Skip to main content

Overview of Non-steroidal Anti-inflammatory Drugs as Emerging Contaminants

  • Chapter
  • First Online:
Non-Steroidal Anti-Inflammatory Drugs in Water

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most used pharmaceuticals in the human and veterinary medicine, and it has been demonstrated that their widespread consumption all over the world has led to their ubiquitous occurrence in water environment. Nowadays, there exist strong evidence about the presence of different NSAIDs, such as diclofenac, naproxen, ketorolac, ibuprofen, ketoprofen, and salicylic acid, among others, which are found in concentrations in the range of ng/L to mg/L on different water bodies. Besides, the toxicological effects that NSAIDs cause in aquatic organisms have been evaluated by working groups all over the world. Thus, the aim of this review is to provide a detailed overview about the presence of NSAIDs in aquatic environmental, in particular to summarizing the main toxicological effects on living organisms and occurrence in water bodies that has been documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong B et al (2018) Urbanization gradient of selected pharmaceuticals in surface water at a watershed scale. Sci Total Environ 634:448–458. https://doi.org/10.1016/j.scitotenv.2018.03.392

    Article  CAS  Google Scholar 

  2. Tran NH, Reinhard M, Gin KY-H (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res 133:182–207. https://doi.org/10.1016/j.watres.2017.12.029

    Article  CAS  Google Scholar 

  3. López-Pacheco IY et al (2019) Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci Total Environ 690:1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052

    Article  CAS  Google Scholar 

  4. Mezzelani M, Gorbi S, Regoli F (2018) Pharmaceuticals in the aquatic environments: evidence of emerged threat and future challenges for marine organisms. Mar Environ Res 140:41–60. https://doi.org/10.1016/j.marenvres.2018.05.001

    Article  CAS  Google Scholar 

  5. Marsik P et al (2017) Non-steroidal anti-inflammatory drugs in the watercourses of Elbe basin in Czech Republic. Chemosphere 171:97–105. https://doi.org/10.1016/j.chemosphere.2016.12.055

    Article  CAS  Google Scholar 

  6. He B et al (2017) Eco-pharmacovigilance of non-steroidal anti-inflammatory drugs: necessity and opportunities. Chemosphere 181:178–189. https://doi.org/10.1016/j.chemosphere.2017.04.084

    Article  CAS  Google Scholar 

  7. Wang J et al (2017) Implementing ecopharmacovigilance (EPV) from a pharmacy perspective: a focus on non-steroidal anti-inflammatory drugs. Sci Total Environ 603–604:772–784. https://doi.org/10.1016/j.scitotenv.2017.02.209

    Article  CAS  Google Scholar 

  8. Liu J et al (2018) Investigation of pharmaceutically active compounds in an urban receiving water: occurrence, fate and environmental risk assessment. Ecotoxicol Environ Saf 154:214–220. https://doi.org/10.1016/j.ecoenv.2018.02.052

    Article  CAS  Google Scholar 

  9. Wang J et al (2018) Targeted eco-pharmacovigilance for ketoprofen in the environment: need, strategy and challenge. Chemosphere 194:450–462. https://doi.org/10.1016/j.chemosphere.2017.12.020

    Article  CAS  Google Scholar 

  10. Madikizela LM, Tavengwa NT, Chimuka L (2018) Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J Pharm Biomed Anal 147:624–633. https://doi.org/10.1016/j.jpba.2017.04.010

    Article  CAS  Google Scholar 

  11. Kot-Wasik A, Jakimska A, Śliwka-Kaszyńska M (2016) Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ Monit Assess 188(12):661. https://doi.org/10.1007/s10661-016-5637-0

    Article  CAS  Google Scholar 

  12. Patrolecco L, Capri S, Ademollo N (2015) Occurrence of selected pharmaceuticals in the principal sewage treatment plants in Rome (Italy) and in the receiving surface waters. Environ Sci Pollut Res 22(8):5864–5876. https://doi.org/10.1007/s11356-014-3765-z

    Article  CAS  Google Scholar 

  13. Scheurell M et al (2009) Occurrence of diclofenac and its metabolites in surface water and effluent samples from Karachi, Pakistan. Chemosphere 77(6):870–876. https://doi.org/10.1016/j.chemosphere.2009.07.066

    Article  CAS  Google Scholar 

  14. Khan A et al (2018) Prevalence of selected pharmaceuticals in surface water receiving untreated sewage in Northwest Pakistan. Environ Monit Assess 190(6):324. https://doi.org/10.1007/s10661-018-6683-6

    Article  CAS  Google Scholar 

  15. Shanmugam G et al (2014) Non-steroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res 21(2):921–931. https://doi.org/10.1007/s11356-013-1957-6

    Article  CAS  Google Scholar 

  16. Eslami A et al (2015) Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment. Environ Monit Assess 187(12):734. https://doi.org/10.1007/s10661-015-4952-1

    Article  CAS  Google Scholar 

  17. Jelic A et al (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45(3):1165–1176. https://doi.org/10.1016/j.watres.2010.11.010

    Article  CAS  Google Scholar 

  18. Lolić A et al (2015) Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of north of Portugal: occurrence and environmental risk. Sci Total Environ 508:240–250. https://doi.org/10.1016/j.scitotenv.2014.11.097

    Article  CAS  Google Scholar 

  19. Madikizela LM, Chimuka L (2017) Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. Environ Monit Assess 189(7):348. https://doi.org/10.1007/s10661-017-6069-1

    Article  CAS  Google Scholar 

  20. Agunbiade FO, Moodley B (2016) Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ Toxicol Chem 35(1):36–46. https://doi.org/10.1002/etc.3144

    Article  CAS  Google Scholar 

  21. Reinholds I et al (2017) Determination of acidic non-steroidal anti-inflammatory drugs in aquatic samples by liquid chromatography-triple quadrupole mass spectrometry combined with carbon nanotubes-based solid-phase extraction. Environ Monit Assess 189(11):568. https://doi.org/10.1007/s10661-017-6304-9

    Article  CAS  Google Scholar 

  22. Ma R et al (2019) Simultaneous enantiomeric analysis of non-steroidal anti-inflammatory drugs in environment by chiral LC-MS/MS: a pilot study in Beijing, China. Ecotoxicol Environ Saf 174(January):83–91. https://doi.org/10.1016/j.ecoenv.2019.01.122

    Article  CAS  Google Scholar 

  23. Afonso-Olivares C, Sosa-Ferrera Z, Santana-Rodríguez JJ (2017) Occurrence and environmental impact of pharmaceutical residues from conventional and natural wastewater treatment plants in Gran Canaria (Spain). Sci Total Environ 599–600:934–943. https://doi.org/10.1016/j.scitotenv.2017.05.058

    Article  CAS  Google Scholar 

  24. Gravel A, Vijayan M (2007) Non-steroidal anti-inflammatory drugs disrupt the heat shock response in rainbow trout. Aquat Toxicol 81(2):197–206. https://doi.org/10.1016/j.aquatox.2006.12.001

    Article  CAS  Google Scholar 

  25. Xia L, Zheng L, Zhou JL (2017) Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish ( Danio rerio ). Chemosphere 182:416–425. https://doi.org/10.1016/j.chemosphere.2017.05.054

    Article  CAS  Google Scholar 

  26. Du J et al (2016) Toxicity thresholds for diclofenac, acetaminophen and ibuprofen in the water flea Daphnia magna. Bull Environ Contam Toxicol 97(1):84–90. https://doi.org/10.1007/s00128-016-1806-7

    Article  CAS  Google Scholar 

  27. McRae NK et al (2018) Acute exposure to an environmentally relevant concentration of diclofenac elicits oxidative stress in the culturally important galaxiid fish Galaxias maculatus. Environ Toxicol Chem 37(1):224–235. https://doi.org/10.1002/etc.3948

    Article  CAS  Google Scholar 

  28. Ghelfi A et al (2016) Evaluation of biochemical, genetic and hematological biomarkers in a commercial catfish Rhamdia quelen exposed to diclofenac. Bull Environ Contam Toxicol 96(1):49–54. https://doi.org/10.1007/s00128-015-1693-3

    Article  CAS  Google Scholar 

  29. Gröner F et al (2017) Chronic diclofenac exposure affects gill integrity and pituitary gene expression and displays estrogenic activity in nile tilapia (Oreochromis niloticus). Chemosphere 166:473–481. https://doi.org/10.1016/j.chemosphere.2016.09.116

    Article  CAS  Google Scholar 

  30. Pandey PK et al (2017) Evaluation of DNA damage and physiological responses in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) exposed to sub-lethal diclofenac (DCF). Aquat Toxicol 186:205–214. https://doi.org/10.1016/j.aquatox.2017.03.007

    Article  CAS  Google Scholar 

  31. Cardoso-Vera JD et al (2017) Comparative study of diclofenac-induced embryotoxicity and teratogenesis in Xenopus laevis and Lithobates catesbeianus, using the frog embryo teratogenesis assay: Xenopus (FETAX). Sci Total Environ 574:467–475. https://doi.org/10.1016/j.scitotenv.2016.09.095

    Article  CAS  Google Scholar 

  32. Näslund J et al (2017) Diclofenac affects kidney histology in the three-spined stickleback ( Gasterosteus aculeatus ) at low μg/L concentrations. Aquat Toxicol 189:87–96. https://doi.org/10.1016/j.aquatox.2017.05.017

    Article  CAS  Google Scholar 

  33. Guiloski IC et al (2017) Effects of environmentally relevant concentrations of the anti-inflammatory drug diclofenac in freshwater fish Rhamdia quelen. Ecotoxicol Environ Saf 139:291–300. https://doi.org/10.1016/j.ecoenv.2017.01.053

    Article  CAS  Google Scholar 

  34. Boisseaux P et al (2017) Immune responses in the aquatic gastropod Lymnaea stagnalis under short-term exposure to pharmaceuticals of concern for immune systems: Diclofenac, cyclophosphamide and cyclosporine A. Ecotoxicol Environ Saf 139:358–366. https://doi.org/10.1016/j.ecoenv.2017.02.003

    Article  CAS  Google Scholar 

  35. Ajima MNO et al (2015) Chronic diclofenac (DCF) exposure alters both enzymatic and haematological profile of African catfish, Clarias gariepinus. Drug Chem Toxicol 38(4):383–390. https://doi.org/10.3109/01480545.2014.974108

    Article  CAS  Google Scholar 

  36. Saucedo-Vence K et al (2015) Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio. Ecotoxicology 24(3):527–539. https://doi.org/10.1007/s10646-014-1401-9

    Article  CAS  Google Scholar 

  37. Islas-Flores H et al (2017) Cyto-genotoxicity and oxidative stress in common carp ( Cyprinus carpio ) exposed to a mixture of ibuprofen and diclofenac. Environ Toxicol 32(5):1637–1650. https://doi.org/10.1002/tox.22392

    Article  CAS  Google Scholar 

  38. Sehonova P et al (2017) Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages. Chemosphere 188:414–423. https://doi.org/10.1016/j.chemosphere.2017.08.151

    Article  CAS  Google Scholar 

  39. SanJuan-Reyes N et al (2015) NSAID-manufacturing plant effluent induces geno- and cytotoxicity in common carp ( Cyprinus carpio ). Sci Total Environ 530–531:1–10. https://doi.org/10.1016/j.scitotenv.2015.05.088

    Article  CAS  Google Scholar 

  40. Zivna D et al (2015) Effect of salicylic acid on early life stages of common carp (Cyprinus carpio). Environ Toxicol Pharmacol 40(1):319–325. https://doi.org/10.1016/j.etap.2015.06.018

    Article  CAS  Google Scholar 

  41. Galar-Martínez M et al (2016) Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinus Carpio. Environ Toxicol 31(9):1035–1043. https://doi.org/10.1002/tox.22113

    Article  CAS  Google Scholar 

  42. Pérez-Coyotl I et al (2017) DNA damage and cytotoxicity induced on common carp by pollutants in water from an urban reservoir. Madín reservoir, a case study. Chemosphere 185:789–797. https://doi.org/10.1016/j.chemosphere.2017.07.072

    Article  CAS  Google Scholar 

  43. Stancová V et al (2015) Effects of the non-steroidal anti-inflammatory drug(NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio). Environ Toxicol Pharmacol 40(2):343–348. https://doi.org/10.1016/j.etap.2015.07.009

    Article  CAS  Google Scholar 

  44. van den Brandhof E-J, Montforts M (2010) Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicol Environ Saf 73(8):1862–1866. https://doi.org/10.1016/j.ecoenv.2010.08.031

    Article  CAS  Google Scholar 

  45. Li Q et al (2016) Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environ Sci Pollut Res 23(18):18832–18841. https://doi.org/10.1007/s11356-016-7092-4

    Article  CAS  Google Scholar 

  46. Zivna D et al (2016) The effects of salicylic acid on juvenile zebrafish danio rerio under flow-through conditions. Bull Environ Contam Toxicol 97(3):323–330. https://doi.org/10.1007/s00128-016-1877-5

    Article  CAS  Google Scholar 

  47. Xu C et al (2019) Long-term exposure to the non-steroidal anti-inflammatory drug (NSAID) naproxen causes thyroid disruption in zebrafish at environmentally relevant concentrations. Sci Total Environ 676:387–395. https://doi.org/10.1016/j.scitotenv.2019.04.323

    Article  CAS  Google Scholar 

  48. Diniz MS et al (2015) Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio). Sci Total Environ 505:282–289. https://doi.org/10.1016/j.scitotenv.2014.09.103

    Article  CAS  Google Scholar 

  49. Melvin SD (2016) Oxidative stress, energy storage, and swimming performance of Limnodynastes peronii tadpoles exposed to a sub-lethal pharmaceutical mixture throughout development. Chemosphere 150:790–797. https://doi.org/10.1016/j.chemosphere.2015.09.034

    Article  CAS  Google Scholar 

  50. Veldhoen N et al (2014) Effects of acute exposure to the non-steroidal anti-inflammatory drug ibuprofen on the developing north american bullfrog ( Rana catesbeiana ) tadpole. Environ Sci Technol 48(17):10439–10447. https://doi.org/10.1021/es502539g

    Article  CAS  Google Scholar 

  51. Jones HS et al (2012) Metabolism of ibuprofen in zebrafish larvae. Xenobiotica 42(11):1069–1075. https://doi.org/10.3109/00498254.2012.684410

    Article  CAS  Google Scholar 

  52. Bebianno MJ et al (2017) Transcriptional and cellular effects of paracetamol in the oyster Crassostrea gigas. Ecotoxicol Environ Saf 144:258–267. https://doi.org/10.1016/j.ecoenv.2017.06.034

    Article  CAS  Google Scholar 

  53. Kwak K et al (2018) Chronic toxicity and endocrine disruption of naproxen in freshwater waterfleas and fish, and steroidogenic alteration using H295R cell assay. Chemosphere 204:156–162. https://doi.org/10.1016/j.chemosphere.2018.04.035

    Article  CAS  Google Scholar 

  54. do Amaral DF et al (2019) Sub-lethal effects induced by a mixture of different pharmaceutical drugs in predicted environmentally relevant concentrations on Lithobates catesbeianus (Shaw, 1802) (Anura, ranidae) tadpoles. Environ Sci Pollut Res 26(1):600–616. https://doi.org/10.1007/s11356-018-3656-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Mejía-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mejía-García, A., Islas-Flores, H., Gómez-Oliván, L.M., SanJuan-Reyes, N., Ortega-Olvera, J.M., Hernández-Navarro, M.D. (2020). Overview of Non-steroidal Anti-inflammatory Drugs as Emerging Contaminants. In: Gómez-Oliván, L.M. (eds) Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol 96. Springer, Cham. https://doi.org/10.1007/698_2020_541

Download citation

Publish with us

Policies and ethics