Skip to main content

DNA Alterations and Cellular Damage Induced by Non-steroidal Anti-inflammatories on Different Species of Fish

  • Chapter
  • First Online:
Book cover Non-Steroidal Anti-Inflammatory Drugs in Water

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of drugs used to reduce inflammation, pain, and fever by inhibiting the enzyme cyclooxygenase (COX 1 and COX 2). These drugs have been positioned among the most consumed worldwide. After their biotransformation in the body, they are eliminated as metabolites, and also in the environment they can undergo transformations, generating products that are more toxic than the original molecule. Several studies have shown that NSAIDs are not eliminated in conventional treatments used by wastewater treatment plants and represent a continuous contribution to the environment, causing significant effects on biota. However, there has been little attention given to the study of its toxic effects on aquatic organisms. The objective of this chapter is to review, compile, and analyze the oxidative damage induced by NSAIDs in different aquatic organisms, to evaluate the ecotoxicological effects of this type of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma K, Kaushik G (2017) Annals of pharmacology and pharmaceutics NSAIDS in the environment: from emerging problem to. Ann Pharmacol Pharm 2(14):1–3

    CAS  Google Scholar 

  2. Wongrakpanich S et al (2018) A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis 9(1):143. https://doi.org/10.14336/AD.2017.0306

    Article  Google Scholar 

  3. Pirlamarla P, Bond RM (2016) FDA labeling of NSAIDs: review of nonsteroidal anti-inflammatory drugs in cardiovascular disease. Trends Cardiovasc Med 26(8):675–680. https://doi.org/10.1016/j.tcm.2016.04.011

    Article  Google Scholar 

  4. Santos LHMLM et al (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175(1–3):45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100

    Article  CAS  Google Scholar 

  5. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chemi Rev 107(6):2319–2364. https://doi.org/10.1021/cr020441w

    Article  CAS  Google Scholar 

  6. Sanganyado E et al (2017) Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Res 124:527–542. https://doi.org/10.1016/j.watres.2017.08.003

    Article  CAS  Google Scholar 

  7. Chatterjee N, Walker GC (2017) Agriculture’s food safety and inspection service. Environ Mol Mutagen 368:363–368

    Google Scholar 

  8. Barzilai A, Yamamoto K-I (2004) DNA damage responses to oxidative stress. DNA Repair 3(8–9):1109–1115. https://doi.org/10.1016/j.dnarep.2004.03.002

    Article  CAS  Google Scholar 

  9. Sinha S et al (2007) Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: effect on lipid peroxidation, morpho-anatomical changes and antioxidants. Chemosphere 67(1):176–187. https://doi.org/10.1016/j.chemosphere.2006.08.026

    Article  CAS  Google Scholar 

  10. Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473(7):805–825. https://doi.org/10.1042/BJ20151227

    Article  CAS  Google Scholar 

  11. Zhang W, Xiao S, Ahn DU (2013) Protein oxidation: basic principles and implications for meat quality. Crit Rev Food Sci Nutr 53(11):1191–1201. https://doi.org/10.1080/10408398.2011.577540

    Article  CAS  Google Scholar 

  12. Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta Proteins Proteomics 1703(2):93–109. https://doi.org/10.1016/j.bbapap.2004.08.007

    Article  CAS  Google Scholar 

  13. Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32(3–4):307–326. https://doi.org/10.1081/DMR-100102336

    Article  CAS  Google Scholar 

  14. Burton GJ, Jauniaux E (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25(3):287–299. https://doi.org/10.1016/j.bpobgyn.2010.10.016

    Article  Google Scholar 

  15. Doi H et al (2002) Chemiluminescence associated with the oxidative metabolism of salicylic acid in rat liver microsomes. Chem Biol Interact 140(2):109–119. https://doi.org/10.1016/S0009-2797(02)00004-2

    Article  CAS  Google Scholar 

  16. Jifa W et al (2006) Response of integrated biomarkers of fish (Lateolabrax japonicus) exposed to benzo[a]pyrene and sodium dodecylbenzene sulfonate. Ecotoxicol Environ Saf 65(2):230–236. https://doi.org/10.1016/j.ecoenv.2005.08.002

    Article  CAS  Google Scholar 

  17. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

    Article  CAS  Google Scholar 

  18. Devaki M, Nirupama R, Yajurvedi H (2011) Reduced antioxidant status for prolonged period due to repeated stress exposure in rat. J Stress Physiol Biochem 7(2):139–147

    Google Scholar 

  19. Emad S et al (2017) Attenuation of stress induced memory deficits by nonsteroidal anti-inflammatory drugs (NSAIDs) in rats: Role of antioxidant enzymes. Pharmacol Rep 69(2):300–305. https://doi.org/10.1016/j.pharep.2016.11.009

    Article  CAS  Google Scholar 

  20. Stadtman ER (1990) Mechanism and biological consequences. Free Radic Biol Med 9(1987):315–325

    Article  CAS  Google Scholar 

  21. Matés JM, Pérez-Gómez C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32(8):595–603. https://doi.org/10.1016/S0009-9120(99)00075-2

    Article  Google Scholar 

  22. Matés JM, Sánchez-Jiménez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4(95):1–29

    Google Scholar 

  23. Riley P (1994) Free radicals in biology:oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1(4):53

    Google Scholar 

  24. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  25. Valavanidis A et al (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64(2):178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013

    Article  CAS  Google Scholar 

  26. Nowsheen S, Yang ES (2012) The intersection between DNA damage response and cell death pathways. Exp Oncol 34(3):243–254

    CAS  Google Scholar 

  27. Wu D et al (2017) Detection of 8-hydroxydeoxyguanosine (8-OHdG) as a biomarker of oxidative damage in peripheral leukocyte DNA by UHPLC–MS/MS. J Chromatogr B 1064:1–6. https://doi.org/10.1016/j.jchromb.2017.08.033

    Article  CAS  Google Scholar 

  28. Luzhna L, Kathiria P, Kovalchuk O (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4:1–17. https://doi.org/10.3389/fgene.2013.00131

    Article  Google Scholar 

  29. Zhang C-Z et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522(7555):179–184. https://doi.org/10.1038/nature14493

    Article  CAS  Google Scholar 

  30. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  Google Scholar 

  31. Aslantürk ÖS (2018) In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. Genotoxicity – a predictable risk to our actual world. InTech, pp 18. https://doi.org/10.5772/intechopen.71923

  32. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656. https://doi.org/10.1101/cshperspect.a008656

    Article  CAS  Google Scholar 

  33. Vasseur P, Cossu-Leguille C (2003) Biomarkers and community indices as complementary tools for environmental safety. Environ Int 28(8):711–717. https://doi.org/10.1016/S0160-4120(02)00116-2

    Article  CAS  Google Scholar 

  34. Mussali-Galante P et al (2013) Review biomarkers of exposure for assessing environmental metal pollution: 1 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México 2 Departamento de Sistemática y Evo’. Rev Int Contam Ambie 29(1):117–140. http://www.redalyc.org/articulo.oa?id=37025634008 How

    CAS  Google Scholar 

  35. Asif N, Malik M, Chaudhry F (2018) A review of on environmental pollution bioindicators. Pollution 4(1):111–118. https://doi.org/10.22059/poll.2017.237440.296

    Article  CAS  Google Scholar 

  36. Parmar TK, Rawtani D, Agrawal YK (2016) Bioindicators: the natural indicator of environmental pollution. Front Life Sci 9(2):110–118. https://doi.org/10.1080/21553769.2016.1162753

    Article  CAS  Google Scholar 

  37. Perussolo MC et al (2019) Integrated biomarker response index to assess toxic effects of environmentally relevant concentrations of paracetamol in a neotropical catfish (Rhamdia quelen). Ecotoxicol Environ Saf 182:109438. https://doi.org/10.1016/j.ecoenv.2019.109438

    Article  CAS  Google Scholar 

  38. Stancova V et al (2017) Effects of the pharmaceutical contaminants ibuprofen, diclofenac, and carbamazepine alone, and in combination, on oxidative stress parameters in early life stages of tench (Tinca tinca). Veterinární Medicína 62(2):90–97. https://doi.org/10.17221/125/2016-VETMED

    Article  CAS  Google Scholar 

  39. Islas-Flores H et al (2017) Cyto-genotoxicity and oxidative stress in common carp (Cyprinus carpio) exposed to a mixture of ibuprofen and diclofenac. Environ Toxicol 32(5):1637–1650. https://doi.org/10.1002/tox.22392

    Article  CAS  Google Scholar 

  40. Guiloski IC, Ribas JLC et al (2017a) Paracetamol causes endocrine disruption and hepatotoxicity in male fish Rhamdia quelen after subchronic exposure. Environ Toxicol Pharmacol 53:111–120. https://doi.org/10.1016/j.etap.2017.05.005

    Article  CAS  Google Scholar 

  41. Guiloski IC, Stein Piancini LD et al (2017b) Effects of environmentally relevant concentrations of the anti-inflammatory drug diclofenac in freshwater fish Rhamdia quelen. Ecotoxicol Environ Saf 139:291–300. https://doi.org/10.1016/j.ecoenv.2017.01.053

    Article  CAS  Google Scholar 

  42. Saucedo-Vence K et al (2015) Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio. Ecotoxicology 24(3):527–539. https://doi.org/10.1007/s10646-014-1401-9

    Article  CAS  Google Scholar 

  43. Ribas JLC et al (2014) Effects of anti-inflammatory drugs in primary kidney cell culture of a freshwater fish. Fish Shellfish Immunol 40(1):296–303. https://doi.org/10.1016/j.fsi.2014.07.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nely SanJuan-Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

SanJuan-Reyes, N., Gómez-Oliván, L.M., Pérez-Pastén Borja, R., Islas-Flores, H., Galar-Martínez, M., García-Medina, S. (2020). DNA Alterations and Cellular Damage Induced by Non-steroidal Anti-inflammatories on Different Species of Fish. In: Gómez-Oliván, L.M. (eds) Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol 96. Springer, Cham. https://doi.org/10.1007/698_2020_544

Download citation

Publish with us

Policies and ethics