Skip to main content

Supramolecular Host–Guest Chemistry of Heterocyclic V-Shaped Molecules

  • Chapter
  • First Online:
Heterocyclic Supramolecules II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 18))

Abstract

The host–guest inclusion properties of heterocyclic molecules that utilise C 2-symmetric V-shaped building blocks in their construction are reviewed. Such compounds are classified here according to the molecular structures of these building blocks. Salient features of the crystal structures of the resulting inclusion compounds are described and the f unctions of their key supramolecular synthons are analysed. Concepts underpinning the deliberate design and synthesis of new host molecules of this type are explained and then put into practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this article, the molecular structure of only one enantiomer of a chiral molecule will be drawn, and the terms syn and anti will refer to the relative geometry of neighbouring bridges present in multicyclic structures.

Abbreviations

EE:

edge-edge

EF:

edge-face

OFF:

offset face-face

PHD:

pi–halogen dimer

References

  1. Chen C-W, Whitlock HW Jr (1978) J Am Chem Soc 100:4921–4922

    Article  CAS  Google Scholar 

  2. Zimmerman SC (1993) Top Curr Chem 165:71–102

    Article  CAS  Google Scholar 

  3. Liebig T, Abbass M, Lüning U (2007) Eur J Org Chem 972–980

    Google Scholar 

  4. Atwood JL, Davies JED, MacNicol DD (eds) (1984) Inclusion compounds, vols. 1–3, Academic, London

    Google Scholar 

  5. MacNicol DD, Toda F, Bishop R (eds) (1996) Comprehensive supramolecular chemistry, vol. 6. Solid-state supramolecular chemistry: crystal engineering. Pergamon, Oxford

    Google Scholar 

  6. Atwood JL, Davies JED, MacNicol DD (eds) (1984) Inclusion compounds, vol. 4–5. Oxford University Press, Oxford

    Google Scholar 

  7. Herbstein FH (2005) Crystalline molecular complexes and compounds, vols. 1 and 2. Oxford Science, Oxford

    Book  Google Scholar 

  8. Goldberg I (1991). In: Atwood JL, Davies, JED, MacNicol DD (eds) Inclusion compounds, vol. 4. Oxford University Press, Oxford, chap 10, pp 406–447

    Google Scholar 

  9. MacNicol DD, Downing GA (1996) Symmetry in the evolution of host design. In: MacNicol DD, Toda F, Bishop R (eds) Comprehensive supramolecular chemistry, vol. 6. Solid-state supramolecular chemistry: crystal engineering, Pergamon, Oxford, chap 14, pp 421–464

    Google Scholar 

  10. Tatemitsu H, Ogura F, Nakagawa Y, Nakagawa N, Naemura K, Nakazaki M (1975) Bull Chem Soc Jpn 48:2473–2483

    Article  CAS  Google Scholar 

  11. Lee CKY, Groneman JL, Turner P, Rendina PLM, Harding MM (2006) Tetrahedron 62:4870–4878

    Article  CAS  Google Scholar 

  12. Mas T, Pardo C, Salort F, Elguero J, Torres MR (2004) Eur J Org Chem 1097–1104

    Google Scholar 

  13. Mehta G, Prabhakar C, Padmaja N, Ramakumar S, Viswamitra MA (1989) Tetrahedron Lett 30:6895–6898

    Article  CAS  Google Scholar 

  14. Bartsch RA, Eley MD, Marchand AP, Shukla R, Kumar KA, Reddy GM (1996) Tetrahedron 52:8979–8988

    Article  CAS  Google Scholar 

  15. Stoncius S, Butkus E, Zilinskas A, Larsson AK, Öhrström L, Berg U, Wärnmark K (2004) J Org Chem 69:5196–5203

    Article  CAS  Google Scholar 

  16. Issidorides CH, Haddadin MJ (1966) J Org Chem 31:4067–4068

    Article  CAS  Google Scholar 

  17. Cheng C-C, Yan S-J (1982) Org React 28:37–201

    CAS  Google Scholar 

  18. Thummel RP, Jahng Y (1985) J Org Chem 50:2407–2412

    Article  CAS  Google Scholar 

  19. Thummel RP, Lim J-L (1987) Tetrahedron Lett 28:3319–3322

    Article  CAS  Google Scholar 

  20. Thummel RP (1992) Synlett 1–12

    Google Scholar 

  21. Marchand AP, Annapurna P, Flippen-Anderson JL, Gilardi R, George C (1988) Tetrahedron Lett 29:6681–6684

    Article  Google Scholar 

  22. Harmata M (2004) Acc Chem Res 37:862–873

    Article  CAS  Google Scholar 

  23. Harmata M, Barnes CL (1990) Tetrahedron Lett 31:1825–1828

    Article  CAS  Google Scholar 

  24. Harmata M, Barnes CL (1990) J Am Chem Soc 112:5655–5657

    Article  CAS  Google Scholar 

  25. Harmata M, Wu Y, Kahraman M, Welch CJ (2001) Synth Commun 31:3345–3359

    Article  CAS  Google Scholar 

  26. Bag BG (1995) Curr Sci 68:279–288

    CAS  Google Scholar 

  27. Prelog V, Wieland P (1944) Helv Chim Acta 27:1127–1134

    Article  CAS  Google Scholar 

  28. Kimber MC, Try AC, Painter L, Harding MM, Turner P (2000) J Org Chem 65:3042–3046

    Article  CAS  Google Scholar 

  29. Turner JJ, Harding MM (2005) Supramol Chem 17:369–375

    Article  CAS  Google Scholar 

  30. Friberg A, Olsson C, Ek F, Berg U, Frejd T (2007) Tetrahedron Asymmetry 18:885–891

    Article  CAS  Google Scholar 

  31. Harmata M, Kahraman M (2000) Tetrahedron Asymmetry 11:2875–2879

    Article  CAS  Google Scholar 

  32. Weber E, Müller U, Worsch D, Vögtle F, Will G, Kirfel A (1985) J Chem Soc Chem Commun 1578–1580

    Google Scholar 

  33. Bond DR, Scott JL (1991) J Chem Soc, Perkin Trans 2:47–51

    Google Scholar 

  34. Wilen SH, Qi JZ, Williard PG (1991) J Org Chem 56:485–487

    Article  CAS  Google Scholar 

  35. Lenev DA, Golovanov DG, Lyssenko KA, Kostyanovsky RG (2006) Tetrahedron Asymmetry 17:2191–2194

    Article  CAS  Google Scholar 

  36. Wilcox CS, Cowart MD (1986) Tetrahedron Lett 27:5563–5566

    Article  CAS  Google Scholar 

  37. Wilcox CS, Greer LM, Lynch V (1987) J Am Chem Soc 109:1865–1867

    Article  CAS  Google Scholar 

  38. Pardo C, Sesmilo E, Gutiérrez-Puebla E, Monge A, Elguero J, Fruchier A (2001) J Org Chem 66:1607–1611

    Article  CAS  Google Scholar 

  39. Mas T, Pardo C, Elguero J (2004) Arkivoc iv:86–93

    Google Scholar 

  40. Artacho J, Nilsson P, Bergquist K-E, Wendt OF, Wärnmark K (2006) Chem Eur J 12:2692–2701

    Article  CAS  Google Scholar 

  41. Brotherhood PR, Wu RA-S, Turner P, Crossley MJ (2007) Chem Commun 225–227

    Google Scholar 

  42. Bishop R (2006) Crystal engineering of halogenated heteroaromatic clathrate systems. In: Tiekink ERT, Vittal JJ (eds) Frontiers in crystal engineering. Wiley, Chichester, chap 5, pp 91–116

    Chapter  Google Scholar 

  43. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford Science, Oxford

    Google Scholar 

  44. Desiraju GR (1995) Angew Chem Int Ed Engl 34:2311–2327

    Article  CAS  Google Scholar 

  45. Suezawa H, Yoshida T, Hirota M, Takahashi H, Umezawa Y, Honda K, Tsuboyama S, Nishio M (2001) J Chem Soc, Perkin Trans 2:2053–2058

    Google Scholar 

  46. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  47. Gavezzotti A, Desiraju GR (1988) Acta Cryst B44:427–434

    Google Scholar 

  48. Desiraju GR, Gavezzotti A (1989) J Chem Soc Chem Commun 621–623

    Google Scholar 

  49. Dunitz JD, Gavezzotti A (1999) Acc Chem Res 32:677–684

    Article  CAS  Google Scholar 

  50. Ashmore J, Bishop R, Craig DC, Scudder ML (2006) CrystEngComm 8:923–930

    Article  CAS  Google Scholar 

  51. Nguyen VT, Rahman ANMM, Bishop R, Craig DC, Scudder ML (1999) Aust J Chem 52:1047–1053

    Article  CAS  Google Scholar 

  52. Sarma JARP, Desiraju GR (1986) Acc Chem Res 19:222–228

    Article  CAS  Google Scholar 

  53. Price SL, Stone AJ, Lucas J, Rowland RS, Thornley A (1994) J Am Chem Soc 116:4910–4918

    Article  CAS  Google Scholar 

  54. Prasanna MD, Guru Row TN (2000) Cryst Eng 3:135–154

    Article  CAS  Google Scholar 

  55. Jetti KR, Nangia A, Xue F, Mak TCW (2001) Chem Commun 919–920

    Google Scholar 

  56. Bishop R, Scudder ML, Craig DC, Rahman ANMM, Alshahateet SF (2005) Mol Cryst Liq Cryst 440:173–186

    Article  CAS  Google Scholar 

  57. Rahman ANMM, Bishop R, Craig DC, Scudder ML (1999) Chem Commun 2389–2390

    Google Scholar 

  58. Rahman ANMM, Bishop R, Craig DC, Scudder ML (2003) Eur J Org Chem 79–81

    Google Scholar 

  59. Marjo CE, Bishop R, Craig DC, Scudder ML (2004) Mendeleev Commun 278–279

    Google Scholar 

  60. Rahman ANMM, Bishop R, Craig DC, Scudder ML (2002) CrystEngComm 4:510–513

    Article  Google Scholar 

  61. Rahman ANMM, Bishop R, Craig DC, Scudder ML (2004) Org Biomol Chem 2:175–182

    Article  CAS  Google Scholar 

  62. Rahman ANMM, Bishop R, Craig DC, Scudder ML (2003) Org Biomol Chem 1:1435–1441

    Article  CAS  Google Scholar 

  63. Rahman ANMM, Bishop R, Craig DC, Scudder ML (2002) J Supramol Chem 2:409–414

    Article  CAS  Google Scholar 

  64. Alshahateet SF, Rahman ANMM, Bishop R, Craig DC, Scudder ML (2002) CrystEngComm 4:585–590

    Article  CAS  Google Scholar 

  65. Al Djaidi DS (2006) Ph.D. thesis, University of New South Wales

    Google Scholar 

  66. Kim S, Bishop R, Craig DC, Scudder ML (2002) J Org Chem 67:3221–3230

    Article  CAS  Google Scholar 

  67. Stoncius S, Orentas E, Butkus E, Öhrström L, Wendt OF, Wärnmark K (2006) J Am Chem Soc 128:8272–8285

    Article  CAS  Google Scholar 

  68. Anderberg PI, Turner JJ, Evans KJ, Hutchins LM, Harding MM (2004) Dalton Trans 1708–1714

    Google Scholar 

  69. Marjo CE, Scudder ML, Craig DC, Bishop R (1997) J Chem Soc Perkin Trans 2:2099–2104

    Google Scholar 

  70. Bishop R, Marjo CE, Scudder ML (1998) Mol Cryst Liq Cryst 313:217–222

    Article  CAS  Google Scholar 

  71. Marjo CE, Rahman ANMM, Bishop R, Scudder ML, Craig DC (2001) Tetrahedron 57:6289–6293

    Article  CAS  Google Scholar 

  72. Rahman ANMM, Bishop R, Craig DC, Marjo CE, Scudder ML (2002) Cryst Growth Des 2:421–426

    Article  CAS  Google Scholar 

  73. Rahman ANMM, Bishop R, Craig DC, Scudder ML (2003) CrystEngComm 5:422–428

    Article  CAS  Google Scholar 

  74. Ashmore J, Bishop R, Craig DC, Scudder ML (2008) CrystEngComm 10:131–137

    Article  CAS  Google Scholar 

  75. Ashmore J, Bishop R, Craig DC, Scudder ML (2008) CrystEngComm 10: 839–845

    Google Scholar 

  76. Ashmore J, Bishop R, Craig DC, Scudder ML (2002) CrystEngComm 4:194–198

    Article  CAS  Google Scholar 

  77. Ashmore J, Bishop R, Craig DC, Scudder ML (2007) Cryst Growth Des 7:47–55

    Article  CAS  Google Scholar 

  78. Ashmore J, Bishop R, Craig DC, Scudder ML (2004) CrystEngComm 6:618–622

    Article  CAS  Google Scholar 

  79. Ashmore J, Bishop R, Craig DC, Scudder ML (2003) Mendeleev Commun 144–146

    Google Scholar 

  80. Alshahateet SF, Bishop R, Craig DC, Scudder ML (2001) CrystEngComm 3:225–229

    Article  Google Scholar 

  81. Alshahateet SF, Bishop R, Craig DC, Scudder ML (2004) Cryst Growth Des 4:837–844

    Article  CAS  Google Scholar 

  82. Alshahateet SF, Ong TT, Bishop R, Kooli F, Messali M (2006) Cryst Growth Des 6:1676–1683

    Article  CAS  Google Scholar 

  83. Marjo CE, Bishop R, Craig DC, Scudder ML (2001) Eur J Org Chem 863–873

    Google Scholar 

  84. Weber E (1996). In: MacNicol DD, Toda F, Bishop R (eds) Comprehensive supramolecular chemistry, vol. 6. Solid-state supramolecular chemistry: crystal engineering. Pergamon, Oxford, chap 17, pp 535–592

    Google Scholar 

  85. Müller T, Seichten W, Weber E (2006) New J Chem 30:751–758

    Article  Google Scholar 

  86. Alshahateet SF, Bishop R, Craig DC, Scudder ML (2001) CrystEngComm 3:264–269

    Google Scholar 

  87. Alshahateet SF, Bishop R, Scudder ML, Hu CY, Lau EHE, Kooli F, Judeh ZMA, Chow PS, Tan RBH (2005) CrystEngComm 7:139–142

    Article  CAS  Google Scholar 

  88. Alshahateet SF, Bishop R, Craig DC, Kooli F, Scudder ML (2008) CrystEngComm 10:297–305

    Article  CAS  Google Scholar 

  89. Alshahateet SF, Bishop R, Craig DC, Scudder ML (2001) CrystEngComm 3:107–110

    Article  Google Scholar 

  90. Alshahateet SF, Bishop R, Craig DC, Scudder ML (2003) CrystEngComm 5:417–421

    Article  CAS  Google Scholar 

  91. Allen FH, Davies JE, Galloy JJ, Johnson O, Kennard O, Macrae CF, Mitchell EM, Mitchell GF, Smith JM, Watson DG (1991) J Chem Inf Comput Sci 31:187–204

    CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank Solhe Alshahateet, Jason Ashmore, Chris Marjo and Noman Rahman for their synthetic work, and Don Craig and Marcia Scudder for the crystallographic determinations, described in this article. Financial support of our research was provided by the Australian Research Council and the University of New South Wales. I also gratefully thank Dr. Scudder for generating the crystal structure diagrams used to illustrate this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Bishop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London

About this chapter

Cite this chapter

Bishop, R. (2008). Supramolecular Host–Guest Chemistry of Heterocyclic V-Shaped Molecules. In: Matsumoto, K., Hayashi, N. (eds) Heterocyclic Supramolecules II. Topics in Heterocyclic Chemistry, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2008_9

Download citation

Publish with us

Policies and ethics