Skip to main content

Biological Technologies Used for the Removal of Nonsteroidal Anti-inflammatory Drugs

  • Chapter
  • First Online:
Non-Steroidal Anti-Inflammatory Drugs in Water

Abstract

Chronic pain is one of the most important causes of disability worldwide and represents a major public health challenge. The presence of inflammation is a common underlying mechanism of chronic pain. Nonsteroidal anti-inflammatory drugs (NSAIDs), COX2-selective and non-selective, showing analgesic and anti-inflammatory properties, are useful options for the treatment of chronic pain. Non-metabolized pharmaceutical products and their metabolites are excreted and enter sewage as biologically active substances. The accumulation of emerging pollutants, such as active pharmaceutical ingredients and their metabolites in the aquatic environment, has recently become a serious problem due to their bioaccumulation and ecotoxicity potential that affects living organisms. Pharmaceutical products considered as emerging pollutants are partially removed during the treatment of wastewater that contains them and are detected in groundwater, surface water, and wastewater effluent, as well as in drinking water at concentrations ranging from a few nanograms per liter to 15 μg/L. The elimination of these contaminants is essential due to the toxicity that causes in the organisms. Biological techniques that include microorganisms in their processes could be more effective for the elimination of pharmaceutical contaminants compared to the physicochemical techniques currently used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He B-S et al (2017) Eco-pharmacovigilance of non-steroidal anti-inflammatory drugs: necessity and opportunities. Chemosphere 181:178–189

    CAS  Google Scholar 

  2. Mezzelani SM et al (2016) Transcriptional and cellular effects of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in experimentally exposed mussels, Mytilus galloprovincialis. Aquat Toxicol 180:306–319

    CAS  Google Scholar 

  3. Haley RM, von Recum HA (2018) Localized and targeted delivery of NSAIDs for treatment of inflammation: a review. Exp Biol Med 0:1–12

    CAS  Google Scholar 

  4. Wang J et al (2017) Implementing ecopharmacovigilance (EPV) from a pharmacy perspective: A focus on non-steroidal anti-inflammatory drugs. Sci Total Environ 603:1–13

    Google Scholar 

  5. Wang J et al (2018) Targeted eco-pharmacovigilance for ketoprofen in the environment: need, strategy and challenge. Chemosphere 194:450–462

    CAS  Google Scholar 

  6. Gavrilescu M et al (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32(1):147–156

    CAS  Google Scholar 

  7. Tang Y et al (2019) Emerging pollutants in water environment: occurrence, monitoring, fate, and risk assessment. Water Res 91:984–991

    CAS  Google Scholar 

  8. Li X et al (2015) Enhanced removal of naproxen and carbamazepine from wastewater using a novel countercurrent seepage bioreactor immobilized with Phanerochaete chrysosporium under non-sterile conditions. Bioresour Technol 197:465–474

    CAS  Google Scholar 

  9. Geissena V et al (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3:57–65

    Google Scholar 

  10. Voloshenko-Rossin A et al (2015) Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro–Guayllabamba–Esmeraldas rivers. Environ Sci Process Impacts 17:41–53

    CAS  Google Scholar 

  11. Verlicchi P et al (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389:416–428

    CAS  Google Scholar 

  12. Bilal M et al (2018) Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes. Sci Total Environ 644:1–13

    CAS  Google Scholar 

  13. Cardoso-Vera JD et al (2017) Comparative study of diclofenac-induced embryotoxicity and teratogenesis in Xenopus laevis and Lithobates catesbeianus, using the frog embryo teratogenesis assay: Xenopus (FETAX). Sci Total Environ 574:467–475

    CAS  Google Scholar 

  14. Islas-Flores H et al (2013) Diclofenac-induced oxidative stress in brain, liver, gill and blood of common carp (Cyprinus carpio). Ecotoxicol Environ Saf 92:32–38

    CAS  Google Scholar 

  15. Oviedo-Gómez DGC et al (2010) Diclofenac-enriched artificial sediment induces oxidative stress in Hyalella azteca. Environ Toxicol Pharmacol 29:39–43

    Google Scholar 

  16. Islas-Flores H et al (2014) Effect of ibuprofen exposure on blood, gill, liver, and brain on common carp (Cyprinus carpio) using oxidative stress biomarkers. Environ Sci Pollut Res 2014:1–10

    Google Scholar 

  17. Gómez-Oliván LM et al (2014) DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna. Comp Biochem Physiol C 164:21–26

    Google Scholar 

  18. Ziylan A, Ince NH (2011) The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. J Hazard Mater 187:24–36

    CAS  Google Scholar 

  19. Tambosi JL et al (2010) Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP). Quim Nova 33(2):411–420

    CAS  Google Scholar 

  20. Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387:1225–1234

    CAS  Google Scholar 

  21. Marchlewicz A, Guzik U, Wojcieszyńska D (2015) Over-the-counter monocyclic non-steroidal anti-inflammatory drugs in environment – sources, risks, biodegradation. Water Air Soil Pollut 226:355

    Google Scholar 

  22. Picquet M (2013) Organometallics as catalysts in the fine chemical industry. Platin Met Rev 57:272–280

    Google Scholar 

  23. Ikehata K, Gamal El-Din M (2006) Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J Environ Eng Sci 5:81–135

    CAS  Google Scholar 

  24. Johnson AC, Sumpter JP (2001) Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35(24):4697–4703

    CAS  Google Scholar 

  25. Guzzellaa L, Ferettib D, Monarca S (2002) Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking-water supply. Water Res 36:4307–4318

    Google Scholar 

  26. Ternes TA et al (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Res 37:1976–1982

    CAS  Google Scholar 

  27. Acuña V et al (2015) Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example. Environ Int 85:327–333

    Google Scholar 

  28. Schwaiger J et al (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150

    CAS  Google Scholar 

  29. Barbosa M et al (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res 94:257–279

    CAS  Google Scholar 

  30. Patrolecco L, Capri S, Ademollo N (2015) Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters. Environ Sci Pollut Res 22:5864–5876

    CAS  Google Scholar 

  31. Bu Q et al (2016) Assessing the persistence of pharmaceuticals in the aquatic environment: challenges and needs. Emerg Contam 2(3):145–147

    Google Scholar 

  32. Vieno N, Sillanpää M (2014) Fate of diclofenac in municipal wastewater treatment plant – a review. Environ Int 69:28–39

    CAS  Google Scholar 

  33. Zhang Y, Geissen S-U, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161

    CAS  Google Scholar 

  34. Corcoran J, Winter MJ, Tyler CR (2010) Pharmaceuticals in the aquatic environment: a critical review of the evidence for health effects in fish. Crit Rev Toxicol 40(4):287–304

    CAS  Google Scholar 

  35. Saravanan M et al (2012) Effects of ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. Environ Toxicol Pharmacol 34:14–22

    CAS  Google Scholar 

  36. Luo Y et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641

    Google Scholar 

  37. Murdoch R, Hay A (2015) The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation 26:105–113

    CAS  Google Scholar 

  38. Grenni P et al (2013) Degradation of Gemfibrozil and Naproxen in a river water ecosystem. Microchem J 107:158–164

    CAS  Google Scholar 

  39. Brozinski J-M et al (2013) The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant. Environ Sci Technol 47(1):342–348

    CAS  Google Scholar 

  40. Ding T et al (2017) Biodegradation of Naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour Technol 238:164–173

    CAS  Google Scholar 

  41. Li Q et al (2016) Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environ Sci Pollut Res 23:18832–18841

    CAS  Google Scholar 

  42. Ahmad MH et al (2018) Evaluation of naproxen-induced oxidative stress, hepatotoxicity and in-vivo genotoxicity in male Wistar rats. J Pharm Anal 8(6):400–406

    Google Scholar 

  43. Sánchez Pérez FJ (2018) Biodegradación en la gestión de residuos. Mol Ther 29:1–3

    Google Scholar 

  44. Alneyadi AH, Rauf MA, Ashraf SS (2013) Oxidoreductases for the remediation of organic pollutants in water – a critical review. Crit Rev Biotechnol 38:1–19

    Google Scholar 

  45. Almeida B et al (2013) Modelling the biodegradation of non-steroidal anti-inflammatory drugs (NSAIDs) by activated sludge and a pure culture. Bioresour Technol 133:31–37

    CAS  Google Scholar 

  46. Murshid S, Prakash Dhakshinamoorthy G (2019) Biodegradation of sodium diclofenac and mefenamic acid: kinetic studies, identification of metabolites and analysis of enzyme activity. Int Biodeter Biodegr 144:1–9

    Google Scholar 

  47. Lu Z et al (2019) Bioremoval of non-steroidal anti-inflammatory drugs by Pseudoxanthomonas sp. DIN-3 isolated from biological activated carbon process. Water Res 161:459–472

    CAS  Google Scholar 

  48. Wegrzyn A, Felis E (2018) Isolation of bacterial endophytes from Phalaris arundinacea and their potential in diclofenac and sulfamethoxazole degradation. Pol J Microbiol 67:321–331

    Google Scholar 

  49. Meerburg F et al (2012) Diclofenac and 2-anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver. Microb Biotechnol 5:388–395

    Google Scholar 

  50. Moreiraa IS et al (2018) Biodegradation of diclofenac by the bacterial strain Labrys portucalensis F11. Ecotoxicol Environ Saf 152:104–113

    Google Scholar 

  51. Aissaoui S et al (2017) Metabolic and co-metabolic transformation of diclofenac by Enterobacter hormaechei D15 isolated from activated sludge. Curr Microbial 74:381–388

    CAS  Google Scholar 

  52. Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3(1):1–26

    CAS  Google Scholar 

  53. Blanquez P, Guieysse B (2008) Continuous biodegradation of 17-estradiol and 17-ethynylestradiol by Trametes versicolor. J Hazard Mater 150:459–462

    CAS  Google Scholar 

  54. Zhang Y, Geißen S-U (2012) Elimination of carbamazepine in a non-sterile fungal bioreactor. Bioresour Technol 112:221–227

    CAS  Google Scholar 

  55. Margot J et al (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:1–14

    Google Scholar 

  56. Li Y et al (2016) High-throughput pyrosequencing analysis of bacteria relevant to cometabolic and metabolic degradation of ibuprofen in horizontal subsurface flow constructed wetlands. Sci Total Environ 562:604–613

    CAS  Google Scholar 

  57. Verlicchi P, Zambello E (2014) How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci Total Environ 470:1281–1306

    Google Scholar 

  58. Xu B, Xue G, Yang X (2018) Isolation and application of an ibuprofen-degrading bacterium to a biological aerated filter for the treatment of micro-polluted water. Front Environ Sci Eng 12:15

    Google Scholar 

  59. Palyzová A et al (2018) Potential of the strain Raoultella sp. KDF8 for removal of analgesics. Folia Microbiol 63:273–282

    Google Scholar 

  60. Marchlewicz A, Guzik U, Wojcieszyńska D (2017) Dynamics of ibuprofen biodegradation by Bacillus sp. B1 (2015b). Arch Environ Prot 43(2):60–64

    Google Scholar 

  61. Marchlewicz A et al (2017) Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1 (2015b). Environ Sci Pollut Res 24:7572–7584

    CAS  Google Scholar 

  62. Zhong Y et al (2007) Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl Microbiol Biotechnol 75:175–186

    CAS  Google Scholar 

  63. Marchlewicz A et al (2016) Bacillus thuringiensis B1(2015b) is a gram-positive Bacteria able to degrade naproxen and ibuprofen. Water Air Soil Pollut 227:197

    Google Scholar 

  64. Fortunato MS et al (2016) Aerobic degradation of ibuprofen in batch and continuous reactors by an indigenous bacterial community. Environ Technol 37(20):2617–2626

    CAS  Google Scholar 

  65. Górny D et al (2019) Naproxen ecotoxicity and biodegradation by Bacillus thuringiensis B1(2015b) strain. Ecotoxicol Environ Saf 167:505–212

    Google Scholar 

  66. Domaradzka D et al (2015) Cometabolic degradation of Naproxen by Planococcus sp. strain S5. Water Air Soil Pollut 226:297

    Google Scholar 

  67. Almeida B et al (2013) Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain I11. Biodegradation 24:615–630

    CAS  Google Scholar 

  68. Zhang L et al (2013) Degradation of paracetamol by pure bacterial cultures and their microbial consortium. Appl Microbiol Biotechnol 97:3687–3698

    CAS  Google Scholar 

  69. Chen Y, Rosazza J (1994) Microbial transformation of ibuprofen by a Nocardia species. Appl Environ Microbiol 60(4):1292–1296

    CAS  Google Scholar 

  70. Wojcieszynska D et al (2014) Bacterial degradation of naproxen e undisclosed pollutant in the environment. J Environ Manag 145:157–161

    CAS  Google Scholar 

  71. Wojcieszyńska D et al (2016) Enzymes involved in naproxen degradation by Planococcus sp. S5. Pol J Microbiol 65(2):177–182

    Google Scholar 

  72. Lloret L et al (2010) Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochem Eng J 51(3):124–131

    CAS  Google Scholar 

  73. Marco-Urrea E et al (2010) Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. J Hazard Mater 176:836–842

    CAS  Google Scholar 

  74. Rodarte-Morales AI et al (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbiol Biotechnol 27(8):1839–1846

    Google Scholar 

  75. Morales I et al (2011) Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen supply. Biodegradation 23:145–156

    Google Scholar 

  76. Rodríguez-Rodríguez CE, Marco-Urrea E, Caminal G (2010) Naproxen degradation test to monitor Trametes versicolor activity in solid-state bioremediation processes. J Hazard Mater 179(1–3):1152–1155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ninfa Ramírez-Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramírez-Durán, N., Can-Ubando, L.C., Manzanares-Leal, G.L., Moreno-Pérez, M.P.A., Isaac-Olivé, K., Sandoval-Trujillo, A.H. (2020). Biological Technologies Used for the Removal of Nonsteroidal Anti-inflammatory Drugs. In: Gómez-Oliván, L.M. (eds) Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol 96. Springer, Cham. https://doi.org/10.1007/698_2020_554

Download citation

Publish with us

Policies and ethics