Skip to main content

Supramolecular Structures and Nanoassemblies of Oligothiophenes and Tetrathiafulvalenes

  • Chapter
  • First Online:
Heterocyclic Supramolecules II

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 18))

Abstract

Supramolecular nanostructures derived from self-assembling oligothiophenes and tetrathiafulvalenes are reviewed. The two representative sulfur-containing π-electron systems have been extensively studied for their application in material sciences and have been shown to exhibit their excellent characteristics in conductive and optical properties. In the last decade, several researchers have developed these versatile π-electron systems as soft materials by means of substituents that cause weak intermolecular interactions. As the result, unique nanostructures such as fibers and particles endowed with characteristic conductive and optical properties have been demonstrated. These techniques may offer a bottom-up approach to construct future organic and molecular electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoeben FJM, Jonkheijm P, Meijer EW, Schenning APHJ (2005) Chem Rev 105:1491

    Article  CAS  Google Scholar 

  2. Wu J, Pisula W, Müllen K (2005) Chem Rev 105:718

    Google Scholar 

  3. Vriezema DM, Aragonés MC, Elemans JAAW, Cornelissen JJLM, Rowan AE, Nolte RJM (2005) Chem Rev 105:1445

    Article  CAS  Google Scholar 

  4. Bushey ML, Nguyen T-Q, Zhang W, Horoszewski D, Nuckolls C (2004) Angew Chem Int Ed 43:5446

    Article  CAS  Google Scholar 

  5. Brammer L (2004) Chem Soc Rev 33:476

    Article  CAS  Google Scholar 

  6. Huc I (2004) Eur J Org Chem, p. 17

    Google Scholar 

  7. Ruben M, Rojo J, Romero-Salguero FJ, Uppadine LH, Lehn J-M (2004) Angew Chem Int Ed 43:3644

    Article  CAS  Google Scholar 

  8. Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43:2334

    Article  CAS  Google Scholar 

  9. Hofmeier H, Schubert US (2004) Chem Soc Rev 33:373

    Article  CAS  Google Scholar 

  10. Würthner F, You C-C, Saha-Möller CR (2004) Chem Soc Rev 33:133

    Article  Google Scholar 

  11. Oh M, Carpenter GB, Sweigart DA (2004) Acc Chem Res 37:1

    Article  CAS  Google Scholar 

  12. Marsden JA, Miller JJ, Shirtcliff LD, Haley MM (2005) J Am Chem Soc 127:2464

    Article  CAS  Google Scholar 

  13. Pease AR, Jeppesen JO, Stoddart JF, Luo Y, Collier CP, Heath JR (2001) Acc Chem Res 34:433

    Article  CAS  Google Scholar 

  14. Watson MD, Fechtenkotter A, Müllen K (2001) Chem Rev 101:1267

    Article  CAS  Google Scholar 

  15. Shimizu T, Masuda M, Minamikawa H (2005) Chem Rev 105:1401

    Article  CAS  Google Scholar 

  16. Yamamoto Y, Fukushima T, Saeki A, Seki S, Tagawa S, Ishii N, Aida T (2007) J Am Chem Soc 129:9276

    Article  CAS  Google Scholar 

  17. Zhang G, Jin W, Fukushima T, Kosaka A, Ishii N, Aida T (2007) J Am Chem Soc 129:719

    Article  CAS  Google Scholar 

  18. Yamamoto Y, Fukushima T, Suna Y, Ishii N, Saeki A, Seki S, Tagawa S, Taniguchi M, Kawai T, Aida T (2006) Science 314:1761

    Article  CAS  Google Scholar 

  19. Ajayaghosh A, Praveen VK (2007) Acc Chem Res 40:644

    Article  CAS  Google Scholar 

  20. Iyoda M, Hasegawa M, Hara K, Takano J, Ogura E, Kuwatani Y (2004) J Phys IV France 114:455

    Article  CAS  Google Scholar 

  21. Hasegawa M, Kuwatani Y, Iyoda M (2004) J Phys IV France 114:505

    Article  CAS  Google Scholar 

  22. Werz DB, Gleiter R, Rominger F (2002) J Am Chem Soc 124:10638

    Article  CAS  Google Scholar 

  23. Glusker JP (1998) Top Curr Chem 198:1

    Article  CAS  Google Scholar 

  24. Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891

    Article  CAS  Google Scholar 

  25. Mori T (2004) Chem Rev 104:4947

    Article  CAS  Google Scholar 

  26. Jørgensen M, Bechgaard K (1994) J Org Chem 59:5877

    Article  Google Scholar 

  27. Schoonbeek FS, van Esch JH, Wegewijs B, Rep DBA, de Haas MP, Klapwijk TM, Kellogg RM, Feringa BL (1999) Angew Chem Int Ed 38:1393

    Article  CAS  Google Scholar 

  28. Liu P, Shirota Y, Osada Y (2000) Polym Adv Technol 11:512

    Article  CAS  Google Scholar 

  29. Messmore BW, Hulvat JF, Sone ED, Stupp SI (2004) J Am Chem Soc 126:14452

    Article  CAS  Google Scholar 

  30. Kawano S, Fujita N, Shinkai S (2005) Chem Eur J 11:4735

    Article  CAS  Google Scholar 

  31. Rep DBA, Roelfsema R, van Esch JH, Schoonbeek FS, Kellogg RM, Feringa BL, Palstra TTM, Klapwijk, TM (2000) Adv Mater 12:563

    Article  CAS  Google Scholar 

  32. de Haas MP, van der Laan GP, Wegewijs B, de Leeuw DM, Bäuerle P, Rep DBA, Fichou D (1999) Synth Met 101:524

    Article  CAS  Google Scholar 

  33. Schenning APHJ, Kilbinger AFM, Biscarini F, Cavallini M, Cooper HJ, Derrick PJ, Feast WJ, Lazzaroni R, Leclère Ph, McDonell LA, Meijer EW, Meskers SCJ (2002) J Am Chem Soc 124:1269

    Article  CAS  Google Scholar 

  34. Leclère Ph, Surin M, Lazzaroni R, Kilbinger AFM, Henze O, Jonkheijm P, Biscarini F, Cavallini M, Feast WJ, Meijer EW, Schenning APHJ (2004) J Mater Chem 14:1959

    Article  Google Scholar 

  35. Xia C, Fan X, Locklin J, Advincula RC, Gies A, Nonidez W (2004) J Am Chem Soc 126:8735

    Article  CAS  Google Scholar 

  36. Nishizawa T, Tajima K, Hashimoto K (2007) J Mater Chem 17:2440

    Article  CAS  Google Scholar 

  37. Shklyarevskiy IO, Jonkheijm P, Christianen PCM, Schenning APHJ, Meijer EW, O Henze O, Kilbinger AFM, W. Feast WJ, Guerzo AD, Desvergne J-P, Maan JC (2005) J Am Chem Soc 127:1112

    Article  CAS  Google Scholar 

  38. Henze O, Feast WJ, Gardebian F, Jonkheijm P, Lazzaroni R, Leclère Ph, Meijer EW, Schenning APHJ (2006) J Am Chem Soc 128:5923

    Article  CAS  Google Scholar 

  39. Jiang L, Hughes RC, Sasaki DY (2004) Chem Commun, p 1028

    Google Scholar 

  40. Grimsdale AC, Müllen K (2005) Angew Chem Int Ed 44:5592

    Article  CAS  Google Scholar 

  41. Nakao K, Nishimura M, Tamachi T, Kuwatani Y, Miyasaka H, Nishinaga T, Iyoda M (2006) J Am Chem Soc 128:16740

    Article  CAS  Google Scholar 

  42. Iyoda M (2007) Heteroatom Chem 18:460

    Article  CAS  Google Scholar 

  43. Williams-Harry M, Bhaskar A, Ramakrishna G, Goodson T, Imamura M, Mawatari A, Nakao K, Enozawa H, Nishinaga T, Iyoda M (2008) J Am Chem Soc 130:3252

    Article  CAS  Google Scholar 

  44. Krömer L, Rios-Carreras I, Fuhrmann G, Musch C, Wunderlin M, Debaerdemaeker T, Mena-Osteritz E, Bäuerle P (2000) Angew Chem Int Ed 39:3481

    Google Scholar 

  45. Schlüter AD (2005) Top Curr Chem 245:151

    Google Scholar 

  46. Rahman MJ, Yamakawa J, Matsumoto A, Enozawa H, Nishinaga T, Kamada K, Iyoda M (2008) J Org Chem 73:5542

    Article  CAS  Google Scholar 

  47. Bryce MR (1991) Chem Soc Rev 20:355

    Article  CAS  Google Scholar 

  48. Adam M, Müllen K (1994) Adv Mater 6:439

    Article  Google Scholar 

  49. Bryce MR (1995) J Mater Chem 5:1481

    Article  CAS  Google Scholar 

  50. Otsubo T, Aso Y, Takimiya K (1996) Adv Mater 8:203

    Article  CAS  Google Scholar 

  51. Bryce MR (2000) J Mater Chem 10:589

    Article  CAS  Google Scholar 

  52. Nielsen MB, Lomholt C, Becher J (2000) Chem Soc Rev 29:153

    Article  CAS  Google Scholar 

  53. Segura JL, Martín N (2001) Angew Chem Int Ed 40:1372

    Article  CAS  Google Scholar 

  54. Narita M, Pittman CU (1976) Synthesis, p 489

    Google Scholar 

  55. Simonsen KB, Becher J (1997) Synlett, p 1211

    Google Scholar 

  56. Batail P, ed. (2004) Chem Rev 104:4887

    Google Scholar 

  57. Nalva HS, ed. (1997) Handbook of organic conductive molecules and polymers, Vol. 1. (1997) John Wiley & Sons, Chichester

    Google Scholar 

  58. Torrance JB, Scott BA, Welber B, Kaufman FB, Seiden PE (1979) Phys Rev B 19:730

    Article  CAS  Google Scholar 

  59. Iyoda M, Hara K, Kuwatani Y, Nagase S (2000) Org Lett 2:2217

    Article  CAS  Google Scholar 

  60. Iyoda M (2004) In: Yamada J, Sugimoto T (eds) TTF chemistry. Kodansha and Springer, Tokyo, p. 177–204

    Google Scholar 

  61. Iyoda M, Hasegawa M, Miyake Y (2004) Chem Rev 104:5085

    Article  CAS  Google Scholar 

  62. Wudl F, Smith G, Hufnagel EJ (1970) J Chem Soc Chem Commun, p 1453

    Google Scholar 

  63. Ferraris J, Cowan DO, Walatka VV, Perlstein JH (1973) J Am Chem Soc 95:948

    Article  CAS  Google Scholar 

  64. Gall TL, Pearson C, Bryce MR, Petty MC, Dahlgaad H, Becher J (2003) Eur J Org Chem 3562

    Google Scholar 

  65. Kitahara T, Shirakawa M, Kawano S, Beginn U, Fujita N, Shinkai S (2005) J Am Chem Soc 127:14980

    Article  CAS  Google Scholar 

  66. Wang C, Zhang D, Zhu D (2005) J Am Chem Soc 127:16372

    Article  CAS  Google Scholar 

  67. Kitamura T, Nakaso S, Mizoshita N, Tochigi Y, Shimomura T, Moriyama M, Ito K, Kato T (2005) J Am Chem Soc 127:14769

    Article  CAS  Google Scholar 

  68. Puigmartí-Luis J, Laukhin V, delPino ÁP, Vidal-Gancedo J, Rovira C, Laukhin E, Amabilino DB (2007) Angew Chem Int Ed 46:238

    Article  Google Scholar 

  69. Puigmartí-Luis J, del Pino ÁP, Laukhina E, Esquena J, Laukhin V, Rovira C, Vidal-Gancedo J, Kanaras AG, Nichols RJ, Brust M, Amabilino DB (2008) Angew Chem Int Ed 47:1861

    Article  Google Scholar 

  70. Kato K, Akutagawa T, Nakamura T (2005) J Synth Org Chem Jpn 63:960

    Google Scholar 

  71. Akutagawa T, Ohta T, Hasegawa T, Nakamura T, Christensen CA, Becher J (2002) Proc Natl Acad Sci USA 99:5028

    Article  CAS  Google Scholar 

  72. Akutagawa T, Kakiuchi K, Hasegawa T, Noro S, Nakamura T, Hasegawa H, Mashiko S, Becher J (2005) Angew Chem Int Ed 44:7283

    Article  CAS  Google Scholar 

  73. Sly J, Kasák P, Gomar-Nadal E, Rovira C, Górriz L, Thordarson P, Amabilino DB, Rowan AE, Nolte JM (2005) Chem Commun, p 1255

    Google Scholar 

  74. Inokuchi H, Saito G, Wu P, Seki K, Tang TB, Mori T, Imaeda K, Enoki T, Higuchi Y, Inaka K, Yasuoka N (1986) Chem Lett 15:1263

    Article  Google Scholar 

  75. Iyoda M, Enozawa H, Hasegawa M (2007) Chem Lett 36:1402

    Article  CAS  Google Scholar 

  76. Kobayashi Y, Hasegawa M, Enozawa H, Iyoda M (2007) Chem Lett 36:720

    Article  CAS  Google Scholar 

  77. Enozawa H, Honna Y, Iyoda M (2007) Chem Lett 36:1434

    Article  CAS  Google Scholar 

  78. Wang X, Itoh H, Naka K, Chujo Y (2003) Langmuir 19:6242

    Article  CAS  Google Scholar 

  79. Naka K, Ando D, Wang X, Chujo Y (2007) Langmuir 23:3450

    Article  CAS  Google Scholar 

  80. Enozawa H, Hasegawa M, Takamatsu D, Fukui K, Iyoda M (2006) Org Lett 8:1917

    Article  CAS  Google Scholar 

  81. Anderson AS, Kilså K, Hassenkam T, Gisselbrecht J-P, Boudon C, Gross M, Nielsen MB, Diederich F (2006) Chem Eur J 12:8451

    Article  Google Scholar 

  82. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525

    Article  CAS  Google Scholar 

  83. Zhang J, Moore JS (1994) J Am Chem Soc 116:2655

    Article  CAS  Google Scholar 

  84. Ajayagosh A, Praveen VK, Srinivasan S, Varghese R (2007) Adv Mater 19:411

    Article  Google Scholar 

  85. Feng X, Pisula W, Zhi L, Takase M, Müllen K (2008) Angew Chem Int Ed 47:1703

    Article  CAS  Google Scholar 

  86. Hasegawa M, Takano J, Enozawa H, Kuwatani Y, Iyoda M (2004) Tetrahedron Lett 4109

    Google Scholar 

  87. Hasegawa M, Enozawa H, Kawabata Y, Iyoda M (2007) J Am Chem Soc 129:3072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Iyoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Iyoda, M., Nishinaga, T., Takase, M. (2009). Supramolecular Structures and Nanoassemblies of Oligothiophenes and Tetrathiafulvalenes. In: Matsumoto, K., Hayashi, N. (eds) Heterocyclic Supramolecules II. Topics in Heterocyclic Chemistry, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2008_16

Download citation

Publish with us

Policies and ethics