Chem J 22:568–572

    Google Scholar 

  150. Elders N, Ruijter E, de Kanter FJJ, Janssen E, Lutz M, Spek AL, Orru RVA (2009) Chem Eur J 15:6096–6099

    CAS  Google Scholar 

  151. Elders N, Ruijter E, de Kanter FJJ, Groen MB, Orru RVA (2008) Chem Eur J 14:4961–4973

    CAS  Google Scholar 

  152. Elders N (2010) PhD Thesis, VU University, Amsterdam, the Netherlands. For details about the MCR toward 2H-2-imidazolines see: Sect. 4.6

    Google Scholar 

  153. Ganem B (2009) Acc Chem Res 42:463–471

    CAS  Google Scholar 

  154. Xia Q, Ganem B (2002) Org Lett 4:1631–1634

    CAS  Google Scholar 

  155. Pirali T, Tron GC, Masson G, Zhu J (2007) Org Lett 9:5275–5278

    CAS  Google Scholar 

  156. Fayol A, Zhu J (2005) Org Lett 7:239–242

    CAS  Google Scholar 

  157. Bon RS, Hong C, Bouma MJ, Schmitz RF, de Kanter FJJ, Lutz M, Spek AL, Orru RVA (2003) Org Lett 5:3759–3762

    CAS  Google Scholar 

  158. Bon RS, van Vliet B, Sprenkels NE, Schmitz RF, de Kanter FJJ, Stevens CV, Swart M, Bickelhaupt FM, Groen MB, Orru RVA (2005) J Org Chem 70:3542–3553

    CAS  Google Scholar 

  159. Elders N, Schmitz RF, de Kanter FJJ, Ruijter E, Groen MB, Orru RVA (2007) J Org Chem 72:6135–6142

    CAS  Google Scholar 

  160. Bon RS, de Kanter FJJ, Lutz M, Spek AL, Jahnke MC, Hahn FE, Groen MB, Orru RVA (2007) Organometallics 26:3639–3650

    CAS  Google Scholar 

  161. Strassberger Z, Mooijman M, Ruijter E, Alberts AH, de Graaff C, Orru RVA, Rothenberg G (2010) Appl Organometal Chem 24:142–146

    Google Scholar 

  162. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) Science 303:844–848

    CAS  Google Scholar 

  163. Bon RS, Sprenkels NE, Koningstein MM, Schmitz RF, de Kanter FJJ, Dömling A, Groen MB, Orru RVA (2008) Org Biomol Chem 6:130–137

    CAS  Google Scholar 

  164. Srivastava S, Beck B, Wang W, Czarna A, Holak TA, Dömling A (2009) J Comb Chem 11:631–639

    CAS  Google Scholar 

  165. Mironov MA (2006) QSAR Comb Sci 25:423–431, and references cited therein

    CAS  Google Scholar 

  166. Dömling A, Ugi I (1993) Angew Chem 105:634–635; (1993) Angew Chem Int Ed 32:563–564

    Google Scholar 

  167. Dömling A, Herdtweck E, Ugi I (1998) Act Chem Scan 52:107–113

    Google Scholar 

  168. Elders N, van der Born D, Hendrickx LJD, Timmer BJJ, Krause A, Janssen E, de Kanter FJJ, Ruijter E, Orru RVA (2009) Angew Chem 121:5970–5973; (2009) Angew Chem Int Ed 48:5856–5859

    Google Scholar 

  169. Paravidino M, Bon RS, Scheffelaar R, Vugts DJ, Znabet A, Schmitz RF, de Kanter FJJ, Lutz M, Spek AL, Groen MB, Orru RVA (2006) Org Lett 8:5369–5372

    CAS  Google Scholar 

  170. Scheffelaar R, Paravidino M, Znabet A, Schmitz RF, de Kanter FJJ, Lutz M, Spek AL, Fonseca Guerra C, Bickelhaupt FM, Groen MB, Ruijter E, Orru RVA (2010) J Org Chem 75:accepted

    Google Scholar 

  171. Paravidino M, Scheffelaar R, Schmitz RF, de Kanter FJJ, Groen MB, Ruijter E, Orru RVA (2007) J Org Chem 72:10239–10242

    CAS  Google Scholar 

  172. Scheffelaar R, Paravidino M, Muilwijk D, Lutz M, Spek AL, de Kanter FJJ, Orru RVA, Ruijter E (2009) Org Lett 11:125–128

    CAS  Google Scholar 

  173. Scheffelaar R, Klein Nijenhuis RA, Paravidino M, Lutz M, Spek AL, Ehlers AW, de Kanter FJJ, Groen MB, Orru RVA, Ruijter E (2009) J Org Chem 74:660–668

    CAS  Google Scholar 

Download references

Acknowledgments

This work was performed with financial support of the Dutch Science Foundation (NWO, VICI grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romano V. A. Orru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elders, N., Ruijter, E., Nenajdenko, V.G., Orru, R.V.A. (2010). α-Acidic Isocyanides in Multicomponent Chemistry. In: Orru, R., Ruijter, E. (eds) Synthesis of Heterocycles via Multicomponent Reactions I. Topics in Heterocyclic Chemistry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2009_24

Download citation

Publish with us

Policies and ethics