Skip to main content

Bioavailability as a Microbial System Property: Lessons Learned from Biodegradation in the Mycosphere

  • Chapter
  • First Online:
Bioavailability of Organic Chemicals in Soil and Sediment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 100))

Abstract

Bioavailability for contaminant degradation requires a deep understanding of the ecology of degrader microbial systems. It hence should be perceived as a microbial systems property. In this chapter we summarize recent research on microbial ecology of contaminant biodegradation in the mycosphere (i.e., the microhabitat surrounding and affected by mycelia). By forming unique transport networks, mycelial fungi are highly adapted to cope with complex heterogeneous habitats and to grow under conditions of uneven availability of their vital resources. Combining concepts from bioavailability, ecophysiology, and microbial ecology, our chapter discusses the impact of fungal networks on chemical and bacterial transport and their effects on contaminant bioavailability and degradation. It thereby provides generic information on key factors, processes, and ecological principles that drive contaminant biotransformation in the mycosphere.

After the online first publication several minor corrections which don’t change the basic facts have been made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louca S et al (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2(6):936–943

    Google Scholar 

  2. Semple KT et al (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut 150(1):166–176

    CAS  Google Scholar 

  3. Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer-limited bacterial growth on solid PAHs. Environ Sci Technol 35(2):354–361

    CAS  Google Scholar 

  4. Ortega-Calvo J-J et al (2015) From bioavailability science to regulation of organic chemicals. Environ Sci Technol 49(17):10255–10264

    CAS  Google Scholar 

  5. van der Heijden MGA et al (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423

    Google Scholar 

  6. Willis KJ (2018) State of the World’s Fungi. Ima Fungus 9(1):1

    Google Scholar 

  7. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192

    CAS  Google Scholar 

  8. Harms H, Wick LY, Schlosser D (2016) The fungal community in organically polluted systems. In: Dighton JFWJ (ed) The fungal community: its organization and role in the ecosystem. RC Press, Boca Raton

    Google Scholar 

  9. Bielcik M et al (2019) The role of active movement in fungal ecology and community assembly. Mov Ecol 7(1):12

    Google Scholar 

  10. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64(3):271–293

    CAS  Google Scholar 

  11. Hofrichter M et al (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87(3):871–897

    CAS  Google Scholar 

  12. Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Google Scholar 

  13. Schlosser D (2020) Fungal attack on environmental pollutants representing poor microbial growth substrates. In: Nevalainen H (ed) Grand challenges in fungal biotechnology. Grand challenges in biology and biotechnology. Springer, Cham

    Google Scholar 

  14. Worrich A, Wick LY, Banitz T (2018) Ecology of contaminant biotransformation in the mycosphere: role of transport processes. In: Gadd GM, Sariaslani S (eds) Advances in applied microbiology, vol 104. Elsevier Academic Press, San Diego, pp 93–133

    Google Scholar 

  15. National Research Council (2003) Bioavailability of contaminants in soils and sediments: processes, tools, and applications. The National Academies Press, Washington, p 432

    Google Scholar 

  16. Bosma TNP et al (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31(1):248–252

    CAS  Google Scholar 

  17. Hanzel J et al (2012) Walking the tightrope of bioavailability: growth dynamics of PAH degraders on vapour-phase PAH. Microb Biotechnol 5(1):79–86

    CAS  Google Scholar 

  18. Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133(1):71–84

    CAS  Google Scholar 

  19. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99(21):8857–8874

    CAS  Google Scholar 

  20. Rein A et al (2016) Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)-model simulations for prediction of bioremediation success. J Hazard Mater 306:105–114

    CAS  Google Scholar 

  21. Kundu K et al (2019) Defining lower limits of biodegradation: atrazine degradation regulated by mass transfer and maintenance demand in Arthrobacter aurescens TC1. ISME J 13(9):2236–2251

    CAS  Google Scholar 

  22. Elsner M, Imfeld G (2016) Compound-specific isotope analysis (CSIA) of micropollutants in the environment – current developments and future challenges. Curr Opin Biotechnol 41:60–72

    CAS  Google Scholar 

  23. Hazen TC (2010) Cometabolic bioremediation. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2505–2514

    Google Scholar 

  24. Crawford JW et al (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20(2):81–87

    Google Scholar 

  25. Or D et al (2007) Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv Water Resour 30(6–7):1505–1527

    Google Scholar 

  26. Tecon R, Or D (2017) Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev 41(5):599–623

    CAS  Google Scholar 

  27. Crawford JW et al (2012) Microbial diversity affects self-organization of the soil-microbe system with consequences for function. J R Soc Interface 9(71):1302–1310

    Google Scholar 

  28. Young IM, Crawford JW (2004) Interactions and self-organization in the soil-microbe complex. Science 304(5677):1634–1637

    CAS  Google Scholar 

  29. Harms H, Wick LY (2006) Dispersing pollutant-degrading bacteria in contaminated soil without touching it. Eng Life Sci 6(3):252–260

    CAS  Google Scholar 

  30. Krell T et al (2013) Bioavailability of pollutants and chemotaxis. Curr Opin Biotechnol 24(3):451–456

    CAS  Google Scholar 

  31. Botton S et al (2006) Resilience of microbial systems towards disturbances. Crit Rev Microbiol 32(2):101–112

    CAS  Google Scholar 

  32. Shade A et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417

    Google Scholar 

  33. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37(2):112–129

    CAS  Google Scholar 

  34. Nikel PI et al (2014) The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 16(3):628–642

    CAS  Google Scholar 

  35. Ren XY et al (2018) Sorption, transport and biodegradation – an insight into bioavailability of persistent organic pollutants in soil. Sci Total Environ 610:1154–1163

    Google Scholar 

  36. van der Meer JR (2006) Environmental pollution promotes selection of microbial degradation pathways. Front Ecol Environ 4(1):35–42

    Google Scholar 

  37. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on earth. Proc Natl Acad Sci U S A 115(25):6506–6511

    CAS  Google Scholar 

  38. Lee Taylor D, Sinsabaugh RL (2015) Chapter 4 – the soil fungi: occurrence, phylogeny, and ecology. In: Paul EA (ed) Soil microbiology, ecology and biochemistry4th edn. Academic Press, Boston, pp 77–109

    Google Scholar 

  39. Treseder KK, Lennonb JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79(2):243–262

    CAS  Google Scholar 

  40. Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6(2):291–297

    Google Scholar 

  41. Guhr A et al (2015) Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc Natl Acad Sci U S A 112(47):14647–14651

    CAS  Google Scholar 

  42. Dadachova E et al (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of Melanized Fungi. PLoS One 2(5):13

    Google Scholar 

  43. Zakharova K, Marzban G, de Vera JP, Lorek A, Sterflinger K (2014) Protein patterns of black fungi under simulated Mars-like conditions. Sci Rep 4:5114. Published 2014 May 29

    Google Scholar 

  44. Ventorino V, Pascale A, Adamo P, et al (2018) Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the Terra dei Fuochi. Sci Rep 8(1):14281. Published 2018 Sep 24

    Google Scholar 

  45. Orsi WD (2018) Ecology and evolution of seafloor and subseafloor microbial communities. Nat Rev Microbiol 16(11):671–683

    CAS  Google Scholar 

  46. Ivarsson M et al (2018) Fungi in deep subsurface environments. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 102. Elsevier Academic Press, San Diego, pp 83–116

    Google Scholar 

  47. Wang GY et al (2009) Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition. J Ind Microbiol Biotechnol 36(6):809–814

    CAS  Google Scholar 

  48. Russell JR et al (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084

    CAS  Google Scholar 

  49. Aydin S et al (2017) Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol Rev 31(2):61–72

    Google Scholar 

  50. El Amrani A et al (2015) "Omics" insights into PAH degradation toward improved green remediation biotechnologies. Environ Sci Technol 49(19):11281–11291

    Google Scholar 

  51. Fester T et al (2014) Plant-microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol 27:168–175

    CAS  Google Scholar 

  52. de Vries FT et al (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Chang 2(4):276–280

    Google Scholar 

  53. Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9(7):509–518

    CAS  Google Scholar 

  54. Bornyasz MA, Graham RC, Allen MF (2005) Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126(1–2):141–160

    Google Scholar 

  55. Ferguson BA et al (2003) Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of Northeast Oregon. Can J Forest Res Revue Canadienne De Recherche Forestiere 33(4):612–623

    Google Scholar 

  56. Boer W et al (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811

    Google Scholar 

  57. Zhang L et al (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210(3):1022–1032

    CAS  Google Scholar 

  58. Worrich A et al (2017) Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat Commun 8:9

    Google Scholar 

  59. de Vries FT et al (2018) Soil bacterial networks are less stable under drought than fungal networks. Nat Commun 9:12

    Google Scholar 

  60. Furuno S et al (2012) Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons. Environ Sci Technol 46(10):5463–5470

    CAS  Google Scholar 

  61. Schamfuss S et al (2013) Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol 47(13):6908–6915

    CAS  Google Scholar 

  62. Schmidt R et al (2019) Microbe-driven chemical ecology: past, present and future. ISME J 13(11):2656–2663

    Google Scholar 

  63. Warmink JA, Nazir R, van Elsas JD (2009) Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol 11(2):300–312

    CAS  Google Scholar 

  64. Nazir R et al (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71(2):169–185

    CAS  Google Scholar 

  65. Schulz-Bohm K et al (2017) Fungus-associated bacteriome in charge of their host behavior. Fungal Genet Biol 102:38–48

    CAS  Google Scholar 

  66. Ghodsalavi B et al (2017) A novel baiting microcosm approach used to identify the bacterial community associated with Penicillium bilaii hyphae in soil. PLoS One 12(10):14

    Google Scholar 

  67. Olsson S, Bonfante P, Pawlowska TE (2017) Ecology and evolution of fungal-bacterial interactions. In: Dighton WJE (ed) The fungal community: its organization and role in the ecosystem. CRC Press, Boca Raton

    Google Scholar 

  68. Kohlmeier S et al (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39(12):4640–4646

    CAS  Google Scholar 

  69. Zhang W, Li XG, Sun K, et al (2020) Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME J 14(4):1015–1029

    Google Scholar 

  70. Furuno S et al (2010) Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ Microbiol 12(6):1391–1398

    CAS  Google Scholar 

  71. Berthold T et al (2016) Mycelia as a focal point for horizontal gene transfer among soil bacteria. Sci Rep 6:8

    Google Scholar 

  72. Hofmann U, Schlosser D (2016) Biochemical and physicochemical processes contributing to the removal of endocrine-disrupting chemicals and pharmaceuticals by the aquatic ascomycete Phoma sp. UHH 5-1-03. Appl Microbiol Biotechnol 100(5):2381–2399

    CAS  Google Scholar 

  73. Pennell KD (2016) Specific surface area. In: Elias SA (ed) Reference module in earth systems and environmental sciences. Elsevier, Oxford, pp 1–8

    Google Scholar 

  74. Lybrand RA et al (2019) A coupled microscopy approach to assess the nano-landscape of weathering. Sci Rep 9(1):5377

    Google Scholar 

  75. Gadd GM (2017) Geomicrobiology of the built environment. Nat Microbiol 2(4):9

    Google Scholar 

  76. Zumstein MT et al (2018) Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci Adv 4(7):8

    Google Scholar 

  77. Perera M et al (2019) Biofilm mediated synergistic degradation of hexadecane by a naturally formed community comprising Aspergillus flavus complex and Bacillus cereus group. BMC Microbiol 19(1):84

    Google Scholar 

  78. Tourney J, Ngwenya BT (2014) The role of bacterial extracellular polymeric substances in geomicrobiology. Chem Geol 386:115–132

    CAS  Google Scholar 

  79. Garcia JM, Wick LY, Harms H (2001) Influence of the nonionic surfactant Brij 35 on the bioavailability of solid and sorbed dibenzofuran. Environ Sci Technol 35(10):2033–2039

    CAS  Google Scholar 

  80. Lehmann A et al (2020) Fungal traits important for soil aggregation. Front Microbiol 10:13

    Google Scholar 

  81. Liu Y et al (2018) Bacterial diversity among the fruit bodies of ectomycorrhizal and saprophytic fungi and their corresponding hyphosphere soils. Sci Rep 8(1):11672

    Google Scholar 

  82. Wick LY et al (2007) Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol 41(2):500–505

    CAS  Google Scholar 

  83. Banitz T et al (2013) Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation. Environ Microbiol Rep 5(2):211–218

    CAS  Google Scholar 

  84. Leveau JHJ, Preston GM (2008) Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytol 177(4):859–876

    Google Scholar 

  85. Velez P et al (2018) Nutrient dependent cross-kingdom interactions: fungi and bacteria from an oligotrophic desert oasis. Front Microbiol 9:15

    Google Scholar 

  86. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil Bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81(2):e00063-16. Published 2017 Apr 12

    Google Scholar 

  87. Brabcova V et al (2016) Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 210(4):1369–1381

    CAS  Google Scholar 

  88. Ballhausen M-B, de Boer W (2016) The sapro-rhizosphere: carbon flow from saprotrophic fungi into fungus-feeding bacteria. Soil Biol Biochem 102:14–17

    CAS  Google Scholar 

  89. de Boer W et al (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811

    Google Scholar 

  90. Bitterlich M, Franken P, Graefe J (2018) Arbuscular Mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Front Plant Sci 9:301–301

    Google Scholar 

  91. Otto S et al (2016) Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia. ISME J

    Google Scholar 

  92. Otto S, Harms H, Wick LY (2017) Effects of predation and dispersal on bacterial abundance and contaminant biodegradation. FEMS Microbiol Ecol 93(2):7

    Google Scholar 

  93. Ladau J, Eloe-Fadrosh EA (2019) Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol 27(8):662–669

    CAS  Google Scholar 

  94. Escalas A et al (2019) Microbial functional diversity: from concepts to applications. Ecol Evol 9(20):12000–12016

    Google Scholar 

  95. Deveau A et al (2018) Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42(3):335–352

    CAS  Google Scholar 

  96. Ul Haq I et al (2014) The interactions of bacteria with fungi in soil: emerging concepts. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 89. Elsevier Academic Press, San Diego, pp 185–215

    Google Scholar 

  97. Jambon I et al (2018) Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. J Plant Interact 13(1):119–130

    CAS  Google Scholar 

  98. Konig S et al (2018) Functional resistance to recurrent spatially heterogeneous disturbances is facilitated by increased activity of surviving bacteria in a virtual ecosystem. Front Microbiol 9:14

    Google Scholar 

  99. Worrich A et al (2016) Mycelium-like networks increase bacterial dispersal, growth, and biodegradation in a model ecosystem at various water potentials. Appl Environ Microbiol 82(10):2902–2908

    CAS  Google Scholar 

  100. Nazir R et al (2017) Fungal networks serve as novel ecological routes for enrichment and dissemination of antibiotic resistance genes as exhibited by microcosm experiments. Sci Rep 7:13

    Google Scholar 

  101. Ghanem N et al (2019) Mycelial effects on phage retention during transport in a microfluidic platform. Environ Sci Technol 53(20):11755–11763

    CAS  Google Scholar 

  102. Pratama AA, van Elsas JD (2019) Gene mobility in microbiomes of the mycosphere and mycorrhizosphere -role of plasmids and bacteriophages. FEMS Microbiol Ecol 95(5):16

    Google Scholar 

  103. Zhang MZ et al (2014) The mycosphere constitutes an arena for horizontal gene transfer with strong evolutionary implications for bacterial-fungal interactions. FEMS Microbiol Ecol 89(3):516–526

    CAS  Google Scholar 

  104. Fernández L, Rodríguez A, García P (2018) Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J 12(5):1171–1179

    Google Scholar 

  105. de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19(6):579–589

    Google Scholar 

  106. D'Souza G et al (2018) Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep 35(5):455–488

    CAS  Google Scholar 

  107. Rashid MI et al (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    CAS  Google Scholar 

  108. Uehling JK, Entler MR, Meredith HR, et al (2019) Microfluidics and metabolomics reveal symbiotic bacterial-fungal interactions between mortierella elongata and burkholderia include metabolite exchange. Front Microbiol 10:2163. Published 2019 Oct 1

    Google Scholar 

  109. Nagy LG, Tóth R, Kiss E, Slot J, Gácser A, Kovács GM (2017) Six key traits of fungi: their evolutionary origins and genetic bases. Microbiol Spectr 5(4)

    Google Scholar 

  110. Miquel Guennoc C, Rose C, Labbé J, Deveau A (2018) Bacterial biofilm formation on the hyphae of ectomycorrhizal fungi: a widespread ability under controls? FEMS Microbiol Ecol 94(7)

    Google Scholar 

  111. Haq IU, Calixto RO, Yang P, Dos Santos GM, Barreto-Bergter E, van Elsas JD (2016) Chemotaxis and adherence to fungal surfaces are key components of the behavioral response of Burkholderia terrae BS001 to two selected soil fungi. FEMS Microbiol Ecol 92(11):fiw164

    Google Scholar 

  112. Rudnick MB, van Veen JA, de Boer W (2015) Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas? Environ Microbiol Rep 7(5):709–714

    CAS  Google Scholar 

  113. Johnston SR, Boddy L, Weightman AJ (2016) Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 92(11):12

    Google Scholar 

  114. Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17(3):167–180

    CAS  Google Scholar 

  115. Effmert U et al (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703

    CAS  Google Scholar 

  116. de Menezes AB, Richardson AE, Thrall PH (2017) Linking fungal-bacterial co-occurrences to soil ecosystem function. Curr Opin Microbiol 37:135–141

    Google Scholar 

  117. Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45(14):1522–1554

    CAS  Google Scholar 

  118. Santos DKF et al (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):31

    Google Scholar 

  119. Kiran GS et al (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B Biointerfaces 73(2):250–256

    CAS  Google Scholar 

  120. Mnif I, Ghribi D (2015) High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications. World J Microbiol Biotechnol 31(5):691–706

    CAS  Google Scholar 

  121. Jia CY et al (2016) Composition and morphology characterization of exopolymeric substances produced by the PAH-degrading fungus of Mucor mucedo. Environ Sci Pollut Res 23(9):8421–8430

    CAS  Google Scholar 

  122. Wicke D, Reemtsma T (2010) Mobilization of hydrophobic contaminants from soils by enzymatic depolymerization of soil organic matter. Chemosphere 78(8):996–1003

    CAS  Google Scholar 

  123. Vetter YA et al (1998) A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb Ecol 36(1):75–92

    CAS  Google Scholar 

  124. Schlosser D (2020) Fungal attack on environmental pollutants representing poor microbial growth substrates. In: Nevalainen H (ed) Grand challenges in fungal biotechnology. Springer, Cham, pp 33–57

    Google Scholar 

  125. Amaral-Zettler LA, Zettler ER, Mincer TJ (2020) Ecology of the plastisphere. Nat Rev Microbiol 18(3):139–151

    Google Scholar 

  126. Zumstein MT et al (2017) High-throughput analysis of enzymatic hydrolysis of biodegradable polyesters by monitoring Cohydrolysis of a polyester-embedded Fluorogenic probe. Environ Sci Technol 51(8):4358–4367

    CAS  Google Scholar 

  127. Jambon I et al (2019) Fenton-mediated biodegradation of Chlorendic acid – a highly chlorinated organic pollutant – by fungi isolated from a polluted site. Front Microbiol 10:13

    Google Scholar 

  128. Fricker MD et al (2017) The mycelium as a network. Microbiol Spectr 5(3):32

    Google Scholar 

  129. Fukasawa Y, Savoury M, Boddy L (2020) Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J 14(2):380–388

    Google Scholar 

  130. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53

    CAS  Google Scholar 

  131. Rillig MC et al (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205(4):1385–1388

    CAS  Google Scholar 

  132. Olicón-Hernández DR, González-López J, Aranda E (2017) Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol 8:1792. Published 2017 Sep 20

    Google Scholar 

  133. Sungthong R et al (2017) Mycelium-enhanced bacterial degradation of organic pollutants under bioavailability restrictions. Environ Sci Technol 51(20):11935–11942

    CAS  Google Scholar 

  134. Oliver JP, Schilling JS (2018) Harnessing fungi to mitigate CH4 in natural and engineered systems. Appl Microbiol Biotechnol 102(17):7365–7375

    CAS  Google Scholar 

  135. Whiteside MD et al (2019) Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr Biol 29(12):2043

    CAS  Google Scholar 

  136. Yang P, van Elsas JD (2018) Mechanisms and ecological implications of the movement of bacteria in soil. Appl Soil Ecol 129:112–120

    CAS  Google Scholar 

  137. Otto S et al (2016) Effects of facilitated bacterial dispersal on the degradation and emission of a desorbing contaminant. Environ Sci Technol 50(12):6320–6326

    CAS  Google Scholar 

  138. Nazir R et al (2012) The capacity to comigrate with Lyophyllum sp strain Karsten through different soils is spread among several phylogenetic groups within the genus Burkholderia. Soil Biol Biochem 50:221–233

    CAS  Google Scholar 

  139. Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiology 143:259–266

    CAS  Google Scholar 

  140. Cicatiello P et al (2016) Marine fungi as source of new hydrophobins. Int J Biol Macromol 92:1229–1233

    CAS  Google Scholar 

  141. Winandy L, Schlebusch O, Fischer R (2019) Fungal hydrophobins render stones impermeable for water but keep them permeable for vapor. Sci Rep 9:8

    Google Scholar 

  142. Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J 2(8):887–900

    CAS  Google Scholar 

  143. Li ZB et al (2016) Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology 44(4):319–322

    CAS  Google Scholar 

  144. Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21(2):71–90

    Google Scholar 

Download references

Acknowledgments

This work contributes to the Collaborative Research Centre AquaDiva (CRC 1076 AquaDiva) at the Friedrich Schiller University Jena and the Helmholtz Centre for Environmental Research (UFZ) and was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Helmholtz Centre for Environmental Research (UFZ). Helpful discussions with Thomas Banitz (UFZ) and Anja Worrich (UFZ) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Y. Wick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wick, L.Y. (2020). Bioavailability as a Microbial System Property: Lessons Learned from Biodegradation in the Mycosphere. In: Ortega-Calvo, J.J., Parsons, J.R. (eds) Bioavailability of Organic Chemicals in Soil and Sediment. The Handbook of Environmental Chemistry, vol 100. Springer, Cham. https://doi.org/10.1007/698_2020_568

Download citation

Publish with us

Policies and ethics