Skip to main content

Synthesis and Characterization of PLGA-PEG Thymoquinone Nanoparticles and Its Cytotoxicity Effects in Tamoxifen-Resistant Breast Cancer Cells

  • Conference paper
  • First Online:
Cancer Biology and Advances in Treatment

Part of the book series: Advances in Experimental Medicine and Biology ((ICRRM,volume 1292))

Abstract

Introduction: Drug resistance has been a continuous challenge in cancer treatment. The use of nanotechnology in the development of new cancer drugs has potential. One of the extensively studied compounds is thymoquinone (TQ), and this work aims to compare two types of TQ-nanoformulation and its cytotoxicity toward resistant breast cancer cells.

Method: TQ-nanoparticles were prepared and optimized by using two different formulations with different drugs to PLGA-PEG ratio (1:20 and 1:7) and different PLGA-PEG to Pluronic F68 ratio (10:1 and 2:1). The morphology and size were determined using TEM and DLS. Characterization of particles was done using UV-VIS, ATR-IR, entrapment efficiency, and drug release. The effects of drug, polymer, and surfactants were compared between the two formulations. Cytotoxicity assay was performed using MTS assay.

Results: TEM finding showed 96% of particles produced with 1:7 drug to PLGA-PEG were less than 90 nm in size and spherical in shape. This was confirmed with DLS which showed smaller particle size than those formed with 1:20 drug to PLGA-PEG ratio. Further analysis showed zeta potential was negatively charged which could facilitate cellular uptake as reported previously. In addition, PDI value was less than 0.1 in both formulations indicating monodispersed and less broad in size distribution. The absorption peak of PLGA-PEG-TQ-Nps was at 255 nm. The 1:7 drug to polymer formulation was selected for further analysis where the entrapment efficiency was 79.9% and in vitro drug release showed a maximum release of TQ of 50%. Cytotoxicity result showed IC50 of TQ-nanoparticle at 20.05 μM and free TQ was 8.25 μM.

Conclusion: This study showed that nanoparticle synthesized with 1:7 drug to PLGA-PEG ratio and 2:1 PLGA-PEG to Pluronic F68 formed nanoparticles with less than 100 nm and had spherical shape as confirmed with DLS. This could facilitate its transportation and absorption to reach its target. There was conserved TQ stability as exhibited slow release of this volatile oil. The TQ-nanoparticles showed selective cytotoxic effect toward UACC 732 cells compared to MCF-7 breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATR-IR:

Attenuated Total Reflectance-Infrared Spectroscopy

DLS:

Dynamic Light Scattering

EE:

Entrapment Efficiancy

ER:

estrogen receptor

HER2:

Human Epidermal Growth Factor Receptor 2

IC50:

Half maximal inhibitory concentration

MDR1:

Multidrug Resistance Protein 1

MRP4:

Multidrug Resistance-associated Protein 4

MTS:

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

PDI:

Polydispersity Index

RPMI:

Roswell Park Memorial Institute

TEM:

Transmission Electron Microscope

TQ:

thymoquinone

UV-VIS:

Ultraviolet-visible spectrophotometry

β-actin:

beta actin

References

  • Alam, S., Khan, Z. I., Mustafa, G., Kumar, M., Islam, F., Bhatnagar, A., & Ahmad, F. J. (2012). Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: A pharmacoscintigraphic study. International Journal of Nanomedicine, 7, 5705–5718.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson, J. M., & Shive, M. S. (1997). Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 28, 5–24.

    CAS  PubMed  Google Scholar 

  • Astete, C. E., & Sabliov, C. M. (2006). Synthesis and characterization of PLGA nanoparticles. Journal of Biomaterials Science, Polymer Edition, 17(3), 247–289.

    CAS  Google Scholar 

  • Attwood, A. T. F. a. D. (2011). Physicochemical principles of pharmacy. London: Pharmaceutical Pres.

    Google Scholar 

  • Badary, O. A., Taha, R. A., Gamal El-Din, A. M., & Abdel-Wahab, M. H. (2003). Thymoquinone is a potent superoxide anion scavenger. Drug and Chemical Toxicology, 26(2), 87–98.

    CAS  PubMed  Google Scholar 

  • Bala, I., Hariharan, S., & Kumar, M. R. (2004). PLGA nanoparticles in drug delivery: The state of the art. Critical Reviews™ in Therapeutic Drug Carrier Systems, 21(5), 387–422.

    CAS  Google Scholar 

  • Bertrand, N., & Leroux, J.-C. (2012). The journey of a drug-carrier in the body: An anatomo-physiological perspective. Journal of Controlled Release, 161(2), 152–163.

    CAS  PubMed  Google Scholar 

  • Bhattacharya, S., Ahir, M., Patra, P., Mukherjee, S., Ghosh, S., Mazumdar, M., et al. (2015). PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a. Biomaterials, 51, 91–107.

    CAS  PubMed  Google Scholar 

  • Boudad, H., Legrand, P., Appel, M., Coconnier, M.-H., & Ponchel, G. (2001). Formulation and cytotoxicity of combined cyclodextrin poly (alkylcyanoacrylate) nanoparticles on Caco-2 cells monolayers intended for oral administration of saquinavir. STP Pharma Sciences, 11(5), 369–375.

    CAS  Google Scholar 

  • Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14(5), 323–328.

    CAS  PubMed  Google Scholar 

  • Cao, L.-B., Zeng, S., & Zhao, W. (2016). Highly stable PEGylated poly (lactic-co-glycolic acid)(PLGA) nanoparticles for the effective delivery of docetaxel in prostate cancers. Nanoscale Research Letters, 11(1), 305.

    PubMed Central  PubMed  Google Scholar 

  • Chan, J. M., Zhang, L., Yuet, K. P., Liao, G., Rhee, J.-W., Langer, R., & Farokhzad, O. C. (2009). PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials, 30(8), 1627–1634.

    CAS  PubMed  Google Scholar 

  • Chau, Y. (2005). Targeted drug delivery by novel polymer-drug conjugates containing linkers cleavable by disease-associated enzymes. Massachusetts Institute of Technology.

    Google Scholar 

  • Clogston, J. D., & Patri, A. K. (2011). Zeta potential measurement. In Characterization of nanoparticles intended for drug delivery (pp. 63–70). New York: Humana Press.

    Google Scholar 

  • Coley, H. M. (2004). Development of drug-resistant models. In Cancer cell culture: Methods and protocols (pp. 267–273). Totowa: Humana Press.

    Google Scholar 

  • Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J., & Amidon, G. L. (1997). The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharmaceutical Research, 14(11), 1568–1573.

    CAS  PubMed  Google Scholar 

  • El Gazzar, M., El Mezayen, R., Marecki, J. C., Nicolls, M. R., Canastar, A., & Dreskin, S. C. (2006). Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. International Immunopharmacology, 6(7), 1135–1142.

    PubMed  Google Scholar 

  • Gali-Muhtasib, H., Ocker, M., Kuester, D., Krueger, S., El-Hajj, Z., Diestel, A., et al. (2008). Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. Journal of Cellular and Molecular Medicine, 12(1), 330–342.

    PubMed  Google Scholar 

  • Hajhashemi, V., Ghannadi, A., & Jafarabadi, H. (2004). Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytotherapy Research, 18(3), 195–199.

    CAS  PubMed  Google Scholar 

  • Hans, M., & Lowman, A. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 6(4), 319–327.

    CAS  Google Scholar 

  • Holzapfel, V., Musyanovych, A., Landfester, K., Lorenz, M. R., & Mailänder, V. (2005). Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromolecular Chemistry and Physics, 206(24), 2440–2449.

    CAS  Google Scholar 

  • Hunter, R. J. (2013). Zeta potential in colloid science: Principles and applications (Vol. 2). Academic. Information, N. f. B. Thymoquinone CID=10281. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/10281. Accessed 25 Aug 2017

  • Ivankovic, S., Stojkovic, R., Jukic, M., Milos, M., Milos, M., & Jurin, M. (2006). The antitumor activity of thymoquinone and thymohydroquinone in vitro and in vivo. Experimental Oncology, 28(3), 220–224.

    CAS  PubMed  Google Scholar 

  • Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces, 65(1), 150–153.

    CAS  PubMed  Google Scholar 

  • Kalishwaralal, K., Banumathi, E., Pandian, S. R. K., Deepak, V., Muniyandi, J., Eom, S. H., & Gurunathan, S. (2009). Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids and Surfaces B: Biointerfaces, 73(1), 51–57.

    CAS  PubMed  Google Scholar 

  • Karimian, H., & Babaluo, A. (2007). Halos mechanism in stabilizing of colloidal suspensions: Nanoparticle weight fraction and pH effects. Journal of the European Ceramic Society, 27(1), 19–25.

    CAS  Google Scholar 

  • Kreuter, J. (1991). Peroral administration of nanoparticles. Advanced Drug Delivery Reviews, 7(1), 71–86.

    CAS  Google Scholar 

  • Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1–18.

    CAS  PubMed  Google Scholar 

  • Kurman, R. J. (2013). Blaustein’s pathology of the female genital tract. Boston: Springer Science & Business Media.

    Google Scholar 

  • Lin, G., Cosimbescu, L., Karin, N. J., & Tarasevich, B. J. (2012). Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: Preparation, characterization and in vitro release behavior. Biomedical Materials, 7(2), 024107.

    PubMed  Google Scholar 

  • Lin, Z., Zhou, D., Hoag, S., & Qiu, Y. (2016). Influence of drug properties and formulation on in vitro drug release and biowaiver regulation of oral extended release dosage forms. The AAPS Journal, 18(2), 333–345.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lü, J.-M., Wang, X., Marin-Muller, C., Wang, H., Lin, P. H., Yao, Q., & Chen, C. (2009). Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Review of Molecular Diagnostics, 9(4), 325–341.

    PubMed Central  PubMed  Google Scholar 

  • Maghraby, G. M., & Alomrani, A. H. (2009). Synergistic enhancement of itraconazole dissolution by ternary system formation with pluronic F68 and hydroxypropylmethylcellulose. Scientia Pharmaceutica, 77(2), 401–418.

    Google Scholar 

  • Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymer, 3(3), 1377–1397.

    CAS  Google Scholar 

  • Nallamuthu, I., Parthasarathi, A., & Khanum, F. (2013). Thymoquinone-loaded PLGA nanoparticles: Antioxidant and anti-microbial properties. International Current Pharmaceutical Journal, 2(12), 202–207.

    CAS  Google Scholar 

  • Odeh, F., Ismail, S. I., Abu-Dahab, R., Mahmoud, I. S., & Al Bawab, A. (2012). Thymoquinone in liposomes: A study of loading efficiency and biological activity towards breast cancer. Drug Delivery, 19(8), 371–377.

    CAS  PubMed  Google Scholar 

  • Patil, S., Sandberg, A., Heckert, E., Self, W., & Seal, S. (2007). Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials, 28(31), 4600–4607.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravindran, J., Nair, H. B., Sung, B., Prasad, S., Tekmal, R. R., & Aggarwal, B. B. (2010). Thymoquinone poly (lactide-co-glycolide) nanoparticles exhibit enhanced anti-proliferative, anti-inflammatory, and chemosensitization potential. Biochemical Pharmacology, 79(11), 1640–1647. https://doi.org/10.1016/j.bcp.2010.01.023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sethi, G., Ahn, K. S., & Aggarwal, B. B. (2008). Targeting nuclear factor-kappa B activation pathway by thymoquinone: Role in suppression of antiapoptotic gene products and enhancement of apoptosis. Molecular Cancer Research, 6, 1059–1070.

    CAS  PubMed  Google Scholar 

  • Shaarani, S., Hamid, S. S., & Kaus, N. H. M. (2017). The influence of pluronic F68 and F127 nanocarrier on physicochemical properties, in vitro release, and antiproliferative activity of thymoquinone drug. Pharmacognosy Research, 9(1), 12.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vega, E., Egea, M. A., Garduno-Ramirez, M. L., Garcia, M. L., Sanchez, E., Espina, M., & Calpena, A. C. (2013). Flurbiprofen PLGA-PEG nanospheres: Role of hydroxy-beta-cyclodextrin on ex vivo human skin permeation and in vivo topical anti-inflammatory efficacy. Colloids and Surfaces. B, Biointerfaces, 110, 339–346. https://doi.org/10.1016/j.colsurfb.2013.04.045.

    Article  CAS  PubMed  Google Scholar 

  • Vuorelaa, P., Leinonenb, M., Saikkuc, P., Tammelaa, P., Rauhad, J. P., Wennberge, T., & Vuorela, H. (2004). Natural products in the process of finding new drug candidates. Current Medicinal Chemistry, 11, 1375–1389.

    CAS  PubMed  Google Scholar 

  • Wang, A. Z., Langer, R., & Farokhzad, O. C. (2012). Nanoparticle delivery of cancer drugs. Annual Review of Medicine, 63, 185–198.

    CAS  PubMed  Google Scholar 

  • Win, K. Y., & Feng, S.-S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713–2722.

    CAS  PubMed  Google Scholar 

  • Yi, T., Cho, S.-G., Yi, Z., Pang, X., Rodriguez, M., Wang, Y., et al. (2008). Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Molecular Cancer Therapeutics, 7(7), 1789–1796.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrul Hamid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad, R., Kaus, N.H.M., Hamid, S. (2018). Synthesis and Characterization of PLGA-PEG Thymoquinone Nanoparticles and Its Cytotoxicity Effects in Tamoxifen-Resistant Breast Cancer Cells. In: Pham, P.V. (eds) Cancer Biology and Advances in Treatment. Advances in Experimental Medicine and Biology(), vol 1292. Springer, Cham. https://doi.org/10.1007/5584_2018_302

Download citation

Publish with us

Policies and ethics