Skip to main content

Teratogenesis and Embryotoxicity Induced by Non-steroidal Anti-Inflammatory Drugs in Aquatic Organisms

  • Chapter
  • First Online:
  • 400 Accesses

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 96))

Abstract

The continuous elimination of pharmaceutical products to water sources has become a worldwide problem and has been getting considerable attention due to the effects that this compounds have induced in aquatic organisms, specifically non-steroidal anti-inflammatory drugs (NSAIDs), one of the most representative group of medications and the most consumed around the world, highlighting the teratogenic and embryotoxic effects induced by NSAIDs on early life stages of different organisms being this the most vulnerable stages in development; the main representants of NSAID group (diclofenac, ibuprofen, naproxen, ketoprofen, paracetamol, acetylsalicylic acid) have induced adverse embryonic effects, which can be consider for the development of strategies for an appropriate disposal of pharmaceutical residues, as well as establish maximum permissible limits for its emission to the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hignite C, Azarnoff DL (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20(2):337–341. https://doi.org/10.1016/0024-3205(77)90329-0

    Article  CAS  Google Scholar 

  2. Barceló D, Daughton CG (2003) Emerging pollutants in water analysis. TrAC Trends Anal Chem 22(10):711–732. https://doi.org/10.1016/S0165-9936(03)01106-3

    Article  CAS  Google Scholar 

  3. Barceló D, López de Alda MJ (2008) Contaminación y calidad química del agua: el problema de los contaminantes emergentes. Instituto de Investigaciones Químicas y Ambientales-CSIC, Barcelona

    Google Scholar 

  4. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(Suppl):907–938

    Article  CAS  Google Scholar 

  5. Bielen A, Šimatović A, Kosić-Vukšić J, Senta I, Ahel M, Babić S et al (2017) Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res 126:79–87. https://doi.org/10.1016/j.watres.2017.09.019

    Article  CAS  Google Scholar 

  6. Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175(1–3):45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100

    Article  CAS  Google Scholar 

  7. Santos LHMLM, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro MCBSM (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461–462:302–316. https://doi.org/10.1016/j.scitotenv.2013.04.077

    Article  CAS  Google Scholar 

  8. Teixeira-Lemos E, Teixeira-Lemos LP, Oliveira J, Pais do Amaral J (2018) Pharmaceuticals in the environment: focus on drinking-water. In: Reference module in chemistry, molecular sciences and chemical engineering3rd edn, pp 1–11. https://doi.org/10.1016/B978-0-12-409547-2.13941-1

    Chapter  Google Scholar 

  9. Acevedo R (2014) Contaminantes emergentes en aguas: metabolitos de fármacos. Una revisión. In: Universidad militar nueva granada, vol 10, pp 80–101

    Google Scholar 

  10. Calatayud S, Esplugues JV (2016) Chemistry, pharmacodynamics, and pharmacokinetics of NSAIDs. In: NSAIDs and Aspirin, pp 3–16. https://doi.org/10.1007/978-3-319-33889-7_1

  11. Vane JR, Botting RM (1998) Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med 104(3A):2S–8S. https://doi.org/10.1016/S0002-9343(97)00203-9

    Article  CAS  Google Scholar 

  12. Lanas A (2016) NSAIDs and Aspirin: recent advances and implications for clinical management. https://books.google.com.mx/books?id=riPqDAAAQBAJ

  13. Melvin SD (2016) Oxidative stress, energy storage, and swimming performance of Limnodynastes peronii tadpoles exposed to a sub-lethal pharmaceutical mixture throughout development. Chemosphere 150:790–797. https://doi.org/10.1016/j.chemosphere.2015.09.034

    Article  CAS  Google Scholar 

  14. Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Neri-Cruz N, Dublán-García O (2014) Effect of ibuprofen exposure on blood, gill, liver, and brain on common carp (Cyprinus carpio) using oxidative stress biomarkers. Environ Sci Pollut Res 21(7):5157–5166. https://doi.org/10.1007/s11356-013-2477-0

    Article  CAS  Google Scholar 

  15. André C, Gagné F (2017) Cumulative effects of ibuprofen and air emersion in zebra mussels Dreissena polymorpha. Environ Toxicol Pharmacol 55:156–164. https://doi.org/10.1016/j.etap.2017.08.016

    Article  CAS  Google Scholar 

  16. Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Valdés-Alanís A, Islas-Flores H, Neri-Cruz N (2014) Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem Toxicol 37(4):391–399. https://doi.org/10.3109/01480545.2013.870191

    Article  CAS  Google Scholar 

  17. Cardoso-Vera JD, Islas-Flores H, San Juan-Reyes N, Montero-Castro EI, Galar-Martínez M, García-Medina S et al (2017) Comparative study of diclofenac-induced embryotoxicity and teratogenesis in Xenopus laevis and Lithobates catesbeianus, using the frog embryo teratogenesis assay: Xenopus (FETAX). Sci Total Environ 574:467–475. https://doi.org/10.1016/j.scitotenv.2016.09.095

    Article  CAS  Google Scholar 

  18. Ji K, Liu X, Lee S, Kang S, Kho Y, Giesy JP, Choi K (2013) Effects of non-steroidal anti-inflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis, and reproduction of zebrafish. J Hazard Mater 254–255(1):242–251. https://doi.org/10.1016/j.jhazmat.2013.03.036

    Article  CAS  Google Scholar 

  19. Embry MR, Belanger SE, Braunbeck TA, Galay-burgos M, Halder M, Hinton DE et al (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97(0349):79–87. https://doi.org/10.1016/j.aquatox.2009.12.008

    Article  CAS  Google Scholar 

  20. Pritchard JB (1993) Aquatic toxicology: past, present, and prospects. Environ Health Perspect 100:249–257. https://doi.org/10.1289/ehp.93100249

    Article  CAS  Google Scholar 

  21. Mohammed A (2013) Why are early life stages of aquatic organisms more sensitive to toxicants than adults? In: New insights into toxicity and drug testing, vol. 1. p 13. https://doi.org/10.5772/55187

  22. Homfray T, Farndon PA (2015) Fetal anomalies – the Geneticist’s approach. In: Twining’s textbook of fetal abnormalities3rd edn, pp 139–160. https://doi.org/10.1016/B978-0-7020-4591-2.00007-3

    Chapter  Google Scholar 

  23. Wells P, Bhuller Y, Chen C, Jeng W, Kasapinovic S, Kennedy J, Nicol C (2005) Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol 207(2):354–366. https://doi.org/10.1016/j.taap.2005.01.061

    Article  CAS  Google Scholar 

  24. Laher I (2014) Systems biology of free radicals and antioxidants. In: Laher I (ed.) Systems biology of free radicals and antioxidants, vol 9783642300. https://doi.org/10.1007/978-3-642-30018-9

  25. van Gelder MMHJ, van Rooij IALM, Miller RK, Zielhuis GA, de Jong-van den Berg LTW, Roeleveld N (2010) Teratogenic mechanisms of medical drugs. Hum Reprod Update 16(4):378–394. https://doi.org/10.1093/humupd/dmp052

    Article  CAS  Google Scholar 

  26. Roberts JL (2001) Analgesic–antipyretic and anti-inflammatory agents and drugs employed in the treatment of gout. In: Gilman AG, Hardman JG (eds) Goodman and Gilman’s the pharmacological basis of therapeutics10th edn. McGraw Hill, New York, pp 687–731

    Google Scholar 

  27. Stülten D, Zühlke S, Lamshöft M, Spiteller M (2008) Occurrence of diclofenac and selected metabolites in sewage effluents. Sci Total Environ 5(405):310–316. https://doi.org/10.1016/j.scitotenv.2008.05.036

    Article  CAS  Google Scholar 

  28. Peltzer PM, Lajmanovich RC, Martinuzzi C, Attademo AM, Curi LM, Sandoval MT (2019) Biotoxicity of diclofenac on two larval amphibians: assessment of development, growth, cardiac function and rhythm, behavior and antioxidant system. Sci Total Environ 683:624–637. https://doi.org/10.1016/j.scitotenv.2019.05.275

    Article  CAS  Google Scholar 

  29. Balbi T, Montagna M, Fabbri R, Carbone C, Franzellitti S, Fabbri E, Canesi L (2018) Diclofenac affects early embryo development in the marine bivalve Mytilus galloprovincialis. Sci Total Environ 642:601–609. https://doi.org/10.1016/j.scitotenv.2018.06.125

    Article  CAS  Google Scholar 

  30. Chen J-B, Gao H-W, Zhang Y-L, Zhang Y, Zhou X-F, Li C-Q, Gao H-P (2015) Developmental toxicity of Diclofenac and elucidation of gene regulation in zebrafish (Danio rerio). Sci Rep 4(1):4841. https://doi.org/10.1038/srep04841

    Article  CAS  Google Scholar 

  31. Schwarz S, Schmieg H, Scheurer M, Köhler H-R, Triebskorn R (2017) Impact of the NSAID diclofenac on survival, development, behaviour and health of embryonic and juvenile stages of brown trout, Salmo trutta fario. Sci Total Environ 607–608:1026–1036. https://doi.org/10.1016/j.scitotenv.2017.07.042

    Article  CAS  Google Scholar 

  32. Pohl J, Ahrens L, Carlsson G, Golovko O, Norrgren L, Weiss J, Örn S (2019) Embryotoxicity of ozonated diclofenac, carbamazepine, and oxazepam in zebrafish (Danio rerio). Chemosphere 225:191–199. https://doi.org/10.1016/j.chemosphere.2019.03.034

    Article  CAS  Google Scholar 

  33. Hallare AV, Köhler H-R, Triebskorn R (2004) Developmental toxicity and stress protein responses in zebrafish embryos after exposure to diclofenac and its solvent, DMSO. Chemosphere 56(7):659–666. https://doi.org/10.1016/j.chemosphere.2004.04.007

    Article  CAS  Google Scholar 

  34. Fabbri R, Montagna M, Balbi T, Raffo E, Palumbo F, Canesi L (2014) Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis. Mar Environ Res 99:1–8. https://doi.org/10.1016/j.marenvres.2014.05.007

    Article  CAS  Google Scholar 

  35. Chae J, Seon M, Hwang Y, Min B, Kim S, Lee H, Park M (2015) Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos. Chemosphere 120:52–58. https://doi.org/10.1016/j.chemosphere.2014.05.063

    Article  CAS  Google Scholar 

  36. Buser HR, Poiger T, Muller MD (1999) Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33(15):2529–2535. https://doi.org/10.1021/es981014w

    Article  CAS  Google Scholar 

  37. Tran NH, Urase T, Ta TT (2014) A preliminary study on the occurrence of pharmaceutically active compounds in hospital wastewater and surface water in Hanoi, Vietnam. Clean (Weinh) 42(3):267–275. https://doi.org/10.1002/clen.201300021

    Article  CAS  Google Scholar 

  38. David A, Pancharatna K (2009) Developmental anomalies induced by a non-selective COX inhibitor (ibuprofen) in zebrafish (Danio rerio). Environ Toxicol Pharmacol 27(3):390–395. https://doi.org/10.1016/j.etap.2009.01.002

    Article  CAS  Google Scholar 

  39. Veldhoen N, Skirrow RC, Brown LLY, Van Aggelen G, Helbing CC (2014) Effects of acute exposure to the non-steroidal anti-inflammatory drug ibuprofen on the developing north American bullfrog (Rana catesbeiana) tadpole. Environ Sci Technol 48(17):10439–10447. https://doi.org/10.1021/es502539g

    Article  CAS  Google Scholar 

  40. Richards SM, Cole SE (2006) A toxicity and hazard assessment of fourteen pharmaceuticals to Xenopus laevis larvae. Ecotoxicology 15(8):647–656. https://doi.org/10.1007/s10646-006-0102-4

    Article  CAS  Google Scholar 

  41. Hernando MD, Heath E, Petrovic M, Barcelo D (2006) Trace-level determination of pharmaceutical residues by LC-MS/ MS in natural and treated waters. A pilot-survey study. Anal Bioanal Chem 385:985–991. https://doi.org/10.1007/s00216-006-0394-5

    Article  CAS  Google Scholar 

  42. Verenitch SS, Lowe CJ, Mazumder A (2006) Determination of acidic drugs and caffeine in municipal wastewaters and receiving waters by gas chromatography-ion trap tandem mass spectrometry. J Chromatogr A 1116(1–2):193–203. https://doi.org/10.1016/j.chroma.2006.03.005

    Article  CAS  Google Scholar 

  43. Xu C, Niu L, Guo H, Sun X, Chen L, Tu W et al (2019) Long-term exposure to the non-steroidal anti-inflammatory drug (NSAID) naproxen causes thyroid disruption in zebrafish at environmentally relevant concentrations. Sci Total Environ 676:387–395. https://doi.org/10.1016/j.scitotenv.2019.04.323

    Article  CAS  Google Scholar 

  44. Sehonova P, Plhalova L, Blahova J, Doubkova V, Prokes M, Tichy F et al (2017) Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages. Chemosphere 188:414–423. https://doi.org/10.1016/j.chemosphere.2017.08.151

    Article  CAS  Google Scholar 

  45. Li Q, Wang P, Chen L, Gao H, Wu L (2016) Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environ Sci Pollut Res 23(18):18832–18841. https://doi.org/10.1007/s11356-016-7092-4

    Article  CAS  Google Scholar 

  46. Fang T-H, Nan F-H, Chin T-S, Feng H-M (2012) The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in northern Taiwan and the receiving coastal waters. Mar Pollut Bull 64(7):1435–1444. https://doi.org/10.1016/j.marpolbul.2012.04.008

    Article  CAS  Google Scholar 

  47. Wang J, Zhao S, Zhang M, He B (2018) Targeted eco-pharmacovigilance for ketoprofen in the environment: need, strategy and challenge. Chemosphere 194:450–462. https://doi.org/10.1016/j.chemosphere.2017.12.020

    Article  CAS  Google Scholar 

  48. Rangasamy B, Hemalatha D, Shobana C, Nataraj B, Ramesh M (2018) Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere 213:423–433. https://doi.org/10.1016/j.chemosphere.2018.09.013

    Article  CAS  Google Scholar 

  49. Puljak L, Marin A, Vrdoljak D, Markotic F, Utrobicic A, Tugwell P (2017) Celecoxib for osteoarthritis. Cochrane Database Syst Rev 5:CD009865. https://doi.org/10.1002/14651858.CD009865.pub2

    Article  Google Scholar 

  50. Yoon Y-H, Kim JY, Bae YC, Nam S-W, Cho H-J, Lee S et al (2018) Evaluation of the toxic effects of celecoxib on Xenopus embryo development. Biochem Biophys Res Commun 501:329–335. https://doi.org/10.1016/j.bbrc.2018.03.002

    Article  CAS  Google Scholar 

  51. Wu S, Zhang L, Chen J (2012) Paracetamol in the environment and its degradation by microorganisms. pp 875–884. https://doi.org/10.1007/s00253-012-4414-4

  52. Henschel KP, Wenzel A, Diedrich M, Fliedner A (1997) Environmental hazard assessment of pharmaceuticals. Regul Toxicol Pharmacol 25(3):220–225. https://doi.org/10.1006/rtph.1997.1102

    Article  CAS  Google Scholar 

  53. Fort DJ, Rayburn JR, Bantle JA (1992) Evaluation of acetaminophen-induced developmental toxicity using FETAX. Drug Chem Toxicol 15(4):329–350. https://doi.org/10.3109/01480549209014161

    Article  CAS  Google Scholar 

  54. Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S et al (2012) Review pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229. https://doi.org/10.1289/ehp.1104477

    Article  Google Scholar 

  55. Zivna D, Sehonova P, Plhalova L, Marsalek P, Blahova J, Prokes M et al (2015) Effect of salicylic acid on early life stages of common carp (Cyprinus carpio). Environ Toxicol Pharmacol 40:319–325. https://doi.org/10.1016/j.etap.2015.06.01

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hariz Islas-Flores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Alvarez, I., Islas-Flores, H., Gómez-Oliván, L.M., García, O.D. (2020). Teratogenesis and Embryotoxicity Induced by Non-steroidal Anti-Inflammatory Drugs in Aquatic Organisms. In: Gómez-Oliván, L.M. (eds) Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol 96. Springer, Cham. https://doi.org/10.1007/698_2020_545

Download citation

Publish with us

Policies and ethics