Skip to main content

Introduction and Historical Findings That Focused Nonsteroidal Anti-Inflammatory Drugs as Emerging Pollutant

  • Chapter
  • First Online:
Non-Steroidal Anti-Inflammatory Drugs in Water

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most consumed pharmaceuticals worldwide due to their significant anti-inflammatory and antipyretic properties. These drugs are mainly excreted from the body in their metabolized form and may enter into the environment through different pathways. In wastewater treatment plants (WWTPs), these contaminants are mainly removed by biological treatment processes. However, even after these treatments, high concentrations of these drugs have been found in WWTPs effluents, surface water, and drinking water. NSAIDs are likely to bioaccumulate in aquatic organisms such as Mytilus galloprovincialis. Furthermore, toxic effects such as oxidative stress, developmental abnormalities, hepatotoxicity, immunosuppressive effects, and hematological alterations have been found in several freshwater species exposed to these pollutants. Therefore, NSAIDs are a threat to the human being as well as to our environment. This review comprehensively discusses the worldwide consumption of NSAIDs, their occurrence in the aquatic environments, and the toxic effects produced by these drugs in nontarget organisms. This is to raise awareness of the negative consequences of their occurrence in freshwater ecosystems and promote the creation of new alternatives for their removal from water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrör K, Voelker M (2016) NSAIDS and aspirin: recent advances and implications for clinical management. In: NSAIDs and aspirin. Springer, Cham, pp 107–122

    Google Scholar 

  2. Vane JR, Botting RM (1998) Anti-inflammatory drugs and their mechanism of action. Inflamm Res 47(2):78–87

    Google Scholar 

  3. Saad J, Pellegrini MV (2019) Nonsteroidal anti-inflammatory drugs (NSAID) toxicity. In: StatPearls [Internet]. StatPearls Publishing

    Google Scholar 

  4. Brun GL, Bernier M, Losier R, Doe K, Jackman P, Lee HB (2006) Pharmaceutically active compounds in Atlantic Canadian sewage treatment plant effluents and receiving waters, and potential for environmental effects as measured by acute and chronic aquatic toxicity. Environ Toxicol Chem Int J 25(8):2163–2176

    CAS  Google Scholar 

  5. Selke S, Scheurell M, Shah MR, Hühnerfuss H (2010) Identification and enantioselective gas chromatographic mass-spectrometric separation of O-desmethylnaproxen, the main metabolite of the drug naproxen, as a new environmental contaminant. J Chromatogr A 1217(3):419–423

    CAS  Google Scholar 

  6. Islas-Flores H, Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Neri-Cruz N, Dublán-García O (2014) Effect of ibuprofen exposure on blood, gill, liver, and brain on common carp (Cyprinus carpio) using oxidative stress biomarkers. Environ Sci Pollut Res 21(7):5157–5166

    CAS  Google Scholar 

  7. Mezzelani M, Gorbi S, Da Ros Z, Fattorini D, d’Errico G, Milan M et al (2016) Ecotoxicological potential of non-steroidal anti-inflammatory drugs (NSAIDs) in marine organisms: bioavailability, biomarkers and natural occurrence in Mytilus galloprovincialis. Mar Environ Res 121:31–39

    CAS  Google Scholar 

  8. Stancova V, Plhalova L, Blahova J, Zivna D, Bartoskova M, Siroka Z et al (2017) Effects of the pharmaceutical contaminants ibuprofen, diclofenac, and carbamazepine alone, and in combination, on oxidative stress parameters in early life stages of tench (Tinca tinca). Veterinární Medicína 62(2):90–97

    CAS  Google Scholar 

  9. Medical Expenditure Panel Survey (MEPS) (2018) Agency for Healthcare Research and Quality (AHRQ), Rockville, MD. ClinCalc DrugStats Database version 19.1. https://clincalc.com/DrugStats/Top200Drugs.aspx

  10. Prescribing and Medicines Team Health and Social Care Information Centre (2018) Prescriptions Dispensed in the Community - Statistics for England, 2007-2017. Health and Social Care Information Centre, UK. https://digital.nhs.uk/data-and-information/publications/statistical/prescriptions-dispensed-in-the-community/prescriptions-dispensed-in-the-community-england%2D%2D-2007%2D%2D-2017

  11. Mulholland A (2018) Prescription Cost Analysis Northern Ireland 2017. Information and Registration Unit Family Practitioner Services Business Services Organization, Belfast. http://www.hscbusiness.hscni.net/services/3032.htm

  12. National Statistics Ystadegau Gwladol (2018) Prescriptions dispensed in the community: 2017. Welsh Government, Cardiff. https://gov.wales/sites/default/files/statistics-and-research/2018-12/180523-prescriptions-dispensed-community-2017-en.pdf

  13. Information Services Division National Services Scotland (2018) Prescribing & medicines: dispenser payments and prescription cost analysis. NHS National Services Scotland, Scotland. https://www.isdscotland.org/Health-Topics/Prescribing-and-Medicines/Community-Dispensing/Prescription-Cost-Analysis/

  14. Zorginstituut Nederland (2018) GIP Database. https://www.gipdatabank.nl/databank#/g//85_dia/vs/bijlage

  15. Socialstyrelsen (2018) Statistics database for drugs. http://www.socialstyrelsen.se/statistik/statistikdatabas/lakemedel

  16. Sundhedsdata-Styrelsen (2018) Medstat.dk. http://www.medstat.dk/en

  17. Kwok CS, Loke YK (2010) Critical overview on the benefits and harms of aspirin. Pharmaceuticals 3(5):1491–1506

    CAS  Google Scholar 

  18. Seidu S, Kunutsor SK, Sesso HD, Gaziano JM, Buring JE, Roncaglioni MC, Khunti K (2019) Aspirin has potential benefits for primary prevention of cardiovascular outcomes in diabetes: updated literature-based and individual participant data meta-analyses of randomized controlled trials. Cardiovasc Diabetol 18(1):70

    Google Scholar 

  19. Jóźwiak-Bebenista M, Nowak JZ (2014) Paracetamol: mechanism of action, applications and safety concern. Acta Pol Pharm 71(1):11–23

    Google Scholar 

  20. Eichelbaum M, Sonntag B, Dengler HJ (1981) HPLC determination of antipyrine metabolites. Pharmacology 23(4):192–202

    CAS  Google Scholar 

  21. Forrest JA, Clements JA, Prescott LF (1982) Clinical pharmacokinetics of paracetamol. Clin Pharmacokinetics 7(2):93–107

    CAS  Google Scholar 

  22. Reidl U (1983) Determination of acetylsalicylic acid and metabolites in biological fluids by high-performance liquid chromatography. J Chromatogr B 272:325–331

    CAS  Google Scholar 

  23. Volland C, Sun H, Benet LZ (1990) Stereoselective analysis of fenoprofen and its metabolites. J Chromatogr B 534:127–138

    CAS  Google Scholar 

  24. Davies NM, Anderson KE (1997) Clinical pharmacokinetics of naproxen. Clin Pharmacokinetics 32(4):268–293

    CAS  Google Scholar 

  25. Davies NM, Anderson KE (1997) Clinical pharmacokinetics of diclofenac. Clin Pharmacokinetics 33(3):184–213

    CAS  Google Scholar 

  26. Tang W (2003) The metabolism of diclofenac-enzymology and toxicology perspectives. Curr Drug Metab 4(4):319–329

    CAS  Google Scholar 

  27. Davies NM (1998) Clinical pharmacokinetics of ibuprofen. Clin Pharmacokinetics 34(2):101–154

    CAS  Google Scholar 

  28. Nakajima M, Inoue T, Shimada N, Tokudome S, Yamamoto T, Kuroiwa Y (1998) Cytochrome P450 2C9 Catalyzes IndomethacinO-Demethylation in human liver microsomes. Drug Metab Dispos 26(3):261–266

    CAS  Google Scholar 

  29. Bernareggi A (2001) Clinical pharmacokinetics and metabolism of nimesulide. Inflammopharmacology 9(1-2):81–89

    CAS  Google Scholar 

  30. Grillo MP, Lohr MT, Wait JC (2012) Metabolic activation of mefenamic acid leading to mefenamyl-S-acyl-glutathione adduct formation in vitro and in vivo in rat. Drug Metab Dispos 40(8):1515–1526

    CAS  Google Scholar 

  31. Skordi E, Wilson ID, Lindon JC, Nicholson JK (2004) Characterization and quantification of metabolites of racemic ketoprofen excreted in urine following oral administration to man by 1H-NMR spectroscopy, directly coupled HPLC-MS and HPLC-NMR, and circular dichroism. Xenobiotica 34(11–12):1075–1089

    CAS  Google Scholar 

  32. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    CAS  Google Scholar 

  33. Metcalfe CD, Koenig BG, Bennie DT, Servos M, Ternes TA, Hirsch R (2003) Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environ Toxicol Chem: Int J 22(12):2872–2880

    CAS  Google Scholar 

  34. Thomas PM, Foster GD (2005) Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process. Environ Toxicol Chem Int J 24(1):25–30

    CAS  Google Scholar 

  35. Sim WJ, Lee JW, Oh JE (2010) Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ Pollut 158(5):1938–1947

    CAS  Google Scholar 

  36. Stumpf M, Ternes TA, Wilken RD, Rodrigues SV, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225(1-2):135–141

    Google Scholar 

  37. Metcalfe CD, Miao XS, Koenig BG, Struger J (2003) Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ Toxicol Chem Int J 22(12):2881–2889

    CAS  Google Scholar 

  38. Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37(6):1061–1068

    CAS  Google Scholar 

  39. Quintana JB, Reemtsma T (2004) Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 18(7):765–774

    CAS  Google Scholar 

  40. Vieno NM, Tuhkanen T, Kronberg L (2005) Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water. Environ Sci Technol 39(21):8220–8226

    CAS  Google Scholar 

  41. Kosjek T, Heath E, Krbavčič A (2005) Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples. Environ Int 31(5):679–685

    CAS  Google Scholar 

  42. Togola A, Budzinski H (2007) Analytical development for analysis of pharmaceuticals in water samples by SPE and GC–MS. Anal Bioanal Chem 388(3):627–635

    CAS  Google Scholar 

  43. Farré M, Petrovic M, Gros M, Kosjek T, Martinez E, Heath E et al (2008) First interlaboratory exercise on non-steroidal anti-inflammatory drugs analysis in environmental samples. Talanta 76(3):580–590

    Google Scholar 

  44. Togola A, Budzinski H (2008) Multi-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177(1):150–158

    CAS  Google Scholar 

  45. Heath E, Kosjek T, Farre M, Quintana JB, De Alencastro LF, Castiglioni S et al (2010) Second interlaboratory exercise on non-steroidal anti-inflammatory drug analysis in environmental aqueous samples. Talanta 81(4-5):1189–1196

    CAS  Google Scholar 

  46. Lin AYC, Panchangam SC, Chen HY (2010) Implications of human pharmaceutical occurrence in the Sindian river of Taiwan: a strategic study of risk assessment. J Environ Monit 12(1):261–270

    Google Scholar 

  47. Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA (2010) Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci Total Environ 408(3):636–643

    CAS  Google Scholar 

  48. Samaras VG, Thomaidis NS, Stasinakis AS, Gatidou G, Lekkas TD (2010) Determination of selected non-steroidal anti-inflammatory drugs in wastewater by gas chromatography-mass spectrometry. Int J Environ Anal Chem 90(3-6):219–229

    CAS  Google Scholar 

  49. Sagristà E, Larsson E, Ezoddin M, Hidalgo M, Salvadó V, Jönsson JÅ (2010) Determination of non-steroidal anti-inflammatory drugs in sewage sludge by direct hollow fiber supported liquid membrane extraction and liquid chromatography–mass spectrometry. J Chromatogr A 1217(40):6153–6158

    Google Scholar 

  50. Helenkar A, Sebők Á, Záray G, Molnár-Perl I, Vasanits-Zsigrai A (2010) The role of the acquisition methods in the analysis of the non-steroidal anti-inflammatory drugs in Danube River by gas chromatography-mass spectrometry. Talanta 82(2):600–607

    CAS  Google Scholar 

  51. Wu J, Qian X, Yang Z, Zhang L (2010) Study on the matrix effect in the determination of selected pharmaceutical residues in seawater by solid-phase extraction and ultra-high-performance liquid chromatography–electrospray ionization low-energy collision-induced dissociation tandem mass spectrometry. J Chromatogr A 1217(9):1471–1475

    CAS  Google Scholar 

  52. Villar Navarro M, Ramos Payán M, Fernández-Torres R, Bello-López MA, Callejón Mochón M, Guiráum Pérez A (2011) Capillary electrophoresis determination of nonsteroidal anti-inflammatory drugs in wastewater using hollow fiber liquid-phase microextraction. Electrophoresis 32(16):2107–2113

    CAS  Google Scholar 

  53. Xu Y, Luo F, Pal A, Gin KY, Reinhard M (2011) Occurrence of emerging organic contaminants in a tropical urban catchment in Singapore. Chemosphere 83:963–969

    CAS  Google Scholar 

  54. Baranowska I, Kowalski B (2011) Using HPLC method with DAD detection for the simultaneous determination of 15 drugs in surface water and wastewater. Pol J Environ Stud 20(1):21–28

    CAS  Google Scholar 

  55. Da Silva BF, Jelic A, López-Serna R, Mozeto AA, Petrovic M, Barceló D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85(8):1331–1339

    Google Scholar 

  56. Huang Q, Yu Y, Tang C, Zhang K, Cui J, Peng X (2011) Occurrence and behavior of non-steroidal anti-inflammatory drugs and lipid regulators in wastewater and urban river water of the Pearl River Delta, South China. J Environ Monit 13(4):855–863

    CAS  Google Scholar 

  57. Gros M, Rodríguez-Mozaz S, Barceló D (2012) Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 1248:104–121

    CAS  Google Scholar 

  58. Vidal-Dorsch DE, Bay SM, Maruya K, Snyder SA, Trenholm RA, Vanderford BJ (2012) Contaminants of emerging concern in municipal wastewater effluents and marine receiving water. Environ Toxicol Chem 31(12):2674–2682

    CAS  Google Scholar 

  59. Rodil R, Quintana JB, Concha-Graña E, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2012) Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86(10):1040–1049

    CAS  Google Scholar 

  60. Daneshvar A, Svanfelt J, Kronberg L, Weyhenmeyer GA (2012) Neglected sources of pharmaceuticals in river water—footprints of a Reggae festival. J Environ Monit 14(2):596–603

    CAS  Google Scholar 

  61. Komori K, Suzuki Y, Minamiyama M, Harada A (2013) Occurrence of selected pharmaceuticals in river water in Japan and assessment of their environmental risk. Environ Monit Assess 185(6):4529–4536

    CAS  Google Scholar 

  62. Aydin E, Talinli I (2013) Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece watershed, Turkey. Chemosphere 90(6):2004–2012

    CAS  Google Scholar 

  63. Patrolecco L, Ademollo N, Grenni P, Tolomei A, Caracciolo AB, Capri S (2013) Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchem J 107:165–171

    CAS  Google Scholar 

  64. Shanmugam G, Sampath S, Selvaraj KK, Larsson DJ, Ramaswamy BR (2014) Non-steroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res 21(2):921–931

    CAS  Google Scholar 

  65. Lolić A, Paíga P, Santos LH, Ramos S, Correia M, Delerue-Matos C (2015) Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: occurrence and environmental risk. Sci Total Environ 508:240–250

    Google Scholar 

  66. Eslami A, Amini MM, Yazdanbakhsh AR, Rastkari N, Mohseni-Bandpei A, Nasseri S et al (2015) Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment. Environ Monit Assess 187(12):734

    Google Scholar 

  67. Archer E, Petrie B, Kasprzyk-Hordern B, Wolfaardt GM (2017) The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 174:437–446. https://doi.org/10.1016/J.CHEMOSPHERE.2017.01.101

    Article  CAS  Google Scholar 

  68. Marsik P, Rezek J, Židková M, Kramulová B, Tauchen J, Vaněk T (2017) Non-steroidal anti-inflammatory drugs in the watercourses of Elbe basin in Czech Republic. Chemosphere 171:97–105

    CAS  Google Scholar 

  69. Buser HR, Poiger T, Müller MD (1998) Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ Sci Technol 32(22):3449–3456

    CAS  Google Scholar 

  70. Heberer T, Mechlinski A, Fanck B, Knappe A, Massmann G, Pekdeger A, Fritz B (2004) Field studies on the fate and transport of pharmaceutical residues in bank filtration. Groundwater Monit Rem 24(2):70–77

    CAS  Google Scholar 

  71. Nebot C, Gibb SW, Boyd KG (2007) Quantification of human pharmaceuticals in water samples by high performance liquid chromatography–tandem mass spectrometry. Anal Chim Acta 598(1):87–94

    CAS  Google Scholar 

  72. Kimura K, Hara H, Watanabe Y (2007) Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors. Environ Sci Technol 41(10):3708–3714

    CAS  Google Scholar 

  73. Chenxi W, Spongberg AL, Witter JD (2008) Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere 73(4):511–518

    CAS  Google Scholar 

  74. Scheurell M, Franke S, Shah RM, Hühnerfuss H (2009) Occurrence of diclofenac and its metabolites in surface water and effluent samples from Karachi, Pakistan. Chemosphere 77(6):870–876

    CAS  Google Scholar 

  75. Radjenović J, Jelić A, Petrović M, Barceló D (2009) Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 393(6–7):1685–1695

    Google Scholar 

  76. Meyer B, Pailler JY, Guignard C, Hoffmann L, Krein A (2011) Concentrations of dissolved herbicides and pharmaceuticals in a small river in Luxembourg. Environ Monitor Assess 180(1-4):127–146

    CAS  Google Scholar 

  77. Fang TH, Nan FH, Chin TS, Feng HM (2012) The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Mar Pollut Bull 64(7):1435–1444

    CAS  Google Scholar 

  78. Reinholds I, Pugajeva I, Zacs D, Lundanes E, Rusko J, Perkons I, Bartkevics V (2017) Determination of acidic non-steroidal anti-inflammatory drugs in aquatic samples by liquid chromatography-triple quadrupole mass spectrometry combined with carbon nanotubes-based solid-phase extraction. Environ Monit Assess 189(11):568

    CAS  Google Scholar 

  79. Buser HR, Poiger T, Müller MD (1999) Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33(15):2529–2535

    CAS  Google Scholar 

  80. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    CAS  Google Scholar 

  81. Moldovan Z (2006) Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere 64(11):1808–1817

    CAS  Google Scholar 

  82. Kim JW, Jang HS, Kim JG, Ishibashi H, Hirano M, Nasu K et al (2009) Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from Mankyung River, South Korea. J Health Sci 55(2):249–258

    CAS  Google Scholar 

  83. K’oreje KO, Demeestere K, De Wispelaere P, Vergeynst L, Dewulf J, Van Langenhove H (2012) From multi-residue screening to target analysis of pharmaceuticals in water: development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin, Kenya. Sci Total Environ 437:153–164

    Google Scholar 

  84. Loos R, Tavazzi S, Paracchini B, Canuti E, Weissteiner C (2013) Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography–QTRAP® MS using a hybrid triple-quadrupole linear ion trap instrument. Anal Bioanal Chem 405(18):5875–5885

    CAS  Google Scholar 

  85. Sousa MA, Gonçalves C, Cunha E, Hajšlová J, Alpendurada MF (2011) Cleanup strategies and advantages in the determination of several therapeutic classes of pharmaceuticals in wastewater samples by SPE–LC–MS/MS. Anal Bioanal Chem 399(2):807–822

    CAS  Google Scholar 

  86. Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37(1):1–12

    CAS  Google Scholar 

  87. Hoeger B, Köllner B, Dietrich DR, Hitzfeld B (2005) Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquat Toxicol 75(1):53–64

    CAS  Google Scholar 

  88. Ribas JLC, Zampronio AR, Silva de Assis HC (2016) Effects of trophic exposure to diclofenac and dexamethasone on hematological parameters and immune response in freshwater fish. Environ Toxicol Chem 35(4):975–982

    CAS  Google Scholar 

  89. Mehinto AC, Hill EM, Tyler CR (2010) Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 44(6):2176–2182

    CAS  Google Scholar 

  90. Memmert U, Peither A, Burri R, Weber K, Schmidt T, Sumpter JP, Hartmann A (2013) Diclofenac: new data on chronic toxicity and bioconcentration in fish. Environ Toxicol Chem 32(2):442–452

    CAS  Google Scholar 

  91. Van den Brandhof EJ, Montforts M (2010) Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicol Environ Saf 73(8):1862–1866

    Google Scholar 

  92. Chen JB, Gao HW, Zhang YL, Zhang Y, Zhou XF, Li CQ, Gao HP (2014) Developmental toxicity of diclofenac and elucidation of gene regulation in zebrafish (Danio rerio). Sci Rep 4:4841

    CAS  Google Scholar 

  93. Nassef M, Matsumoto S, Seki M, Khalil F, Kang IJ, Shimasaki Y et al (2010) Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes). Chemosphere 80(9):1095–1100

    CAS  Google Scholar 

  94. Parolini M, Binelli A, Provini A (2011) Assessment of the potential cyto–genotoxicity of the nonsteroidal anti-inflammatory drug (NSAID) diclofenac on the zebra mussel (Dreissena polymorpha). Water Air Soil Pollut 217(1-4):589–601

    CAS  Google Scholar 

  95. Stepanova S, Praskova E, Chromcova L, Plhalova L, Prokes M, Blahova J, Svobodova Z (2013) The effects of diclofenac on early life stages of common carp (Cyprinus carpio). Environ Toxicol Pharmacol 35(3):454–460

    CAS  Google Scholar 

  96. Praskova E, Plhalova L, Chromcova L, Stepanova S, Bedanova I, Blahova J et al (2014) Effects of subchronic exposure of diclofenac on growth, histopathological changes, and oxidative stress in zebrafish (Danio rerio). Sci World J 2014:645737

    Google Scholar 

  97. Guiloski IC, Ribas JLC, da Silva Pereira L, Neves APP, de Assis HCS (2015) Effects of trophic exposure to dexamethasone and diclofenac in freshwater fish. Ecotoxicol Environ Saf 114:204–211

    CAS  Google Scholar 

  98. Saucedo-Vence K, Dublán-García O, López-Martínez LX, Morachis-Valdes G, Galar-Martínez M, Islas-Flores H, Gómez-Oliván LM (2015) Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio. Ecotoxicology 24(3):527–539

    CAS  Google Scholar 

  99. David A, Pancharatna K (2009) Effects of acetaminophen (paracetamol) in the embryonic development of zebrafish, Danio rerio. J Appl Toxicol 29(7):597–602

    CAS  Google Scholar 

  100. Gómez-Oliván LM, Neri-Cruz N, Galar-Martínez M, Vieyra-Reyes P, García-Medina S, Razo-Estrada C et al (2012) Assessing the oxidative stress induced by paracetamol spiked in artificial sediment on Hyalella azteca. Water Air Soil Pollut 223(8):5097–5104

    Google Scholar 

  101. Antunes SC, Freitas R, Figueira E, Gonçalves F, Nunes B (2013) Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum. Environ Sci Pollut Res 20(9):6658–6666

    CAS  Google Scholar 

  102. Ramos AS, Correia AT, Antunes SC, Gonçalves F, Nunes B (2014) Effect of acetaminophen exposure in Oncorhynchus mykiss gills and liver: detoxification mechanisms, oxidative defence system and peroxidative damage. Environ Toxicol Pharmacol 37(3):1221–1228

    CAS  Google Scholar 

  103. Nunes B, Campos JC, Gomes R, Braga MR, Ramos AS, Antunes SC, Correia AT (2015) Ecotoxicological effects of salicylic acid in the freshwater fish Salmo trutta fario: antioxidant mechanisms and histological alterations. Environ Sci Pollut Res 22(1):667–678

    CAS  Google Scholar 

  104. Guiloski IC, Ribas JLC, Piancini LDS, Dagostim AC, Cirio SM, Fávaro LF et al (2017) Paracetamol causes endocrine disruption and hepatotoxicity in male fish Rhamdia quelen after subchronic exposure. Environ Toxicol Pharmacol 53:111–120

    CAS  Google Scholar 

  105. Nunes B, Nunes J, Soares AM, Figueira E, Freitas R (2017) Toxicological effects of paracetamol on the clam Ruditapes philippinarum: exposure vs recovery. Aquat Toxicol 192:198–206

    CAS  Google Scholar 

  106. Pereira BV, Matus GN, Costa MJ, Dos Santos ACA, Silva-Zacarin EC, Do Carmo JB, Nunes B (2018) Assessment of biochemical alterations in the neotropical fish species Phalloceros harpagos after acute and chronic exposure to the drugs paracetamol and propranolol. Environ Sci Pollut Res 25(15):14899–14910

    CAS  Google Scholar 

  107. Pounds N, Maclean S, Webley M, Pascoe D, Hutchinson T (2008) Acute and chronic effects of ibuprofen in the mollusc Planorbis carinatus (Gastropoda: Planorbidae). Ecotoxicol Environ Saf 70(1):47–52

    CAS  Google Scholar 

  108. Han S, Choi K, Kim J, Ji K, Kim S, Ahn B et al (2010) Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquat Toxicol 98(3):256–264

    CAS  Google Scholar 

  109. Nallani GC, Paulos PM, Constantine LA, Venables BJ, Huggett DB (2011) Bioconcentration of ibuprofen in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Chemosphere 84(10):1371–1377

    CAS  Google Scholar 

  110. Gonzalez-Rey M, Bebianno MJ (2011) Non-steroidal anti-inflammatory drug (NSAID) ibuprofen distresses antioxidant defense system in mussel Mytilus galloprovincialis gills. Aquat Toxicol 105(3-4):264–269

    CAS  Google Scholar 

  111. Matozzo V, Rova S, Marin MG (2012) The nonsteroidal anti-inflammatory drug, ibuprofen, affects the immune parameters in the clam Ruditapes philippinarum. Mar Environ Res 79:116–121

    CAS  Google Scholar 

  112. Saravanan M, Devi KU, Malarvizhi A, Ramesh M (2012) Effects of Ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp, Cirrhinus mrigala. Environ Toxicol Pharmacol 34(1):14–22

    CAS  Google Scholar 

  113. Bartoskova M, Dobsikova R, Stancova V, Zivna D, Blahova J, Marsalek P et al (2013) Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress. Neuroendocrinol Lett 34(SUPPL 2):102–108

    CAS  Google Scholar 

  114. Ogueji EO, Nwani CD, Iheanacho SC, Mbah CE, Okeke CO, Yaji A (2018) Acute toxicity effects of ibuprofen on behaviour and haematological parameters of African catfish Clarias gariepinus (Burchell, 1822). Afr J Aquat Sci 43(3):293–303

    CAS  Google Scholar 

  115. Mathias FT, Fockink DH, Disner GR, Prodocimo V, Ribas JLC, Ramos LP et al (2018) Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. Environ Toxicol Pharmacol 59:105–113

    CAS  Google Scholar 

  116. Prášková E, Živná D, Štěpánová S, Ševčíková M, Blahová J, Maršálek P et al (2012) Acute toxicity of acetylsalicylic acid to juvenile and embryonic stages of Danio rerio. Neuroendocrinol Lett 33:72–76

    Google Scholar 

  117. Zivna D, Plhalova L, Praskova E, Stepanova S, Siroka Z, Sevcikova M et al (2013) Oxidative stress parameters in fish after subchronic exposure to acetylsalicylic acid. Neuroendocrinol Lett 34:116–122

    CAS  Google Scholar 

  118. Nunes B, Verde MF, Soares AM (2015) Biochemical effects of the pharmaceutical drug paracetamol on Anguilla anguilla. Environ Sci Pollut Res 22(15):11574–11584

    CAS  Google Scholar 

  119. Zivna D, Sehonova P, Plhalova L, Marsalek P, Blahova J, Prokes M et al (2015) Effect of salicylic acid on early life stages of common carp (Cyprinus carpio). Environ Toxicol Pharmacol 40(1):319–325

    CAS  Google Scholar 

  120. Stancová V, Ziková A, Svobodová Z, Kloas W (2015) Effects of the non-steroidal anti-inflammatory drug (NSAID) naproxen on gene expression of antioxidant enzymes in zebrafish (Danio rerio). Environ Toxicol Pharmacol 40(2):343–348

    Google Scholar 

  121. Stancova V, Plhalova L, Tichy F, Doubkova V, Marsalek P, Hostovsky M, Svobodova Z (2015) Oxidative stress indices and histopathological effects of the nonsteroidal antiinflammatory drug naproxen in adult zebrafish (Danio rerio). Neuro Endocrinol Lett 36(Suppl. 1):73–78

    CAS  Google Scholar 

  122. Li Q, Wang P, Chen L, Gao H, Wu L (2016) Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environ Sci Pollut Res 23(18):18832–18841

    CAS  Google Scholar 

  123. Sehonova P, Plhalova L, Blahova J, Doubkova V, Prokes M, Tichy F et al (2017) Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages. Chemosphere 188:414–423

    CAS  Google Scholar 

  124. Praskova E, Voslarova E, Siroka Z, Macova S, Plhalova L, Bedanova I et al (2011) Comparison of acute toxicity of ketoprofen to juvenile and embryonic stages of Danio rerio. Neuro Endocrinol Lett 32:117–120

    CAS  Google Scholar 

  125. Prášková E, Štěpánová S, Chromcová L, Plhalová L, Voslářová E, Pištěková V et al (2013) The effects of subchronic exposure to ketoprofen on early developmental stages of common carp. Acta Veterinaria Brno 82(3):343–347

    Google Scholar 

  126. Rangasamy B, Hemalatha D, Shobana C, Nataraj B, Ramesh M (2018) Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere 213:423–433

    CAS  Google Scholar 

  127. Collard HRJ, Ji K, Lee S, Liu X, Kang S, Kho Y et al (2013) Toxicity and endocrine disruption in zebrafish (Danio rerio) and two freshwater invertebrates (Daphnia magna and Moina macrocopa) after chronic exposure to mefenamic acid. Ecotoxicol Environ Saf 94:80–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leobardo Manuel Gómez-Oliván .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elizalde-Velázquez, G.A., Gómez-Oliván, L.M. (2020). Introduction and Historical Findings That Focused Nonsteroidal Anti-Inflammatory Drugs as Emerging Pollutant. In: Gómez-Oliván, L.M. (eds) Non-Steroidal Anti-Inflammatory Drugs in Water. The Handbook of Environmental Chemistry, vol 96. Springer, Cham. https://doi.org/10.1007/698_2020_540

Download citation

Publish with us

Policies and ethics