Skip to main content

Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications

  • Chapter
  • First Online:
50 Years of Structure and Bonding – The Anniversary Volume

Part of the book series: Structure and Bonding ((STRUCTURE,volume 172))

Abstract

This chapter highlights the importance of structure–property relationships in transition metal complexes for the construction of molecular- and supramolecular-based photofunctional materials and summarizes the recent advancements of this class of complexes with potential applications in the areas of energy, catalysis, materials, biology, and diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ir(ppy)3]:

Tris(2-phenylpyridine)iridium(III)

4-ppy:

4-Phenylpyridine

bda:

2,2′-Bipyridine-6,6′-dicarboxylate

BIBP:

4,4′-Dialkylbipyridinium

bpm:

2,2′-Bipyrimidine

bpy:

2,2′-Bipyridine

bpz:

2,2′-Bipyrazine

bzimpy:

2,6-Bis(benzimidazol-2-yl)pyridine

CBPQT:

Cyclobis(paraquat-p-phenylene)

CD:

β-Cyclodextrin

CIE:

Commission Internationale de L’Eclairage

CRI:

Color rendering index

DABCO:

1,4-Diazabicyclo[2.2.2]octane

DAE:

1,2-Diarylethene

DIP:

4,7-Diphenyl-1,10-phenanthroline

dmgBF2 :

(Difluoroboryl)dimethylglyoxime

dppee:

1,2-Bis(diphenylphosphino)ethene

DSSCs:

Dye-sensitized solar cells

e.r.:

Enantiomeric ratio

EQE:

External quantum efficiency

FIrpic:

Bis[(4,6-difluorophenyl)pyridinato-N,C2](picolinato)iridium(III)

FRET:

Förster resonance energy transfer

H2bda:

2,2′-Bipyridine-6,6′-dicarboxylic acid

HOMO:

Highest occupied molecular orbital

HTI:

Hemithioindigo

ILCT:

Intraligand charge transfer

IQE:

Internal quantum efficiency

LF:

Ligand field

LLCT:

Ligand-to-ligand charge transfer

LUMO:

Lowest unoccupied molecular orbital

MC:

Merocyanine

3MLCT:

Triplet metal-to-ligand charge transfer

MLCT:

Metal-to-ligand charge transfer

3MMLCT:

Triplet metal–metal-to-ligand charge transfer

MOFs:

Metal-organic frameworks

NHCs:

N-Heterocyclic carbenes

NIR:

Near-infrared

NLO:

Nonlinear optical

NPB:

4,4′-Bis[N-(1-naphthyl)-N-phenylamino]biphenyl

OEC:

Oxygen-evolving complex

OLEDs:

Organic light-emitting diodes

PCE:

Power conversion efficiency

PCET:

Proton-coupled electron transfer

PET:

Photo-induced electron transfer

phen:

1,10-Phenanthroline

PHOLEDs:

Phosphorescent organic light-emitting diodes

PLEDs:

Polymer light-emitting diodes

PMMA:

Poly(methyl methacrylate)

PPE-SO3 :

Poly(phenylene ethynylene sulfonate)

SMMs:

Single-molecule magnets

TADF:

Thermally activated delayed fluorescence

TEOA:

Triethanolamine

TONs:

Turnover numbers

TTF:

Tetrathiafulvalene

WOLEDs:

White organic light-emitting diodes

WPLEDs:

White polymer light-emitting diodes

References

  1. Yersin H (2004) Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties. Top Curr Chem 241:1–26

    Article  CAS  Google Scholar 

  2. Fan C, Yang C (2014) Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices. Chem Soc Rev 43:6439–6469

    Article  CAS  Google Scholar 

  3. Hofbeck T, Yersin H (2010) The triplet state of fac-Ir(ppy)3. Inorg Chem 49:9290–9299

    Article  CAS  Google Scholar 

  4. Djurovich PI, Thompson ME (2008) Cyclometallated organoiridium complexes as emitters in electrophosphorescent devices. In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials. Wiley, Weinheim

    Google Scholar 

  5. Chi Y, Chou PT (2010) Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. Chem Soc Rev 39:638–655

    Article  CAS  Google Scholar 

  6. Zhou G, Wong WY, Yang X (2011) New design tactics in OLEDs using functionalized 2-phenypyridine-type cyclometalates of iridium(III) and platinum(II). Chem Asian J 6:1706–1727

    Article  CAS  Google Scholar 

  7. Ho CL, Wong WY (2013) Small-molecular blue phosphorescent dyes for organic light-emitting devices. New J Chem 37:1665–1683

    Article  CAS  Google Scholar 

  8. Rausch AF, Homeier HHH, Yersin H (2010) Organometallic Pt(II) and Ir(III) triplet emitters for OLED applications and the role of spin-orbit coupling: a study based on high-resolution optical spectroscopy. Top Organomet Chem 29:193–235

    CAS  Google Scholar 

  9. Yang X, Wang Z, Madakuni S, Li J, Jabbour GE (2008) Efficient blue- and white-emitting electrophosphorescent devices based on platinum(II) [1,3-difluoro-4,6-di(2-pyridinyl)benzene] chloride. Adv Mater 20:2405–2409

    Article  CAS  Google Scholar 

  10. Fleetham T, Li G, Wen L, Li J (2014) Efficient “pure” blue OLEDs employing tetradentate Pt complexes with a narrow spectral bandwidth. Adv Mater 26:7116–7121

    Article  CAS  Google Scholar 

  11. Liao KY, Hsu CW, Chi Y, Hsu MK, Wu SW, Chang CH, Liu SH, Lee GH, Chou PT, Hu Y, Robertson N (2015) Pt(II) metal complexes tailored with a newly designed spiro-arranged tetradentate ligand; harnessing of charge-transfer phosphorescence and fabrication of sky blue and white OLEDs. Inorg Chem 54:4029–4038

    Article  CAS  Google Scholar 

  12. D’Andrade BW, Brooks J, Adamovich V, Thompson ME, Forrest SR (2002) White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. Adv Mater 14:1032–1036

    Article  Google Scholar 

  13. Houlding VH, Miskowski VM (1991) The effect of linear chain structure on the electronic structure of Pt(II) diimine complexes. Coord Chem Rev 111:145–152

    Article  CAS  Google Scholar 

  14. Bailey JA, Hill MG, Marsh RE, Miskowski VM, Schaefer WP, Gray HB (1995) Electronic spectroscopy of chloro(terpyridine)platinum(II). Inorg Chem 34:4591–4599

    Article  CAS  Google Scholar 

  15. Jennette KW, Gill JT, Sadownick JA, Lippard SJ (1976) Metallointercalation reagents. Synthesis, characterization, and structural properties of thiolato(2,2′,2″-terpyridine)platinum(II) complexes. J Am Chem Soc 98:6159–6168

    Article  CAS  Google Scholar 

  16. Büchner R, Field JS, Haines RJ, Cunningham CT, McMillin DR (1997) Luminescence properties of salts of the [Pt(trpy)Cl]+ and [Pt(trpy)(MeCN)]2+ chromophores: crystal structure of [Pt(trpy)(MeCN)](SbF6)2. Inorg Chem 36:3952–3956

    Article  Google Scholar 

  17. Adamovich V, Brooks J, Tamayo A, Alexander AM, Djurovich PI, D’Andrade BW, Adachi C, Forrest SR, Thompson ME (2002) High efficiency single dopant white electrophosphorescent light emitting diodes. New J Chem 26:1171–1178

    Article  CAS  Google Scholar 

  18. Zhou G, Wang Q, Ho CL, Wong WY, Ma D, Wang L (2009) Duplicating “sunlight” from simple WOLEDs for lighting applications. Chem Commun 3574–3576

    Google Scholar 

  19. Murphy L, Brulatti P, Fattori V, Cocchi M, Williams JAG (2012) Blue-shifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs. Chem Commun 48:5817–5819

    Article  CAS  Google Scholar 

  20. Kui SCF, Chow PK, Tong GSM, Lai SL, Cheng G, Kwok CC, Low KH, Ko MY, Che CM (2013) Robust phosphorescent platinum(II) complexes containing tetradentate O^N^C^N ligands: excimeric excited state and application in organic white-light-emitting diodes. Chem Eur J 19:69–73

    Article  CAS  Google Scholar 

  21. Cheng G, Chow PK, Kui SCF, Kwok CC, Che CM (2013) High-efficiency polymer light-emitting devices with robust phosphorescent platinum(II) emitters containing tetradentate dianionic O^N^C^N ligands. Adv Mater 25:6765–6770

    Article  CAS  Google Scholar 

  22. Fleetham T, Ecton J, Wang Z, Bakken N, Li J (2013) Single-doped white organic light-emitting device with an external quantum efficiency over 20%. Adv Mater 25:2573–2576

    Article  CAS  Google Scholar 

  23. Wong KMC, Zhu X, Hung LL, Zhu N, Yam VWW, Kwok HS (2005) A novel class of phosphorescent gold(III) alkynyl-based organic light-emitting devices with tunable colour. Chem Commun 2906–2908

    Google Scholar 

  24. Au VKM, Wong KMC, Tsang DPK, Chan MY, Zhu N, Yam VWW (2010) High-efficiency green organic light-emitting devices utilizing phosphorescent bis-cyclometalated alkynylgold(III) complexes. J Am Chem Soc 132:14273–14278

    Article  CAS  Google Scholar 

  25. Tang MC, Tsang DPK, Chan MMY, Wong KMC, Yam VWW (2013) Dendritic luminescent gold(III) complexes for highly efficient solution-processable organic light-emitting devices. Angew Chem Int Ed 52:446–449

    Article  CAS  Google Scholar 

  26. Cheng G, Chan KT, To WP, Che CM (2014) Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(III) complexes having long-lived emissive excited states. Adv Mater 26:2540–2546

    Article  CAS  Google Scholar 

  27. Chow PK, Ma C, To WP, Tong GSM, Lai SL, Kui SCF, Kwok WM, Che CM (2013) Strongly phosphorescent palladium(II) complexes of tetradentate ligands with mixed oxygen, carbon, and nitrogen donor atoms: photophysics, photochemistry, and applications. Angew Chem Int Ed 52:11775–11779

    Article  CAS  Google Scholar 

  28. Zhu ZQ, Fleetham T, Turner E, Li J (2015) Harvesting all electrogenerated excitons through metal assisted delayed fluorescent materials. Adv Mater 27:2533–2537

    Article  CAS  Google Scholar 

  29. Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T (2011) The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord Chem Rev 255:2622–2652

    Article  CAS  Google Scholar 

  30. Czerwieniec R, Yu J, Yersin H (2011) Blue-light emission of Cu(I) complexes and singlet harvesting. Inorg Chem 50:8293–8301

    Article  CAS  Google Scholar 

  31. Deaton JC, Switalski SC, Kondakov DY, Young RH, Pawlik TD, Giesen DJ, Harkins SB, Miller AJM, Mickenberg SF, Peters JC (2010) E-Type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J Am Chem Soc 132:9499–9508

    Article  CAS  Google Scholar 

  32. Hashimoto M, Igawa S, Yashima M, Kawata I, Hoshino M, Osawa M (2011) Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(I) complexes. J Am Chem Soc 133:10348–10351

    Article  CAS  Google Scholar 

  33. Sakai Y, Sagara Y, Nomura H, Nakamura N, Suzuki Y, Miyazaki H, Adachi C (2015) Zinc complexes exhibiting highly efficient thermally activated delayed fluorescence and their application to organic light-emitting diodes. Chem Commun 51:3181–3184

    Article  CAS  Google Scholar 

  34. Hofbeck T, Monkowius U, Yersin H (2015) Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. J Am Chem Soc 137:399–404

    Article  CAS  Google Scholar 

  35. Kalyanasundaram K, Grätzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 77:347–414

    Article  Google Scholar 

  36. Campbell WM, Burrell AK, Officer DL, Jolley KW (2004) Porphyrins as light harvesters in the dye-sensitised TiO2 solar. Coord Chem Rev 248:1363–1379

    Article  CAS  Google Scholar 

  37. Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure–property relationships to design rules. Angew Chem Int Ed 48:2474–2499

    Article  CAS  Google Scholar 

  38. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798

    Article  CAS  Google Scholar 

  39. O’Regan BC, Durrant JR (2009) Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc Chem Res 42:1799–1808

    Article  CAS  Google Scholar 

  40. Imahori H, Umeyama T, Ito S (2009) Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42:1809–1818

    Article  CAS  Google Scholar 

  41. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  42. Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K (2010) Polyphenylene-based materials for organic photovoltaics. Chem Rev 110:6817–6855

    Article  CAS  Google Scholar 

  43. Clifford JN, Martínez-Ferrero E, Viterisi A, Palomares E (2011) Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem Soc Rev 40:1635–1646

    Article  CAS  Google Scholar 

  44. Yin JF, Velayudham M, Bhattacharya D, Lin HC, Lu KL (2012) Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells – a goal toward a “bright” future. Coord Chem Rev 256:3008–3035

    Article  CAS  Google Scholar 

  45. Bignozzi CA, Argazzi R, Boaretto R, Busatto E, Carli S, Ronconi F, Caramori S (2013) The role of transition metal complexes in dye sensitized solar devices. Coord Chem Rev 257:1472–1492

    Article  CAS  Google Scholar 

  46. Kapilashrami M, Zhang Y, Liu YS, Hagfeldt A, Guo J (2014) Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 114:9662–9707

    Article  CAS  Google Scholar 

  47. Urbani M, Grätzel M, Nazeeruddin MK, Torres T (2014) Meso-substituted porphyrins for dye-sensitized solar cells. Chem Rev 114:12330–12396

    Article  CAS  Google Scholar 

  48. Lee CP, Lin RYY, Lin LY, Li CT, Chu TC, Sun SS, Lin JT, Ho KC (2015) Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Adv 5:23810–23825

    Article  CAS  Google Scholar 

  49. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  50. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  51. Kuang D, Klein C, Ito S, Moser JE, Humphry-Baker R, Evans N, Duriaux F, Grätzel C, Zakeeruddin SM, Grätzel M (2007) High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv Mater 19:1133–1137

    Article  CAS  Google Scholar 

  52. Haque SA, Handa S, Peter K, Palomares E, Thelakkat M, Durrant JR (2005) Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure–function relationship. Angew Chem Int Ed 44:5740–5744

    Article  CAS  Google Scholar 

  53. Jang SR, Lee C, Choi H, Ko JJ, Lee J, Vittal R, Kim KJ (2006) Oligophenylenevinylene-functionalized Ru(II)-bipyridine sensitizers for efficient dye-sensitized nanocrystalline TiO2 solar cells. Chem Mater 18:5604–5608

    Article  CAS  Google Scholar 

  54. Johansson PG, Kopecky A, Galoppini E, Meyer GJ (2013) Distance dependent electron transfer at TiO2 interfaces sensitized with phenylene ethynylene bridged RuII−isothiocyanate compounds. J Am Chem Soc 135:8331–8341

    Article  CAS  Google Scholar 

  55. Chen CY, Wu SJ, Li JY, Wu CG, Chen JG, Ho KC (2007) A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv Mater 19:3888–3891

    Article  CAS  Google Scholar 

  56. Chen CY, Lu HC, Wu CG, Chen JG, Ho KC (2007) New ruthenium complexes containing oligoalkylthiophene-substituted 1,10-phenanthroline for nanocrystalline dye-sensitized solar cells. Adv Funct Mater 17:29–36

    Article  CAS  Google Scholar 

  57. Chen CY, Chen JG, Wu SJ, Li JY, Wu CG, Ho KC (2008) Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells. Angew Chem Int Ed 47:7342–7345

    Article  CAS  Google Scholar 

  58. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphy-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130:10720–10728

    Article  CAS  Google Scholar 

  59. Kim JJ, Choi H, Kim C, Kang MS, Kang HS, Ko J (2009) Novel amphiphilic ruthenium sensitizer with hydrophobic thiophene or thieno(3,2-b)thiophene-substituted 2,2′-dipyridylamine ligands for effective nanocrystalline dye sensitized solar cells. Chem Mater 21:5719–5726

    Article  CAS  Google Scholar 

  60. Yin JF, Chen JG, Lu ZZ, Ho KC, Lin HC, Lu KL (2010) Toward optimization of oligothiophene antennas: new ruthenium sensitizers with excellent performance for dye-sensitized solar cells. Chem Mater 22:4392–4399

    Article  CAS  Google Scholar 

  61. Mishra A, Pootrakulchote N, Wang M, Moon SJ, Zakeeruddin SM, Grätzel M, Bäuerle P (2011) A thiophene-based anchoring ligand and its heteroleptic Ru(II)-complex for efficient thin-film dye-sensitized solar cells. Adv Funct Mater 21:963–970

    Article  CAS  Google Scholar 

  62. García-Iglesias M, Pellejà L, Yun JH, González-Rodríguez D, Nazeeruddin MK, Grätzel M, Clifford JN, Palomares E, Vázquez P, Torres T (2012) Effect of bulky groups in ruthenium heteroleptic sensitizers on dye sensitized solar cell performance. Chem Sci 3:1177–1184

    Article  CAS  Google Scholar 

  63. Chang WC, Chen HS, Li TY, Hsu NM, Tingare YS, Li CY, Liu YC, Su C, Li WR (2010) Highly efficient N-heterocyclic carbene/pyridine-based ruthenium sensitizers: complexes for dye-sensitized solar cells. Angew Chem Int Ed 49:8161–8164

    Article  CAS  Google Scholar 

  64. Stengel I, Pootrakulchote N, Dykeman RR, Mishra A, Zakeeruddin SM, Dyson PJ, Grätzel M, Bäuerle P (2012) Click-functionalized Ru(II) complexes for dye-sensitized solar cells. Adv Energy Mater 2:1004–1012

    Article  CAS  Google Scholar 

  65. Yen YS, Chen YC, Hsu YC, Chou HH, Lin JT, Yin DJ (2011) Heteroleptic ruthenium sensitizers that contain an ancillary bipyridine ligand tethered with hydrocarbon chains for efficient dye-sensitized solar cells. Chem Eur J 17:6781–6788

    Article  CAS  Google Scholar 

  66. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  67. Numata Y, Singh SP, Islam A, Lwamura M, Imai A, Nozaki K, Han L (2013) Enhanced light-harvesting capability of a panchromatic Ru(II) sensitizer based on π-extended terpyridine with a 4-methylstyryl group for dye-sensitized solar cell. Adv Funct Mater 23:1817–1823

    Article  CAS  Google Scholar 

  68. Chen BS, Chen K, Hong YH, Liu WH, Li TS, Lai CH, Chou PT, Chi Y, Lee GH (2009) Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chem Commun 5844–5846

    Google Scholar 

  69. Chou CC, Wu KL, Chi Y, Hu WP, Yu SJ, Lee GH, Lin CL, Chou PT (2011) Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Angew Chem Int Ed 50:2054–2058

    Article  CAS  Google Scholar 

  70. Bomben PG, Robson KCD, Koivisto BD, Berlinguette CP (2012) Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord Chem Rev 256:1438–1450

    Article  CAS  Google Scholar 

  71. Robson KCD, Bomben PG, Berlinguette CP (2012) Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles. Dalton Trans 41:7814–7829

    Article  CAS  Google Scholar 

  72. Bessho T, Yoneda E, Yum JH, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131:5930–5934

    Article  CAS  Google Scholar 

  73. Bomben PG, Gordon TJ, Schott E, Berlinguette CP (2011) A trisheteroleptic cyclometalated RuII sensitizer that enables high power output in a dye-sensitized solar cell. Angew Chem Int Ed 50:10682–10685

    Article  CAS  Google Scholar 

  74. Pogozhev DV, Bezdek MJ, Schauer PA, Berlinguette CP (2013) Ruthenium(II) complexes bearing a naphthalimide fragment: a modular dye platform for the dye-sensitized solar cell. Inorg Chem 52:3001–3006

    Article  CAS  Google Scholar 

  75. Ji Z, Natu G, Wu Y (2013) Cyclometalated ruthenium sensitizers bearing a triphenylamino group for p-type NiO dye-sensitized solar cells. ACS Appl Mater Interfaces 5:8641–8648

    Article  CAS  Google Scholar 

  76. Wadman SH, Kroon JM, Bakker K, Lutz M, Spek AL, van Klink GPM, van Koten G (2007) Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chem Commun 1907–1909

    Google Scholar 

  77. Robson KCD, Koivisto BD, Yella A, Sporinova B, Nazeeruddin MK, Baumgartner T, Grätzel M, Berlinguette CL (2011) Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications. Inorg Chem 50:5494–5508

    Article  CAS  Google Scholar 

  78. Nazeeruddin MK, Humphry-Baker R, Officer DL, Campbell WM, Burrell AK, Grätzel M (2004) Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20:6514–6517

    Article  CAS  Google Scholar 

  79. Ishida M, Park SW, Hwang D, Koo YB, Sessler JL, Kim DY, Kim D (2011) Donor-substituted β-functionalized porphyrin dyes on hierarchically structured mesoporous TiO2 spheres. Highly efficient dye-sensitized solar cells. J Phys Chem C 115:19343–19354

    Article  CAS  Google Scholar 

  80. Davis NKS, Pawlicki M, Anderson HL (2008) Expanding the porphyrin π-system by fusion with anthracene. Org Lett 10:3945–3947

    Article  CAS  Google Scholar 

  81. Mozer AJ, Griffith MJ, Tsekouras G, Wagner P, Wallace GG, Mori S, Sunahara K, Miyashita M, Earles JC, Gordon KC, Du L, Katoh R, Furube A, Officer DL (2009) Zn–Zn porphyrin dimer-sensitized solar cells: toward 3-D light harvesting. J Am Chem Soc 131:15621–15623

    Article  CAS  Google Scholar 

  82. Mai CL, Huang WK, Lu HP, Lee CW, Chiu CL, Liang YR, Diau EWG, Yeh CY (2010) Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chem Commun 46:809–811

    Article  CAS  Google Scholar 

  83. Davis KS, Thompson AL, Anderson HL (2010) Bis-anthracene fused porphyrins: synthesis, crystal structure, and near-IR absorption. Org Lett 12:2124–2127

    Article  CAS  Google Scholar 

  84. Davis NKS, Thompson AL, Anderson HL (2011) A porphyrin fused to four anthracenes. J Am Chem Soc 133:30–31

    Article  CAS  Google Scholar 

  85. Jiao C, Zu N, Huang KW, Wang P, Wu J (2011) Perylene anhydride fused porphyrins as near-infrared sensitizers for dye-sensitized solar cells. Org Lett 13:3652–3655

    Article  CAS  Google Scholar 

  86. Liu Y, Lin H, Dy JT, Tamaki K, Nakazaki J, Nakayama D, Uchida S, Kubo T, Segawa H (2011) N-Fused carbazole–zinc porphyrin–free-base porphyrin triad for efficient near-IR dye-sensitized solar cells. Chem Commun 47:4010–4012

    Article  CAS  Google Scholar 

  87. Lewtak JP, Gryko DT (2012) Synthesis of π-extended porphyrins via intramolecular oxidative coupling. Chem Commun 48:10069–10086

    Article  CAS  Google Scholar 

  88. Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  CAS  Google Scholar 

  89. Nusbaumer H, Moser JE, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2001) CoII(dbbip)2 2+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J Phys Chem B 105:10461–10464

    Article  CAS  Google Scholar 

  90. Sapp SA, Elliott CM, Contado C, Caramori S, Bignozzi CA (2002) Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc 124:11215–11222

    Article  CAS  Google Scholar 

  91. Liu Y, Jennings JR, Huang Y, Wang Q, Zakeeruddin SM, Grätzel M (2011) Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: a combined impedance spectroscopy and near-IR transmittance study. J Phys Chem C 115:18847–18855

    Article  CAS  Google Scholar 

  92. Hamann TW (2012) The end of iodide? Cobalt complex redox shuttles in DSSCs. Dalton Trans 41:3111–3115

    Article  CAS  Google Scholar 

  93. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  94. Yella A, Mai CL, Zakeeruddin SM, Chang SN, Hsish CH, Yeh CY, Grätzel M (2014) Molecular engineering of push–pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. Angew Chem Int Ed 53:2973–2977

    Article  CAS  Google Scholar 

  95. Wang Y, Chen B, Wu W, Li X, Zhu W, Tian H, Xie Y (2014) Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to cosensitization. Angew Chem Int Ed 53:10779–10783

    Article  CAS  Google Scholar 

  96. Balzani V, Moggi L, Manfrin MF, Bolletta F, Gleria M (1975) Solar energy conversion by water photodissociation. Science 189:852–856

    Article  CAS  Google Scholar 

  97. Bolton JR (1978) Solar fuels. Science 202:705–710

    Article  CAS  Google Scholar 

  98. Grätzel M (1981) Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc Chem Res 14:376–384

    Article  Google Scholar 

  99. Lewis NS, Nocera D (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    Article  CAS  Google Scholar 

  100. Meyer TJ, Huynh MHV, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed 46:5284–5304

    Article  CAS  Google Scholar 

  101. Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Iha NYM, Templeton JL, Meyer TJ (2009) Making oxygen with ruthenium complexes. Acc Chem Res 42:1954–1965

    Article  CAS  Google Scholar 

  102. Puntoriero F, Sartorel A, Orlandi M, La Ganga G, Serroni S, Bonchio M, Scandola F, Campagna S (2011) Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coord Chem Rev 255:2594–2601

    Article  CAS  Google Scholar 

  103. Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776

    Article  CAS  Google Scholar 

  104. Concepcion JJ, House RL, Papanikolas JM, Meyer TJ (2012) Chemical approaches to artificial photosynthesis. Proc Natl Acad Sci U S A 109:15560–15564

    Article  CAS  Google Scholar 

  105. Cox N, Pantazis DA, Neese F, Lubitz W (2013) Biological water oxidation. Acc Chem Res 46:1588–1596

    Article  CAS  Google Scholar 

  106. Han Z, Eisenberg R (2014) Fuel from water: the photochemical generation of hydrogen from water. Acc Chem Res 47:2537–2544

    Article  CAS  Google Scholar 

  107. Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol 11:457–475

    Article  CAS  Google Scholar 

  108. Warren JJ, Tronic TA, Mayer JM (2010) Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem Rev 110:6961–7001

    Article  CAS  Google Scholar 

  109. Mayer JM (2011) Understanding hydrogen atom transfer: from bond strengths to Marcus theory. Acc Chem Res 44:36–46

    Article  CAS  Google Scholar 

  110. Costentin C, Robert M, Saveant JM (2010) Concerted proton-electron transfers: electrochemical and related approaches. Acc Chem Res 43:1019–1029

    Article  CAS  Google Scholar 

  111. Saveant JM (2012) Electrochemical approach to proton-coupled electron transfers: recent advances. Energy Environ Sci 5:7718–7731

    Article  CAS  Google Scholar 

  112. Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. Angew Chem Int Ed 50:7238–7266

    Article  CAS  Google Scholar 

  113. Tran PD, Artero V, Fontecave M (2010) Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems. Energy Environ Sci 3:727–747

    Article  CAS  Google Scholar 

  114. Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V (2011) Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells. Photochem Photobiol 87:946–964

    Article  CAS  Google Scholar 

  115. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  116. McKone JR, Lewis NS, Gray HB (2014) Will solar-driven water-splitting devices see the light of day? Chem Mater 26:407–414

    Article  CAS  Google Scholar 

  117. Haussener S, Xiang C, Spurgeon JM, Ardo S, Lewis NS, Weber AZ (2012) Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ Sci 5:9922–9935

    Article  CAS  Google Scholar 

  118. Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798–801

    Article  CAS  Google Scholar 

  119. Mi Q, Zhanaidarova A, Brunschwig BS, Gray HB, Lewis NS (2012) A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy Environ Sci 5:5694–5700

    Article  CAS  Google Scholar 

  120. Seabold JA, Choi KS (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134:2186–2192

    Article  CAS  Google Scholar 

  121. Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337

    Article  CAS  Google Scholar 

  122. Heller A (1986) Optically transparent metallic catalysts on semiconductors. Pure Appl Chem 58:1189–1192

    Article  CAS  Google Scholar 

  123. McKone JR, Pieterick AP, Gray HB, Lewis NS (2013) Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. J Am Chem Soc 135:223–231

    Article  CAS  Google Scholar 

  124. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  CAS  Google Scholar 

  125. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270

    Article  CAS  Google Scholar 

  126. Shao Z, Halle SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  CAS  Google Scholar 

  127. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  CAS  Google Scholar 

  128. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  CAS  Google Scholar 

  129. Geletii YV, Botar B, Kögerler P, Hillesheim DA, Musaev DG, Hill CL (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew Chem Int Ed 47:3896–3899

    Article  CAS  Google Scholar 

  130. Sartorel A, Carraro M, Scorrano G, De Zorzi R, Geremia S, McDaniel ND, Bernhard S, Bonchio M (2008) Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36]8−: a totally inorganic oxygen-evolving catalyst. J Am Chem Soc 130:5006–5007

    Article  CAS  Google Scholar 

  131. Dincă M, Surendranath Y, Nocera DG (2010) Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci U S A 107:10337–10341

    Article  Google Scholar 

  132. Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345

    Article  CAS  Google Scholar 

  133. Boettcher SW, Warren EL, Putnam MC, Santori EA, Turner-Evans D, Kelzenberg MD, Walter MG, McKone JR, Brunschwig BS, Atwater HA, Lewis NS (2011) Photoelectrochemical hydrogen evolution using Si microwire arrays. J Am Chem Soc 133:1216–1219

    Article  CAS  Google Scholar 

  134. Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 12:1341–1347

    Article  CAS  Google Scholar 

  135. Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134:17253–17261

    Article  CAS  Google Scholar 

  136. Mullins CS, Pecoraro VL (2007) Reflections on small molecule manganese models that seek to mimic photosynthetic water oxidation chemistry. Coord Chem Rev 252:416–443

    Article  CAS  Google Scholar 

  137. Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4–cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943

    Article  CAS  Google Scholar 

  138. Kanady JS, Tsui EY, Day MW, Agapie T (2011) A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333:733–736

    Article  CAS  Google Scholar 

  139. Tsui EY, Agapie T (2013) Reduction potentials of heterometallic manganese–oxido cubane complexes modulated by redox-inactive metals. Proc Natl Acad Sci U S A 110:10084–10088

    Article  CAS  Google Scholar 

  140. Kanady JS, Lin PH, Carsch KM, Nielsen RJ, Takase MK, Goddard WA III, Agapie T (2014) Toward models for the full oxygen-evolving complex of photosystem II by ligand coordination to lower the symmetry of the Mn3CaO4 cubane: demonstration that electronic effects facilitate binding of a fifth metal. J Am Chem Soc 136:14373–14376

    Article  CAS  Google Scholar 

  141. Zhang C, Chen C, Dong H, Shen JR, Dau H, Zhao J (2015) A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 348:690–693

    Article  CAS  Google Scholar 

  142. Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) Photoassisted overall water splitting in visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927

    Article  CAS  Google Scholar 

  143. Brimblecombw R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132:2892–2894

    Article  CAS  Google Scholar 

  144. Al-Oweini R, Sarotrel A, Bassil BS, Natali M, Berardi S, Scandola F, Kortz U, Bonchio M (2014) Photocatalytic water oxidation by a mixed-valent MnIII 3MnIVO3 manganese oxo core that mimics the natural oxygen-evolving center. Angew Chem Int Ed 53:11182–11185

    Article  CAS  Google Scholar 

  145. Santoni MP, La Ganga G, Nardo VM, Natali M, Puntoriero F, Scandola F, Campagna S (2014) The use of a vanadium species as a catalyst in photoinduced water oxidation. J Am Chem Soc 136:8189–8192

    Article  CAS  Google Scholar 

  146. Tanaka S, Annaka M, Sakai K (2012) Visible light-induced water oxidation catalyzed by molybdenum-based polyoxometalates with mono- and dicobalt(III) cores as oxygen-evolving centers. Chem Commun 48:1653–1655

    Article  CAS  Google Scholar 

  147. Gersten SW, Sammuels GJ, Meyer TJ (1982) Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J Am Chem Soc 104:4029–4030

    Article  CAS  Google Scholar 

  148. Liu F, Concepcion JJ, Hurss JW, Cardolaccia T, Templeton JL, Meyer TJ (2008) Mechanism of water oxidation from the blue dimer to photosystem II. Inorg Chem 47:1727–1752

    Article  CAS  Google Scholar 

  149. Concepcion JJ, Jurss JW, Templeton JL, Meyer TJ (2008) Mediator-assisted water oxidation by the ruthenium “blue dimer” cis,cis-[(bpy)2(H2O)RuORu(OH2)(bpy)2]4+. Proc Natl Acad Sci U S A 105:17632–17635

    Google Scholar 

  150. Yang X, Baik MH (2006) cis,cis-[(bpy)2RuVO]2O4+ Catalyzes water oxidation formally via in situ generation of radicaloid RuIV–O•. J Am Chem Soc 128:7476–7485

    Google Scholar 

  151. Masaoka S, Sakai K (2009) Clear evidence showing the robustness of a highly active oxygen-evolving mononuclear ruthenium complex with an aqua ligand. Chem Lett 38:182–183

    Article  CAS  Google Scholar 

  152. Nakazono T, Parent AR, Sakai K (2013) Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem Commun 49:6325–6327

    Article  CAS  Google Scholar 

  153. Li L, Duan L, Xu Y, Gorlov M, Hagfeldt A, Sun L (2010) A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem Commun 46:7307–7309

    Article  CAS  Google Scholar 

  154. Duan L, Araujo CM, Ahlquist MSG, Sun L (2012) Highly efficient and robust molecular ruthenium catalysts for water oxidation. Proc Natl Acad Sci U S A 109:15584–15588

    Article  CAS  Google Scholar 

  155. Li F, Jiang Y, Zhang B, Huang F, Gao Y, Sun L (2012) Towards a solar fuel device: light-driven water oxidation catalyzed by a supramolecular assembly. Angew Chem Int Ed 51:2417–2420

    Article  CAS  Google Scholar 

  156. Ashford DL, Sherman BD, Binstead RA, Templeton JL, Meyer TJ (2015) Electro-assembly of a chromophore-catalyst bilayer for water oxidation and photocatalytic water splitting. Angew Chem Int Ed 54:4778–4781

    Article  CAS  Google Scholar 

  157. Li H, Li F, Zhang B, Zhou X, Yu F, Sun L (2015) Visible light-driven water oxidation promoted by host-guest interaction between photosensitizer and catalyst with a high quantum efficiency. J Am Chem Soc 137:4332–4335

    Article  CAS  Google Scholar 

  158. McDaniel ND, Coughlin FJ, Tinker LL, Bernhard S (2008) Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J Am Chem Soc 130:210–217

    Article  CAS  Google Scholar 

  159. Hull JF, Balcells D, Blakemore JD, Incarvito CD, Eisenstein O, Brudvig GW, Crabtree RH (2009) Highly active and robust Cp* iridium complexes for catalytic water oxidation. J Am Chem Soc 131:8730–8731

    Article  CAS  Google Scholar 

  160. Blakemore JD, Schley ND, Balcells D, Hull JF, Olack GW, Incarvito CD, Eisenstein O, Brudvig GW, Crabtree RH (2010) Half-sandwich iridium complexes for homogeneous water-oxidation catalysis. J Am Chem Soc 132:16017–16029

    Article  CAS  Google Scholar 

  161. Schley ND, Blakemore JD, Subbaiyan NK, Incarvito CD, D’Souza F, Crabtree RH, Brudvig GW (2011) Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. J Am Chem Soc 133:10473–10481

    Article  CAS  Google Scholar 

  162. Wang C, Wang JL, Lin W (2012) Elucidating molecular iridium water oxidation catalysts using metal−organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. J Am Chem Soc 134:19895–19908

    Article  CAS  Google Scholar 

  163. Lalrempuia R, McHaniel ND, Müller-Bunz H, Bernhard S, Albrecht M (2010) Water oxidation catalyzed by strong carbene-type donor-ligand complexes of iridium. Angew Chem Int Ed 49:9765–9768

    Article  CAS  Google Scholar 

  164. Moore GF, Blakemore JD, Milot RL, Hull JF, Song H, Cai L, Schmuttenmaer CA, Crabtree RH, Brudvig GW (2011) A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst. Energy Environ Sci 4:2389–2392

    Article  CAS  Google Scholar 

  165. Lewis EA, Tolman WB (2004) Reactivity of dioxygen-copper systems. Chem Rev 104:1047–1076

    Article  CAS  Google Scholar 

  166. Iton S, Fukuzuki S (2007) Monooxygenase activity of type 3 copper proteins. Acc Chem Res 40:592–600

    Article  CAS  Google Scholar 

  167. Que L Jr, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340

    Article  CAS  Google Scholar 

  168. Gagnon N, Tolman WB (2015) [CuO]+ and [CuOH]2+ complexes: intermediates in oxidation catalysis? Acc Chem Res 48:2126–2131

    Article  CAS  Google Scholar 

  169. Halfen JA, Mahapatra S, Wilkinson EC, Kaderli SM, Young VG Jr, Que L Jr, Zuberbühler AD, Tolman WB (1996) Reversible cleavage and formation of the dioxygen O−O bond within a dicopper complex. Science 271:1397–1400

    Article  CAS  Google Scholar 

  170. Donoghue PJ, Tehranchi J, Cramer CJ, Sarangi R, Solomon EI, Tolman WB (2011) Rapid C−H bond activation by a monocopper(III)−hydroxide complex. J Am Chem Soc 133:17602–17605

    Article  CAS  Google Scholar 

  171. Dhar D, Tolman WB (2015) Hydrogen atom abstraction from hydrocarbons by a copper(III)−hydroxide complex. J Am Chem Soc 137:1322–1329

    Article  CAS  Google Scholar 

  172. Conde A, Vilella L, Balcells D, Díaz-Requejo MM, Lledós A, Pérez PJ (2013) Introducing copper as catalyst for oxidative alkane dehydrogenation. J Am Chem Soc 135:3887–3896

    Article  CAS  Google Scholar 

  173. Dietl N, van der Linde C, Schlangen M, Beyer MK, Schqarz H (2011) Diatomic [CuO]+ and its role in the spin-selective hydrogen- and oxygen-atom transfers in the thermal activation of methane. Angew Chem Int Ed 50:4966–4969

    Article  CAS  Google Scholar 

  174. Connolly P, Espenson JH (1986) Cobalt-catalyzed evolution of molecular hydrogen. Inorg Chem 25:2684–2688

    Article  CAS  Google Scholar 

  175. Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res 42:1995–2004

    Article  CAS  Google Scholar 

  176. Hu X, Cossairt BM, Brunschwig BS, Lewis NS, Peters JC (2005) Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chem Commun 4723–4725

    Google Scholar 

  177. Berben LA, Peters JC (2010) Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces. Chem Commun 46:398–400

    Article  CAS  Google Scholar 

  178. Hu X, Brunschwig BS, Peters JC (2007) Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J Am Chem Soc 129:8988–8998

    Article  CAS  Google Scholar 

  179. Dempsey JL, Winkler JR, Gray HB (2010) Mechanism of H2 evolution from a photogenerated hydridocobaloxime. J Am Chem Soc 132:16774–16776

    Article  CAS  Google Scholar 

  180. Stubbert BD, Peters JC, Gray HB (2011) Rapid water reduction to H2 catalyzed by a cobalt bis(iminopyridine) complex. J Am Chem Soc 133:18070–18073

    Article  CAS  Google Scholar 

  181. Valdez CN, Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2012) Catalytic hydrogen evolution from a covalently linked dicobaloxime. Proc Natl Acad Sci U S A 109:15589–15593

    Article  CAS  Google Scholar 

  182. Hawecker J, Lehn JM, Ziessel R (1983) Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes. Nouv J Chim 7:271–277

    CAS  Google Scholar 

  183. Fihri A, Artero V, Razavet M, Baffert C, Leibl W, Fontecave M (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew Chem Int Ed 47:564–567

    Article  CAS  Google Scholar 

  184. McNamara WR, Han Z, Alperin PJ, Brennessel WW, Holland PL, Eisenberg R (2011) A cobalt-dithiolene complex for the photocatalytic and electrocatalytic reduction of protons. J Am Chem Soc 133:15368–15371

    Article  CAS  Google Scholar 

  185. McNamara WR, Han Z, Yin CJ, Brennessel WW, Holland PL, Eisenberg R (2012) Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions. Proc Natl Acad Sci U S A 109:15594–15599

    Article  CAS  Google Scholar 

  186. Sakai K, Ozawa H (2007) Homogeneous catalysis of platinum(II) complexes in photochemical hydrogen production from water. Coord Chem Rev 251:2753–2766

    Article  CAS  Google Scholar 

  187. Ozawa H, Haga M, Sakai K (2006) A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen. J Am Chem Soc 128:4926–4927

    Article  CAS  Google Scholar 

  188. Kobayashi M, Masaoka S, Sakai K (2012) Photoinduced hydrogen evolution from water by a simple platinum(II) terpyridine derivative: a Z-scheme photosynthesis. Angew Chem Int Ed 51:7431–7434

    Article  CAS  Google Scholar 

  189. Du P, Schneider J, Jarosz P, Eisenberg R (2006) Photocatalytic generation of hydrogen from water using a platinum(II) terpyridyl acetylide chromophore. J Am Chem Soc 128:7726–7727

    Article  CAS  Google Scholar 

  190. Du P, Knowles K, Eisenberg R (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J Am Chem Soc 130:12576–12577

    Article  CAS  Google Scholar 

  191. Du P, Schneiderr J, Luo G, Brennessel WW, Eisenberg R (2009) Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg Chem 48:4952–4962

    Article  CAS  Google Scholar 

  192. Wang X, Goeb S, Ji Z, Pogulaichenko NA, Castellano FN (2011) Homogeneous photocatalytic hydrogen production using π-conjugated platinum(II) arylacetylide sensitizers. Inorg Chem 50:705–707

    Article  CAS  Google Scholar 

  193. Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA Jr, Malliaras GG, Bernhard S (2005) Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem Mater 17:5712–5719

    Article  CAS  Google Scholar 

  194. Goldsmith JI, Hudson WR, Lowry MS, Anderson TH, Bernhard S (2005) Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J Am Chem Soc 127:7502–7510

    Article  CAS  Google Scholar 

  195. Whang DR, Sakai K, Park SY (2013) Highly efficient photocatalytic water reduction with robust iridium(III) photosensitizers containing arylsilyl substituents. Angew Chem Int Ed 52:11612–11615

    Article  CAS  Google Scholar 

  196. Wilson AD, Newell RH, McNevin MJ, Muckerman JT, DuBois MR, DuBios DL (2006) Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J Am Chem Soc 128:358–366

    Article  CAS  Google Scholar 

  197. Wilson AD, Shoemaker RK, Miedaner A, Muckerman JT, DuBois DL, DuBois MR (2007) Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Proc Natl Acad Sci U S A 104:6951–6956

    Article  CAS  Google Scholar 

  198. Kilgore UJ, Roberts JAS, Pool DH, Appel AM, Stewart MP, DuBois MR, Dougherty WG, Kassel WS, Bullock RM, DuBois DL (2011) [Ni(PPh 2NC6H4X 2)2]2+ complexes as electrocatalysts for H2 production: effect of substituents, acids, and water on catalytic rates. J Am Chem Soc 133:5861–5872

    Article  CAS  Google Scholar 

  199. Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333:863–866

    Article  CAS  Google Scholar 

  200. Matsuika S, Yamamoto K, Ogata T, Kusaba M, Nakashima N, Fujita E, Yanagida S (1993) Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of CO2. J Am Chem Soc 115:601–609

    Article  Google Scholar 

  201. Ogata T, Yanagida S, Brunschwig BS, Fujita E (1995) Mechanistic and kinetic studies of cobalt macrocycles in a photochemical CO2 reduction system: evidence of Co-CO2 adducts as intermediates. J Am Chem Soc 117:6708–6716

    Article  CAS  Google Scholar 

  202. Fujita E (1999) Photochemical carbon dioxide reduction with metal complexes. Coord Chem Rev 185–186:373–384

    Article  Google Scholar 

  203. Simón-Manso E, Kubiak CP (2005) Dinuclear nickel complexes as catalysts for electrochemical reduction of carbon dioxide. Organometallics 24:96–102

    Article  CAS  Google Scholar 

  204. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994

    Article  CAS  Google Scholar 

  205. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99

    Article  CAS  Google Scholar 

  206. DuBois MR, DuBois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc Chem Res 42:1974–1982

    Article  CAS  Google Scholar 

  207. Takeda H, Ishitani O (2010) Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord Chem Rev 254:346–354

    Article  CAS  Google Scholar 

  208. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658

    Article  CAS  Google Scholar 

  209. Jeoung JH, Dobbek H (2007) Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318:1461–1464

    Article  CAS  Google Scholar 

  210. Meshitsuka S, Ichikawa M, Tamaru K (1974) Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J Chem Soc Chem Commun 158–159

    Google Scholar 

  211. Fisher BJ, Eisenberg R (1980) Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J Am Chem Soc 102:7361–7363

    Article  CAS  Google Scholar 

  212. Beley M, Collin JP, Ruppert R, Sauvage JP (1986) Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J Am Chem Soc 108:7461–7467

    Article  CAS  Google Scholar 

  213. Bhugun I, Lexa D, Savéant JM (1996) Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins: synergistic effect of weak Broensted acids. J Am Chem Soc 118:1769–1776

    Article  CAS  Google Scholar 

  214. Hawecker J, Lehn JM, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2′-bipyridine). J Chem Soc Chem Commun 328–330

    Google Scholar 

  215. Ishida H, Tanaka K, Tanaka T (1987) Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO. Organometallics 6:181–186

    Article  CAS  Google Scholar 

  216. Bolinger CM, Story N, Sullivan BP, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by 2,2′-bipyridine complexes of rhodium and iridium. Inorg Chem 27:4582–4587

    Article  CAS  Google Scholar 

  217. Slater S, Wagenknecht JH (1984) Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl. J Am Chem Soc 106:5367–5368

    Article  CAS  Google Scholar 

  218. Fujita E, Szalda DJ, Creutz C, Sutin N (1988) Carbon dioxide activation: thermodynamics of carbon dioxide binding and the involvement of two cobalt centers in the reduction of carbon dioxide by a cobalt(I) macrocycle. J Am Chem Soc 110:4870–4871

    Article  CAS  Google Scholar 

  219. DuBois DL, Miedaner A, Haltiwanger RC (1991) Electrochemical reduction of carbon dioxide catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes: synthetic and mechanistic studies. J Am Chem Soc 113:8753–8764

    Article  CAS  Google Scholar 

  220. DeLaet DL, Del Rosario R, Fanwick PE, Kubiak CP (1987) Carbon dioxide chemistry and electrochemistry of a binuclear cradle complex of nickel(0), Ni2(μ-CNMe)(CNMe)2(PPh2CH2PPh2)2. J Am Chem Soc 109:754–758

    Article  CAS  Google Scholar 

  221. Morgenstern DA, Ferrence GM, Washington J, Henderson JI, Rosenhein L, Heise JD, Fanwick PE, Kubiak CP (1996) A class of halide-supported trinuclear nickel clusters [Ni3(μ 3-L)(μ 3-X)(μ 2-dppm)3]n+ (L = I, Br, CO, CNR; X = I, Br; n = 0, 1; dppm = Ph2PCH2PPh2): novel physical properties and the Fermi resonance of symmetric μ 3-η 1 bound isocyanide ligands. J Am Chem Soc 118:2198–2207

    Article  CAS  Google Scholar 

  222. Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z (2002) Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J Phys Chem A 106:4772–4778

    Article  CAS  Google Scholar 

  223. Schneider J, Jia H, Kobiro K, Cabelli DE, Muckerman JT, Fujita E (2012) Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO. Energy Environ Sci 5:9502–9510

    Article  CAS  Google Scholar 

  224. Takeda H, Koike K, Inoue H, Ishitani O (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130:2023–2031

    Article  CAS  Google Scholar 

  225. Benson EE, Kubiak CP (2012) Structural investigations into the deactivation pathway of the CO2 reduction electrocatalyst Re(bpy)(CO)3Cl. Chem Commun 48:7374–7376

    Article  CAS  Google Scholar 

  226. Smieja JM, Benson EE, Kumar B, Grice KA, Seu CS, Miller AJM, Mayer JM, Kubiak CP (2012) Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO. Proc Natl Acad Sci U S A 109:15646–15650

    Article  CAS  Google Scholar 

  227. Benson EE, Sampson MD, Grice KA, Smieja JM, Froehlich JD, Friebel D, Keith JA, Carter EA, Nilsson A, Kubiak CP (2013) The electronic states of rhenium bipyridyl electrocatalysts for CO2 reduction as revealed by X-ray absorption spectroscopy and computational quantum chemistry. Angew Chem Int Ed 52:4841–4844

    Article  CAS  Google Scholar 

  228. Keith JA, Grice KA, Kubiak CP, Carter EA (2013) Elucidation of the selectivity of proton-dependent electrocatalytic CO2 reduction by fac-Re(bpy)(CO)3Cl. J Am Chem Soc 135:15823–15829

    Article  CAS  Google Scholar 

  229. Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew Chem Int Ed 50:9903–9906

    Article  CAS  Google Scholar 

  230. Sampson MD, Nguyen AD, Grice KA, Moore CE, Rheingold AL, Kubiak CP (2014) Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis. J Am Chem Soc 136:5460–5471

    Article  CAS  Google Scholar 

  231. Tamaki Y, Morimoto T, Koike K, Ishitani O (2012) Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc Natl Acad Sci 109:15673–15678

    Article  CAS  Google Scholar 

  232. Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O (2013) Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc 135:4596–4599

    Article  CAS  Google Scholar 

  233. Tanaka R, Yamashita M, Nozaki K (2009) Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J Am Chem Soc 131:14168–14169

    Article  CAS  Google Scholar 

  234. Hull JF, Himeda Y, Wang WH, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4:383–388

    Article  CAS  Google Scholar 

  235. Wang WH, Hull JF, Muckerman JT, Fujita E, Himeda Y (2012) Second-coordination-sphere and electronic effects enhance iridium(III)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure. Energy Environ Sci 5:7923–7926

    Article  CAS  Google Scholar 

  236. Yam VWW, Tang RPL, Wong KMC, Cheung KK (2001) Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes. Organometallics 20:4476–4482

    Article  CAS  Google Scholar 

  237. Yang QZ, Wu LZ, Wu ZX, Zhang LP, Tung CH (2002) Long-lived emission from platinum(II) terpyridyl acetylide complexes. Inorg Chem 41:5653–5655

    Article  CAS  Google Scholar 

  238. Moore GE (1975) Progress in digital integrated electronics. In: 1975 international electron devices meeting IEEE text speech. pp 11–13

    Google Scholar 

  239. Orgiu E, Samorì P (2014) 25th Anniversary article: organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices. Adv Mater 26:1827–1845

    Article  CAS  Google Scholar 

  240. Hartley GS (1937) The cis-form of azobenzene. Nature 140:281

    Article  CAS  Google Scholar 

  241. Griffiths J (1972) II. Photochemistry of azobenzene and its derivatives. Chem Soc Rev 1:481–493

    Article  CAS  Google Scholar 

  242. Nishihara H (2005) Combination of redox- and photochemistry of azo-conjugated metal complexes. Coord Chem Rev 249:1468–1475

    Article  CAS  Google Scholar 

  243. Bandara HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41:1809–1825

    Article  CAS  Google Scholar 

  244. Fihey A, Perrier A, Browne WR, Jacquemin D (2015) Multiphotochromic molecular systems. Chem Soc Rev 44:3719–3759

    Article  CAS  Google Scholar 

  245. Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100:1777–1788

    Article  CAS  Google Scholar 

  246. Hasegawa Y, Nakagawa T, Kawai T (2010) Recent progress of luminescent metal complexes with photochromic units. Coord Chem Rev 254:2643–2651

    Article  CAS  Google Scholar 

  247. Ko CC, Yam VWW (2010) Transition metal complexes with photochromic ligands – photosensitization and photoswitchable properties. J Mater Chem 20:2063–2070

    Article  CAS  Google Scholar 

  248. Dugave C, Demange L (2003) Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 103:2475–2532

    Article  CAS  Google Scholar 

  249. Polo AS, Itokazu MK, Frin KM, Patrocínio AOT, Iha NYM (2006) Light driven trans-to-cis isomerization of stilbene-like ligands in fac-[Re(CO)3(NN)(trans-L)]+ and luminescence of their photoproducts. Coord Chem Rev 250:1669–1680

    Article  CAS  Google Scholar 

  250. Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716

    Article  CAS  Google Scholar 

  251. Myles AJ, Branda NR (2002) 1,2-Dithienylethene photochromes and non-destructive erasable memory. Adv Funct Mater 12:167–173

    Article  CAS  Google Scholar 

  252. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277

    Article  CAS  Google Scholar 

  253. Berkovic G, Krongauz V, Weiss V (2000) Spiropyrans and spirooxazines for memories and switches. Chem Rev 100:1741–1754

    Article  CAS  Google Scholar 

  254. Guerchais V, Ordronneau L, Le Bozec H (2010) Recent developments in the field of metal complexes containing photochromic ligands: modulation of linear and nonlinear optical properties. Coord Chem Rev 254:2533–2545

    Article  CAS  Google Scholar 

  255. Zhang J, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25:378–399

    Article  CAS  Google Scholar 

  256. Yokoyama Y (2000) Fulgides for memories and switches. Chem Rev 100:1717–1740

    Article  CAS  Google Scholar 

  257. Whitten DG, Zamegar PP (1971) Photochemistry of ruthenium complexes. Ligand isomerization via orbitally different excited states. J Am Chem Soc 93:3776–3777

    Article  CAS  Google Scholar 

  258. Zamegar PP, Bock CR, Whitten DG (1973) Photoreactions of transition metal complexes. Ligand reactivity as a probe for excited-state characterization. J Am Chem Soc 95:4367–4372

    Article  Google Scholar 

  259. Wrighton M, Morse DL (1974) Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes. J Am Chem Soc 96:998–1003

    Article  CAS  Google Scholar 

  260. Wrighton MS, Morse DL, Pdungsap L (1975) Intraligand lowest excited states in tricarbonylhalobis(styrylpyridine)rhenium(I) complexes. J Am Chem Soc 97:2073–2079

    Article  CAS  Google Scholar 

  261. Yam VWW, Lau VCY, Cheung KK (1995) Synthesis, photophysics and photochemistry of novel luminescent rhenium(I) photoswitchable materials. J Chem Soc Chem Commun 259–261

    Google Scholar 

  262. Yam VWW, Ko CC, Wu LX, Wong KMC, Cheung KK (2000) Syntheses, crystal structure, and photochromic properties of rhenium(I) complexes containing the spironaphthoxazine moiety. Organometallics 19:1820–1822

    Article  CAS  Google Scholar 

  263. Ko CC, Wu LX, Wong KMC, Zhu N, Yam VWW (2004) Synthesis, characterization and photochromic studies of spirooxazine-containing 2,2′-bipyridine ligands and their rhenium(I) tricarbonyl complexes. Chem Eur J 10:766–776

    Article  CAS  Google Scholar 

  264. Yam VWW, Ko CC, Zhu N (2004) Photochromic and luminescence switching properties of a versatile diarylethene-containing 1,10-phenanthroline ligand and its rhenium(I) complex. J Am Chem Soc 126:12734–12735

    Article  CAS  Google Scholar 

  265. Jukes RTF, Adamo V, Hartl F, Belser P, De Cola L (2004) Photochromic dithienylethene derivatives containing Ru(II) or Os(II) metal units. Sensitized photocyclization from triplet state. Inorg Chem 43:2779–2792

    Article  CAS  Google Scholar 

  266. Ko CC, Kwok WM, Yam VWW, Phillips DL (2006) Triplet MLCT photosensitization of the ring-closing reaction of diarylethenes by design and synthesis of a photochromic rhenium(I) complex of a diarylethene-containing 1,10-phenanthroline ligand. Chem Eur J 12:5840–5848

    Article  CAS  Google Scholar 

  267. Sakamoto R, Kume S, Sugimoto M, Nishihara H (2009) Transcis photoisomerization of azobenzene-conjugated dithiolato-bipyridine platinum(II) complexes: extension of photoresponse to longer wavelengths and photocontrollable tristability. Chem Eur J 15:1429–1439

    Article  CAS  Google Scholar 

  268. Hasegawa Y, Takahashi K, Kume S, Nishihara H (2011) Complete solid state photoisomerization of bis(dipyrazolylstyrylpyridine)iron(II) to change magnetic properties. Chem Commun 47:6846–6848

    Article  CAS  Google Scholar 

  269. Lin JL, Chen CW, Sun SS, Lees AJ (2011) Photoswitching tetranuclear rhenium(I) tricarbonyl diimine complexes with a stilbene-like bridging ligand. Chem Commun 47:6030–6032

    Article  CAS  Google Scholar 

  270. Baik C, Wand S (2011) Inhibiting olefin cis, trans-photoisomerization and enhancing electron-accepting ability of a diboryl compound by metal chelation. Chem Commun 47:9432–9434

    Article  CAS  Google Scholar 

  271. Amar A, Savel P, Akdas-Kilig H, Katan C, Meghezzi H, Boucekkine A, Malval JP, Fillaut JL (2015) Photoisomerisation in aminoazobenzene-substituted ruthenium(II) tris(bipyridine) complexes: influence of the conjugation pathway. Chem Eur J 21:8262–8270

    Article  CAS  Google Scholar 

  272. Park JS, Lifschitz AM, Young RM, Mendez-Arroyo JM, Wasielewski MR, Stern CL, Mirkin CA (2013) Modulation of electronics and thermal stabilities of photochromic phosphino–aminoazobenzene derivatives in weak-link approach coordination complexes. J Am Chem Soc 135:16988–16996

    Article  CAS  Google Scholar 

  273. Irie M, Masaaki M (1988) Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem 53:803–808

    Article  CAS  Google Scholar 

  274. Kellogg RM, Groen MB, Wynberg H (1967) Photochemically induced cyclization of some furyl- and thienylethenes. J Org Chem 32:3093–3100

    Article  CAS  Google Scholar 

  275. Irie M, Sakemura K, Okinaka M, Uchida K (1995) Photochromism of dithienylethenes with electron-donating substituents. J Org Chem 60:8305–8309

    Article  CAS  Google Scholar 

  276. Matsuda K, Irie M (2000) A diarylethene with two nitronyl nitroxides: photoswitching of intramolecular magnetic interaction. J Am Chem Soc 122:7195–7201

    Article  CAS  Google Scholar 

  277. Irie M, Kobatake S, Horichi M (2001) Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291:1769–1772

    Article  CAS  Google Scholar 

  278. Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420:759–760

    Article  CAS  Google Scholar 

  279. Higashiguchi K, Matsuda K, Irie M (2003) Photochromic reaction of a fused dithienylethene: multicolor photochromism. Angew Chem Int Ed 42:3537–3540

    Article  CAS  Google Scholar 

  280. Kobatake S, Takami S, Muto H, Ishikawa T, Irie M (2007) Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446:778–781

    Article  CAS  Google Scholar 

  281. Lucas LN, van Esch J, Kellogg RM, Feringa BL (1998) A new class of photochromic 1,2-diarylethenes; synthesis and switching properties of bis(3-thienyl)cyclopentenes. Chem Commun 21:2313–2314

    Article  Google Scholar 

  282. De Jong JJD, Lucas LN, Kellogg RM, van Esch JH, Feringa BL (2004) Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304:278–281

    Article  CAS  Google Scholar 

  283. Areephong J, Kudernac T, De Jong JJD, Carroll GT, Pantorott D, Hjelm J, Browne WR, Feringa BL (2008) On/off photoswitching of the electropolymerizability of terthiophenes. J Am Chem Soc 130:12850–12851

    Article  CAS  Google Scholar 

  284. Uchida K, Sukata SI, Matsuzawa Y, Akazawa M, De Jong JJD, Katsonis N, Kojima Y, Nakamura S, Areephong J, Meetsma A, Feringa BL (2008) Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. Chem Commun 326–328

    Google Scholar 

  285. van Dijken DJ, Beierle JM, Stuart MCA, Szymański W, Browne WR, Feringa BL (2014) Autoamplification of molecular chirality through the induction of supramolecular chirality. Angew Chem Int Ed 53:5073–5077

    Google Scholar 

  286. Tsivgoulis GM, Lehn JM (1995) Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory. Angew Chem Int Ed Engl 34:1119–1122

    Article  CAS  Google Scholar 

  287. Gilat SL, Kawai SH, Lehn JM (1995) Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species. Chem Eur J 1:275–284

    Article  CAS  Google Scholar 

  288. Kawai SH, Gilat SL, Ponsinet R, Lehn JM (1995) A dual-mode molecular switching device: bisphenolic diarylethenes with integrated photochromic and electrochromic properties. Chem Eur J 1:285–293

    Article  CAS  Google Scholar 

  289. Norsten TB, Branda NR (2001) Photoregulation of fluorescence in a porphyrinic dithienylethene photochrome. J Am Chem Soc 123:1784–1785

    Article  CAS  Google Scholar 

  290. Peters A, Branda NR (2003) Electrochromism in photochromic dithienylcyclopentenes. J Am Chem Soc 125:3404–3405

    Article  CAS  Google Scholar 

  291. Lemieux V, Branda NR (2005) Reactivity-gated photochromism of 1,2-dithienylethenes for potential use in dosimetry applications. Org Lett 7:2969–2972

    Article  CAS  Google Scholar 

  292. Boyer JC, Carling CJ, Gates BD, Branda NR (2010) Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J Am Chem Soc 132:15766–15772

    Article  CAS  Google Scholar 

  293. Ko CC, Lam WH, Yam VWW (2008) Photochromic oligothienoacene derivatives with photo-switchable luminescene properties and computational studies. Chem Commun 5203–5205

    Google Scholar 

  294. Wong HL, Ko CC, Lam WH, Zhu N, Yam VWW (2009) Design and synthesis of a new class of photochromic diarylethene-containing dithieno[3,2-b:2′,3′- d]pyrroles and their switchable luminescence properties. Chem Eur J 15:10005–10009

    Article  CAS  Google Scholar 

  295. Poon CT, Lam WH, Wong HL, Yam VWW (2010) A versatile photochromic dithienylethene-containing β-diketonate ligand: near-infrared photochromic behavior and photoswitchable luminescence properties upon incorporation of a boron(III) center. J Am Chem Soc 132:13992–13993

    Article  CAS  Google Scholar 

  296. Duan G, Zhu N, Yam VWW (2010) Syntheses and photochromic studies of dithienylethene-containing imidazolium derivatives and their reactivity towards nucleophiles. Chem Eur J 16:13199–13209

    Article  CAS  Google Scholar 

  297. Poon CT, Lam WH, Yam VWW (2011) Gated photochromism in triarylborane-containing dithienylethenes: a new approach to a “lock−unlock” system. J Am Chem Soc 133:19622–19625

    Article  CAS  Google Scholar 

  298. Wong HL, Wong WT, Yam VWW (2012) Photochromic thienylpyridine bis(alkynyl)borane complexes: toward readily tunable fluorescence dyes and photoswitchable materials. Org Lett 14:1862–1865

    Article  CAS  Google Scholar 

  299. Chan JCH, Lam WH, Wong HL, Wong WT, Yam VWW (2013) Tunable photochromism in air-stable, robust dithienylethene-containing phospholes through modifications at the phosphorus center. Angew Chem Int Ed 52:11504–11508

    Article  CAS  Google Scholar 

  300. Poon CT, Lam WH, Yam VWW (2013) Synthesis, photochromic, and computational studies of dithienylethene-containing β-diketonate derivatives and their near-infrared photochromic behavior upon coordination of a boron(III) center. Chem Eur J 19:3467–3476

    Article  CAS  Google Scholar 

  301. Chan JCH, Lam WH, Yam VWW (2014) A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials. J Am Chem Soc 136:16994–16997

    Article  CAS  Google Scholar 

  302. Chan JCH, Wong HL, Wong WT, Yam VWW (2015) Tunable photochromism in the robust dithienylethene-containing phospholes: design, synthesis, characterization, electrochemistry, photophysics, and photochromic studies. Chem Eur J 21:6936–6948

    Article  CAS  Google Scholar 

  303. Poon CT, Lam WH, Wong HL, Yam VWW (2015) Photochromic dithienylethene-containing triarylborane derivatives: facile approach to modulate photochromic properties with multi-addressable functions. Chem Eur J 21:2182–2192

    Article  CAS  Google Scholar 

  304. Tian H, Qin B, Yao R, Zhao X, Yang S (2003) A single photochromic molecular switch with four optical outputs probing four inputs. Adv Mater 15:2104–2107

    Article  CAS  Google Scholar 

  305. Jiang G, Wang S, Yuan W, Jiang L, Song Y, Tian H, Zhu D (2006) Highly fluorescent contrast for rewritable optical storage based on photochromic bisthienylethene-bridged naphthalimide dimer. Chem Mater 18:235–237

    Article  CAS  Google Scholar 

  306. Li W, Jiao C, Li X, Xie Y, Nakatani K, Tian H, Zhu W (2014) Separation of photoactive conformers based on hindered diarylethenes: efficient modulation in photocyclization quantum yields. Angew Chem Int Ed 53:4603–4607

    Article  CAS  Google Scholar 

  307. Li W, Li X, Xie Y, Wu Y, Li M, Wu XY, Zhu WH, Tian H (2015) Enantiospecific photoresponse of sterically hindered diarylethenes for chiroptical switches and photomemories. Sci Rep 5:9186

    Article  CAS  Google Scholar 

  308. Kawai S, Nakashima T, Atsumi K, Sakai T, Harigai M, Imamoto Y, Kamikubo H, Kataoka M, Kawai T (2007) Novel photochromic molecules based on 4,5-dithienyl thiazole with fast thermal bleaching rate. Chem Mater 19:3479–3483

    Article  CAS  Google Scholar 

  309. Nakashima T, Goto M, Kawai S, Kawai T (2008) Photomodulation of ionic interaction and reactivity: reversible photoconversion between imidazolium and imidazolinium. J Am Chem Soc 130:14570–14575

    Article  CAS  Google Scholar 

  310. Fukumoto S, Nakashima T, Kawai T (2011) Photon-quantitative reaction of a dithiazolylarylene in solution. Angew Chem Int Ed 50:1565–1568

    Article  CAS  Google Scholar 

  311. Frigoli M, Mehl GH (2005) Multiple addressing in a hybrid biphotochromic system. Angew Chem Int Ed 44:5048–5052

    Article  CAS  Google Scholar 

  312. Corredor CC, Huang ZL, Belfield KD (2006) Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene. Adv Mater 18:2910–2914

    Article  CAS  Google Scholar 

  313. Göstl R, Hecht S (2014) Controlling covalent connection and disconnection with light. Angew Chem Int Ed 53:8784–8787

    Article  CAS  Google Scholar 

  314. Yagai S, Iwai K, Yamauchi M, Karatsu T, Kitamura A, Uemura S, Morimoto M, Wang H, Würthner F (2014) Photocontrol over self-assembled nanostructures of π–π stacked dyes supported by the parallel conformer of diarylethene. Angew Chem Int Ed 53:2602–2606

    Article  CAS  Google Scholar 

  315. Li C, Yan H, Zhao LX, Zhang GF, Hu Z, Huang ZL, Zhu MQ (2014) A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio. Nat Commun 5:5709

    Article  CAS  Google Scholar 

  316. Gemayel ME, Börjesson K, Herder M, Duong DT, Hutchison JA, Ruzié C, Schweicher G, Salleo A, Geerts Y, Hecht S, Orgiu E, Samori P (2015) Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices. Nat Commun 6:6330

    Article  CAS  Google Scholar 

  317. Fernández-Acebes A, Lehn JM (1998) Optical switching and fluorescence modulation in photochromic metal complexes. Adv Mater 10:1519–1522

    Article  Google Scholar 

  318. Fernandez-Acebes A, Lehn JM (1999) Optical switching and fluorescence modulation properties of photochromic metal complexes derived from dithienylethene ligands. Chem Eur J 5:3285–3292

    Article  CAS  Google Scholar 

  319. Takayama K, Matsuda K, Irie M (2003) Photoswitching of the magnetic interaction between a copper(II) ion and a nitroxide radical by using a photochromic spin coupler. Chem Eur J 9:5605–5609

    Article  CAS  Google Scholar 

  320. Matsuda K, Shinkai Y, Irie M (2004) Photochromism of metal complexes composed of diarylethene ligands and ZnCl2. Inorg Chem 43:3774–3776

    Article  CAS  Google Scholar 

  321. Matsuda K, Takayama K, Irie M (2004) Photochromism of metal complexes composed of diarylethene ligands and Zn(II), Mn(II), and Cu(II) hexafluoroacetylacetonates. Inorg Chem 43:482–489

    Article  CAS  Google Scholar 

  322. Lee JKW, Ko CC, Wong KMC, Zhu N, Yam VWW (2007) A photochromic platinum(II) bis-(alkynyl) complex containing a versatile 5,6-dithienyl-1,10-phenanthroline. Organometallics 26:12–15

    Article  CAS  Google Scholar 

  323. Lee PHM, Ko CC, Zhu N, Yam VWW (2007) Metal coordination-assisted near-infrared photochromic behavior: a large perturbation on absorption wavelength properties of N,N-donor ligands containing diarylethene derivatives by coordination to the rhenium(I) metal center. J Am Chem Soc 129:6058–6059

    Article  CAS  Google Scholar 

  324. Ngan TW, Ko CC, Zhu N, Yam VWW (2007) Syntheses, luminescence switching, and electrochemical studies of photochromic dithienyl-1,10-phenanthroline zinc(II) bis(thiolate) complexes. Inorg Chem 46:1144–1152

    Article  CAS  Google Scholar 

  325. Yam VWW, Lee JKW, Ko CC, Zhu N (2009) Photochromic diarylethene-containing ionic liquids and N-heterocyclic carbene. J Am Chem Soc 131:912–913

    Article  CAS  Google Scholar 

  326. Duan G, Yam VWW (2010) Syntheses and photophysical properties of N-pyridylimidazol-2-ylidene tetracyanoruthenates(II) and photochromic studies of their dithienylethene-containing derivatives. Chem Eur J 16:12642–12649

    Article  CAS  Google Scholar 

  327. Wong HL, Tao CH, Zhu N, Yam VWW (2011) Photochromic alkynes as versatile building blocks for metal alkynyl systems: design, synthesis, and photochromic studies of diarylethene-containing platinum(II) phosphine alkynyl complexes. Inorg Chem 50:471–481

    Article  CAS  Google Scholar 

  328. Duan G, Wong WT, Yam VWW (2011) Synthesis and photochromic studies of η 6-mesitylene ruthenium(II) complexes bearing N-heterocyclic carbene ligands with the dithienylethene moiety. New J Chem 35:2267–2278

    Article  CAS  Google Scholar 

  329. Chan JCH, Lam WH, Wong HL, Zhu N, Wong WT, Yam VWW (2011) Diarylethene-containing cyclometalated platinum(II) complexes: tunable photochromism via metal coordination and rational ligand design. J Am Chem Soc 133:12690–12705

    Article  CAS  Google Scholar 

  330. Wong HL, Zhu N, Yam VWW (2014) Photochromic alkynylplatinum(II) diimine complexes containing a versatile dithienylethene-functionalized 2-(2′-pyridyl)imidazole ligand. J Organomet Chem 751:430–437

    Article  CAS  Google Scholar 

  331. Murguly E, Norsten TB, Branda NR (2001) Nondestructive data processing based on chiroptical 1,2-dithienylethene photochromes. Angew Chem Int Ed 40:1752–1755

    Article  CAS  Google Scholar 

  332. Norsten TB, Branda NR (2001) Axially coordinated porphyrinic photochromes for non-destructive information processing. Adv Mater 13:347–349

    Article  CAS  Google Scholar 

  333. Zhao H, Al-Atar U, Pace TCS, Bohne C, Branda NR (2008) High-contrast fluorescence switching using a photoresponsive dithienylethene coordination compound. J Photochem Photobiol A 200:74–82

    Article  CAS  Google Scholar 

  334. Tian H, Chen B, Tu H, Müllen K (2002) Novel bisthienylethene-based photochromic tetraazaporphyrin with photoregulating luminescence. Adv Mater 14:918–923

    Article  CAS  Google Scholar 

  335. Luo Q, Chen B, Wang M, Tian H (2003) Mono-bisthienylethene ring-fused versus multi-bisthienylethene ring-fused photochromic hybrids. Adv Funct Mater 13:233–239

    Article  CAS  Google Scholar 

  336. Chen S, Chen LJ, Yang HB, Tian H, Zhu W (2012) Light-triggered reversible supramolecular transformations of multi-bisthienylethene hexagons. J Am Chem Soc 134:13596–13599

    Article  CAS  Google Scholar 

  337. Munakata M, Wu LP, Kuroda-Sowa T, Maekawa M, Suenaga Y, Furuichi K (1996) Reversible photochromism of a crystalline dithienylethene copper(I) polymer. J Am Chem Soc 118:3305–3306

    Article  CAS  Google Scholar 

  338. Kim HJ, Jang JH, Choi H, Lee T, Ko J, Yoon M, Kim HJ (2008) Photoregulated fluorescence switching in axially coordinated tin(IV) porphyrinic dithienylethene. Inorg Chem 47:2411–2415

    Article  CAS  Google Scholar 

  339. Indelli MT, Carli S, Ghirotti M, Chiorboli C, Ravaglia M, Garavelli M, Scandola F (2008) Triplet pathways in diarylethene photochromism: photophysical and computational study of dyads containing ruthenium(II) polypyridine and 1,2-bis(2-methylbenzothiophene-3-yl)-maleimide units. J Am Chem Soc 130:7286–7299

    Article  CAS  Google Scholar 

  340. Tan W, Zhang Q, Zhang J, Tian H (2009) Near-infrared photochromic diarylethene iridium(III) complex. Org Lett 11:161–164

    Article  CAS  Google Scholar 

  341. Monaco S, Semeraro M, Tan W, Tian H, Ceroni P, Credi A (2012) Multifunctional switching of a photo- and electro-chemiluminescent iridium–dithienylethene complex. Chem Commun 48:8652–8654

    Article  CAS  Google Scholar 

  342. Nakagawa T, Hasegawa Y, Kawai T (2009) Nondestructive luminescence intensity readout of a photochromic lanthanide(III) complex. Chem Commun 5630–5632

    Google Scholar 

  343. Roberts MN, Carling CJ, Nagle JK, Branda NR, Wolf MO (2009) Successful bifunctional photoswitching and electronic communication of two platinum(II) acetylide bridged dithienylethenes. J Am Chem Soc 131:16644–16645

    Article  CAS  Google Scholar 

  344. Roberts MN, Nagle JK, Finden JG, Branda NR, Wolf MO (2009) Linker-dependent metal-sensitized photoswitching of dithienylethenes. Inorg Chem 48:19–21

    Article  CAS  Google Scholar 

  345. Roberts MN, Nagle JK, Majewski MB, Finden JG, Branda NR, Wolf MO (2011) Charge transfer and intraligand excited state interactions in platinum-sensitized dithienylethenes. Inorg Chem 50:4956–4966

    Article  CAS  Google Scholar 

  346. Lin Y, Yin J, Yuan J, Hu M, Li Z, Yu GA, Liu SH (2010) Synthesis, characterization, and properties of binuclear gold(I) phosphine alkynyl complexes. Organometallics 29:2808–2814

    Article  CAS  Google Scholar 

  347. Harvey EC, Areephong J, Cafolla AA, Long C, Brown WR, Feringa BL, Pryce MT (2014) Incorporating cobalt carbonyl moieties onto ethynylthiophene-based dithienylcyclopentene switches. 1. Photochemistry. Organometallics 33:447–456

    Article  CAS  Google Scholar 

  348. Zhong YW, Vilà N, Henderson JC, Flores-Torres S, Abruña HD (2007) Dinuclear transition-metal terpyridine complexes with a dithienylcyclopentene bridge directed toward molecular electronic applications. Inorg Chem 46:10470–10472

    Article  CAS  Google Scholar 

  349. Zhong YW, Vilà N, Henderson JC, Abruña HD (2009) Dithienylcyclopentenes-containing transition metal bisterpyridine complexes directed toward molecular electronic applications. Inorg Chem 48:991–999

    Article  CAS  Google Scholar 

  350. Zhong YW, Vilà N, Henderson JC, Abruña HD (2009) Transition-metal tris-bipyridines containing three dithienylcyclopentenes: synthesis, photochromic, and electrochromic properties. Inorg Chem 48:7080–7085

    Article  CAS  Google Scholar 

  351. Aubert V, Ordronneau L, Escadeillas M, Williams JAG, Boucekkine A, Coulaud E, Dragonetti C, Righetto S, Roberto D, Ugo R, Valore A, Singh A, Zyss J, Ledoux-Rak I, Le Bozec H, Guerchais V (2011) Linear and nonlinear optical properties of cationic bipyridyl iridium(III) complexes: tunable and photoswitchable? Inorg Chem 50:5027–5038

    Article  CAS  Google Scholar 

  352. Bao Z, Ng KY, Yam VWW, Ko CC, Zhu N, Wu L (2008) Syntheses, characterization, and photochromic studies of spirooxazine-containing 2,2′-bipyridine ligands and their zinc(II) thiolate complexes. Inorg Chem 47:8912–8920

    Article  CAS  Google Scholar 

  353. Li Y, Tam AYY, Wong KMC, Li W, Wu L, Yam VWW (2011) Synthesis, characterization, and the photochromic, luminescence, metallogelation and liquid-crystalline properties of multifunctional platinum(II) bipyridine complexes. Chem Eur J 17:8048–8059

    Article  CAS  Google Scholar 

  354. Paquette MM, Patrick BO, Frank NL (2011) Determining the magnitude and direction of photoinduced ligand field switching in photochromic metal–organic complexes: molybdenum−tetracarbonyl spirooxazine complexes. J Am Chem Soc 133:10081–10093

    Article  CAS  Google Scholar 

  355. Rao YL, Amame H, Wang S (2012) Photochromic four-coordinate N,C-chelate boron compounds. Coord Chem Rev 256:759–770

    Article  CAS  Google Scholar 

  356. Wang N, Ko SB, Lu JS, Chen LD, Wang S (2013) Tuning the photoisomerization of a N^C-chelate organoboron compound with a metal acetylide unit. Chem Eur J 19:5314–5323

    Article  CAS  Google Scholar 

  357. Marchi E, Baroncini M, Bergamini G, van Heyst J, Vögtle F, Ceroni P (2012) Photoswitchable metal coordinating tweezers operated by light-harvesting dendrimers. J Am Chem Soc 134:15277–15280

    Article  CAS  Google Scholar 

  358. Yao LY, Yam VWW (2015) Photoinduced isomerization-driven structural transformation between decanuclear and octadecanuclear gold(I) sulfido clusters. J Am Chem Soc 137:3506–3509

    Article  CAS  Google Scholar 

  359. Kärnbratt J, Hammarson M, Li S, Anderson HL, Albinsson B, Andréasson J (2010) Photochromic supramolecular memory with nondestructive readout. Angew Chem Int Ed 49:1854–1857

    Article  CAS  Google Scholar 

  360. Nilsson JR, O’Sullivan MC, Li S, Anderson HL, Andréasson J (2015) A photoswitchable supramolecular complex with release-and-report capabilities. Chem Commun 51:847–850

    Article  CAS  Google Scholar 

  361. Namiki K, Sakamoto A, Murata M, Kume S, Nishihara H (2007) Reversible photochromism of a ferrocenylazobenzene monolayer controllable by a single green light source. Chem Commun 4650–4652

    Google Scholar 

  362. Tanaka Y, Inagaki A, Akita M (2007) A photoswitchable molecular wire with the dithienylethene (DTE) linker, (dppe)(μ 5-C5Me5)Fe–C≡C–DTE–C≡C–Fe(μ 5-C5Me5)(dppe). Chem Commun 1169–1171

    Google Scholar 

  363. Tanaka Y, Ishisaka T, Inagaki A, Koike T, Lapinte C, Akita M (2010) Photochromic organometallics with a dithienylethene (DTE) bridge, [Y−C≡C−DTE−C≡C−Y] (Y={MCp*(dppe)}): photoswitchable molecular wire (M=Fe) versus dual photo- and electrochromism (M=Ru). Chem Eur J 16:4762–4776

    Article  CAS  Google Scholar 

  364. Motoyama K, Koike T, Akita M (2008) Remarkable switching behavior of bimodally stimuli-responsive photochromic dithienylethenes with redox-active organometallic attachments. Chem Commun 5812–5814

    Google Scholar 

  365. Lee S, You Y, Ohkubo K, Fukuzumi S, Nam W (2012) Photoelectrocatalysis to improve cycloreversion quantum yields of photochromic dithienylethene compounds. Angew Chem Int Ed 51:13154–13158

    Article  CAS  Google Scholar 

  366. Lee S, You Y, Ohkubo K, Fukuzumi S, Nam W (2014) Highly efficient cycloreversion of photochromic dithienylethene compounds using visible light-driven photoredox catalysis. Chem Sci 5:1463–1474

    Article  CAS  Google Scholar 

  367. Paquette MM, Kopelman RA, Beitler E, Frank NL (2009) Incorporating optical bistability into a magnetically bistable system: a photochromic redox isomeric complex. Chem Commun 5424–5426

    Google Scholar 

  368. Witt A, Heinemann FW, Khusniyarov MM (2015) Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism. Chem Sci 6:4599–4609

    Article  CAS  Google Scholar 

  369. Morimoto M, Miyasaka H, Yamashita M, Irie M (2009) Coordination assemblies of [Mn4] single-molecule magnets linked by photochromic ligands: photochemical control of the magnetic properties. J Am Chem Soc 131:9823–9835

    Article  CAS  Google Scholar 

  370. Pinkowicz D, Ren M, Zheng LM, Sato S, Hasegawa M, Morimoto M, Irie M, Breedlove BK, Cosquer G, Katoh K, Yamashita M (2014) Control of the single-molecule magnet behavior of lanthanide-diarylethene photochromic assemblies by irradiation with light. Chem Eur J 20:12502–12513

    Article  CAS  Google Scholar 

  371. Cosquer G, Morimoto M, Irie M, Fetoh A, Breedlove BK, Yamashita M (2015) Photo-control of the magnetic properties of Dy(III) and Ho(III) homometal coordination polymers bridged by a diarylethene ligand. Dalton Trans 44:5996–6002

    Article  CAS  Google Scholar 

  372. Nihei M, Suzuki Y, Kimura N, Kera Y, Oshio H (2013) Bidirectional photomagnetic conversions in a spin-crossover complex with a diarylethene moiety. Chem Eur J 19:6946–6949

    Article  CAS  Google Scholar 

  373. Milek M, Heinemann FW, Khusniyarov MM (2013) Spin crossover meets diarylethenes: efficient photoswitching of magnetic properties in solution at room temperature. Inorg Chem 52:11585–11592

    Article  CAS  Google Scholar 

  374. Venkataramani S, Jana U, Dommaschk M, Sönnichsen FD, Tuczek F, Herges R (2011) Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331:445–448

    Article  CAS  Google Scholar 

  375. Thies S, Sell H, Bornholdt C, Schütt C, Köhler F, Tuczek F, Herges R (2012) Light-driven coordination-induced spin-state switching: rational design of photodissociable ligands. Chem Eur J 18:16358–16368

    Article  CAS  Google Scholar 

  376. Aubert V, Guerchais V, Ishow E, Hoang-Thi K, Ledoux I, Nakatani K, Le Bozec H (2008) Efficient photoswitching of the nonlinear optical properties of dipolar photochromic zinc(II) complexes. Angew Chem Int Ed 47:577–580

    Article  CAS  Google Scholar 

  377. Nitadori H, Ordronneau L, Boixel J, Jacquemin D, Boucekkine A, Singh A, Akita M, Ledoux I, Guerchais V, Le Bozec H (2012) Photoswitching of the second-order nonlinearity of a tetrahedral octupolar multi DTE-based copper(I) complex. Chem Commun 48:10395–10397

    Article  CAS  Google Scholar 

  378. Ordronneau L, Aubert V, Guerchais V, Boucekkine A, Le Bozec H, Singh A, Ledoux I, Jacquemin D (2013) The first hexadithienylethene-substituted tris(bipyridine)metal complexes as quadratic NLO photoswitches: combined experimental and DFT studies. Chem Eur J 19:5845–5849

    Article  CAS  Google Scholar 

  379. Boixel J, Guerchais V, Le Bozec H, Jacquemin D, Amar A, Boucekkine A, Colombo A, Dragonetti C, Marinotto D, Roberto D, Righetto S, De Angelis R (2014) Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. J Am Chem Soc 136:5367–5375

    Article  CAS  Google Scholar 

  380. Petitjean A, Khoury RG, Kyritsakas N, Lehn JM (2004) Dynamic devices. Shape switching and substrate binding in ion-controlled nanomechanical molecular tweezers. J Am Chem Soc 126:6637–6647

    Article  CAS  Google Scholar 

  381. Lehn JM (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–160

    Article  CAS  Google Scholar 

  382. Greb L, Lehn JM (2014) Light-driven molecular motors: imine as four-step or two-step unidirectional rotors. J Am Chem Soc 136:13114–13117

    Article  CAS  Google Scholar 

  383. Sauvage JP (1998) Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc Chem Res 31:611–619

    Article  CAS  Google Scholar 

  384. Mobian P, Kern JM, Sauvage JP (2004) Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. Angew Chem Int Ed 43:2392–2395

    Article  CAS  Google Scholar 

  385. Champin B, Mobian P, Sauvage JP (2007) Transition metal complexes as molecular machine prototypes. Chem Soc Rev 36:358–366

    Article  CAS  Google Scholar 

  386. Durola F, Sauvage JP (2007) Fast electrochemically induced translation of the ring in a copper-complexed [2]rotaxane: the biisoquinoline effect. Angew Chem Int Ed 46:3537–3540

    Article  CAS  Google Scholar 

  387. Durot S, Reviriego F, Sauvage JP (2010) Copper-complexed catenanes and rotaxanes in motion: 15 years of molecular machines. Dalton Trans 39:10557–10570

    Article  CAS  Google Scholar 

  388. Collin JP, Dietrich-Buchecker CD, Gaviña P, Jimenez-Molero MC, Sauvage JP (2001) Shuttles and muscles: linear molecular machines based on transition metals. Acc Chem Res 34:477–487

    Article  CAS  Google Scholar 

  389. Collin JP, Durola F, Lux J, Sauvage JP (2009) A rapidly shuttling copper-complexed [2]-rotaxane with three different chelating groups in its axis. Angew Chem Int Ed 48:8532–8535

    Article  CAS  Google Scholar 

  390. Joosten A, Trolez Y, Collin JP, Heitz V, Sauvage JP (2012) Copper(I)-assembled [3]rotaxane whose two rings act as flapping wings. J Am Chem Soc 134:1802–1809

    Article  CAS  Google Scholar 

  391. Saha S, Stoddart JF (2007) Photo-driven molecular devices. Chem Soc Rev 36:77–93

    Article  CAS  Google Scholar 

  392. Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Great expectations: can artificial molecular machines deliver on their promise? Chem Soc Rev 41:19–30

    Article  CAS  Google Scholar 

  393. Bruns CJ, Stoddart JF (2014) Rotaxane-based molecular muscles. Acc Chem Res 47:2186–2199

    Article  CAS  Google Scholar 

  394. Schmittel M, De S, Pramanik S (2012) Reversible on/off nanoswitch for organocatalysis: mimicking the locking and unlocking operation of CaMKII. Angew Chem Int Ed 51:3832–3836

    Article  CAS  Google Scholar 

  395. Pramanik S, De S, Schmittel M (2014) Bidirectional chemical communication between nanomechanical switches. Angew Chem Int Ed 53:4709–4713

    Article  CAS  Google Scholar 

  396. Ballardini R, Balzani V, Credi A, Gandolfi MT, Venturi M (2001) Artificial molecular-level machines: which energy to make them work? Acc Chem Res 34:445–455

    Article  CAS  Google Scholar 

  397. Balzani V, Credi A, Silvi S, Venturi M (2006) Artificial nanomachines based on interlocked molecular species: recent advances. Chem Soc Rev 35:1135–1149

    Article  CAS  Google Scholar 

  398. Balzani V, Bergamini G, Ceroni P (2008) From the photochemistry of coordination compounds to light-powered nanoscale devices and machines. Coord Chem Rev 252:2456–2469

    Article  CAS  Google Scholar 

  399. Koumura N, Zijistra RWJ, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:152–155

    Article  CAS  Google Scholar 

  400. Feringa BL (2001) In control of motion: from molecular switches to molecular motors. Acc Chem Res 34:504–513

    Article  CAS  Google Scholar 

  401. Fletcher SP, Dumur F, Pollard MM, Feringa BL (2005) A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310:80–82

    Article  CAS  Google Scholar 

  402. Vicario J, Katsonis N, Ramon BS, Bastiaansen CWM, Broer DJ, Feringa BL (2006) Nanomotor rotates microscale objects. Nature 440:163

    Article  CAS  Google Scholar 

  403. Bonnet S, Collin JP (2008) Ruthenium-based light-driven molecular machine prototypes: synthesis and properties. Chem Soc Rev 37:1207–1217

    Article  CAS  Google Scholar 

  404. Muraoka T, Kinbara K, Kobayashi Y, Aida T (2003) Light-driven open–close motion of chiral molecular scissors. J Am Chem Soc 125:5612–5613

    Article  CAS  Google Scholar 

  405. Kinbara K, Aida T (2005) Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 105:1377–1400

    Article  CAS  Google Scholar 

  406. Muraoka T, Kinbara K, Aida T (2006) Mechanical twisting of a guest by a photoresponsive host. Nature 440:512–515

    Article  CAS  Google Scholar 

  407. Muraoka T, Kinbara K, Aida T (2006) A self-locking molecule operative with a photoresponsive key. J Am Chem Soc 128:11600–11605

    Article  CAS  Google Scholar 

  408. Durola F, Rebek J (2010) The ouroborand: a cavitand with a coordination-driven switching device. Angew Chem Int Ed 49:3189–3191

    Article  CAS  Google Scholar 

  409. Brouwer AM, Frochot C, Gatti FG, Leigh DA, Mottier L, Paolucci F, Roffia S, Wurpel GWH (2001) Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291:2124–2128

    Article  CAS  Google Scholar 

  410. Amendola V, Fabbrizzi L, Mangano C, Pallavicini P (2001) Molecular machines based on metal ion translocation. Acc Chem Res 34:488–493

    Article  CAS  Google Scholar 

  411. Hernández JV, Kay ER, Leigh DA (2004) A reversible synthetic rotary molecular motor. Science 306:1532–1537

    Article  Google Scholar 

  412. Serreli V, Lee CF, Kay ER, Leigh DA (2007) A molecular information ratchet. Nature 445:523–527

    Article  CAS  Google Scholar 

  413. Kume S, Nomoto K, Kusamoto T, Nishihara H (2009) Intramolecular electron arrangement with a rotative trigger. J Am Chem Soc 131:14198–14199

    Article  CAS  Google Scholar 

  414. Canary JW, Mortezaei S, Liang J (2010) Transition metal-based chiroptical switches for nanoscale electronics and sensors. Coord Chem Rev 254:2249–2266

    Article  CAS  Google Scholar 

  415. Nishikawa M, Nomoto K, Kume S, Nishihara H (2012) Reversible copper(II)/(I) electrochemical potential switching driven by visible light-induced coordinated ring rotation. J Am Chem Soc 134:10543–10553

    Article  CAS  Google Scholar 

  416. van Dongen SFM, Cantekin S, Elemans JAAW, Rowan AE, Nolte RJM (2014) Functional interlocked systems. Chem Soc Rev 43:99–122

    Article  Google Scholar 

  417. McConnell AJ, Wood CS, Neelakandan PP, Nitschke JR (2015) Stimuli-responsive metal–ligand assemblies. Chem Rev 115:7729–7793

    Article  CAS  Google Scholar 

  418. Li H, Fahrenbach AC, Coskun A, Zhu Z, Barin G, Zhao YL, Botros YY, Sauvage JP, Stoddart JF (2011) A light-stimulated molecular switch driven by radical–radical interactions in water. Angew Chem Int Ed 50:6782–6788

    Article  CAS  Google Scholar 

  419. Samanta SK, Schmittel M (2013) Four-component supramolecular nanorotors. J Am Chem Soc 135:18794–18797

    Article  CAS  Google Scholar 

  420. Samanta SK, Bats JW, Schmittel M (2014) A five-component nanorotor with speed regulation. Chem Commun 50:2364–2366

    Article  CAS  Google Scholar 

  421. Vicario J, Walko M, Meetsma A, Feringa BL (2006) Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J Am Chem Soc 128:5127–5135

    Article  CAS  Google Scholar 

  422. Cnossen A, Hou L, Pollard MM, Wesenhagen V, Browne WR, Feringa BL (2012) Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. J Am Chem Soc 134:17613–17619

    Article  CAS  Google Scholar 

  423. Wezenberg SJ, Cen KY, Feringa BL (2015) Visible-light-driven photoisomerization and increased rotation speed of a molecular motor acting as a ligand in a ruthenium(II) complex. Angew Chem Int Ed 54:11457–11461

    Article  CAS  Google Scholar 

  424. Zhao D, Neubauer TM, Feringa BL (2015) Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat Commun 6:6652

    Article  CAS  Google Scholar 

  425. Yamashita KI, Kawano M, Fujjita M (2007) Photoswitchable molecular lock. One-way catenation of a Pt(II)-linked coordination ring via the photolabilization of a Pt(II)–pyridine bond. J Am Chem Soc 129:1850–1851

    Article  CAS  Google Scholar 

  426. Dube H, Ajami D, Rebek J Jr (2010) Photochemical control of reversible encapsulation. Angew Chem Int Ed 49:3192–3195

    Article  CAS  Google Scholar 

  427. Heinz T, Rudkevich DM, Rebek J Jr (1998) Pairwise selection of guests in a cylindrical molecular capsule of nanometre dimensions. Nature 394:764–766

    Article  CAS  Google Scholar 

  428. Dube H, Rebek J Jr (2012) Selective guest exchange in encapsulation complexes using light of different wavelengths. Angew Chem Int Ed 51:3207–3210

    Article  CAS  Google Scholar 

  429. Han M, Michel R, He B, Chen YS, Stalke D, John M, Clever GH (2013) Light-triggered guest uptake and release by a photochromic coordination cage. Angew Chem Int Ed 52:1319–1323

    Article  CAS  Google Scholar 

  430. Lo KKW (2007) Luminescent transition metal complexes as biological labels and probes. Struct Bond 123:205–245

    Article  CAS  Google Scholar 

  431. Lo KKW, Choi AWT, Law WHT (2012) Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. Dalton Trans 41:6021–6047

    Article  CAS  Google Scholar 

  432. Yu C, Chan KHY, Wong KMC, Yam VWW (2006) Single-stranded nucleic acid-induced helical self-assembly of alkynylplatinum(II) terpyridyl complexes. Proc Natl Acad Sci U S A 103:19652–19657

    Article  CAS  Google Scholar 

  433. Yu C, Chan KHY, Wong KMC, Yam VWW (2009) Nucleic acid-induced self-assembly of a platinum(II) terpyridyl complex: detection of G-quadruplex formation and nuclease activity. Chem Commun 3756–3758

    Google Scholar 

  434. Chung CYS, Yam VWW (2013) Selective label-free detection of G-quadruplex structure of human telomere by emission spectral changes in visible-and-NIR region under physiological condition through the FRET of a two-component PPE-SO3 –Pt(II) complex ensemble with Pt⋅⋅⋅Pt, electrostatic and π–π interactions. Chem Sci 4:377–387

    Article  CAS  Google Scholar 

  435. Gill MR, Garcia-Lara J, Foster SJ, Smythe C, Battaglia G, Thomas JA (2009) A ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells. Nat Chem 1:662–667

    Article  CAS  Google Scholar 

  436. O’Connor NA, Stevens N, Samaroo D, Solomon MR, Martí AA, Dyer J, Vishwasrao H, Akins DL, Kandel ER, Turro NJ (2009) A covalently linked phenanthridine-ruthenium(II) complex as a RNA probe. Chem Commun 2640–2642

    Google Scholar 

  437. Murphy L, Congreve A, Pålsson LO, Williams JAG (2010) The time domain in co-stained cell imaging: time-resolved emission imaging microscopy using a protonatable luminescent iridium complex. Chem Commun 46:8743–8745

    Article  CAS  Google Scholar 

  438. Zhang R, Ye Z, Wang G, Zhang W, Yuan J (2010) Development of a ruthenium(II) complex based luminescent probe for imaging nitric oxide production in living cells. Chem Eur J 16:6884–6891

    Article  CAS  Google Scholar 

  439. Li C, Yu M, Sun Y, Wu Y, Huang C, Li F (2011) A nonemissive iridium(III) complex that specifically lights-up the nuclei of living cells. J Am Chem Soc 133:11231–11239

    Article  CAS  Google Scholar 

  440. Yoshihara T, Yamaguchi Y, Hosaka M, Takeuchi T, Tobita S (2012) Ratiometric molecular sensor for monitoring oxygen levels in living cells. Angew Chem Int Ed 51:4148–4151

    Article  CAS  Google Scholar 

  441. Jing J, Zhang JL (2013) Combining myeloperoxidase (MPO) with fluorogenic ZnSalen to detect lysosomal hydrogen peroxide in live cells. Chem Sci 4:2947–2952

    Article  CAS  Google Scholar 

  442. Zou T, Lum CT, Chui SSY, Che CM (2013) Gold(III) complexes containing N-heterocyclic carbene ligands: thiol “switch-on” fluorescent probes and anti-cancer agents. Angew Chem Int Ed 52:2930–2933

    Article  CAS  Google Scholar 

  443. Chung CYS, Li SPY, Louie MW, Lo KKW, Yam VWW (2013) Induced self-assembly and disassembly of water-soluble alkynylplatinum(II) terpyridyl complexes with “switchable” near-infrared (NIR) emission modulated by metal–metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent probes in cell-imaging studies. Chem Sci 4:2453–2462

    Article  CAS  Google Scholar 

  444. Tsai JLL, Zou T, Liu J, Chen T, Chan AOY, Yang C, Lok CN, Che CM (2015) Luminescent platinum(II) complexes with self-assembly and anti-cancer properties: hydrogel, pH dependent emission color and sustained-release properties under physiological conditions. Chem Sci 4:3823–3830

    Article  Google Scholar 

  445. Puckett CA, Barton JK (2007) Methods to explore cellular uptake of ruthenium complexes. J Am Chem Soc 129:46–47

    Article  CAS  Google Scholar 

  446. Puckett CA, Barton JK (2009) Fluorescein redirects a ruthenium-octaarginine conjugate to the nucleus. J Am Chem Soc 131:8738–8739

    Article  CAS  Google Scholar 

  447. Svensson FR, Matson M, Li M, Lincoln P (2010) Lipophilic ruthenium complexes with tuned cell membrane affinity and photoactivated uptake. Biophys Chem 149:102–106

    Article  CAS  Google Scholar 

  448. Zhao Q, Huang C, Li F (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40:2508–2524

    Article  CAS  Google Scholar 

  449. Fernández-Moreira V, Thorp-Greenwood FL, Coogan MP (2010) Application of d6 transition metal complexes in fluorescence cell imaging. Chem Commun 46:186–202

    Article  Google Scholar 

  450. Thorp-Greenwood FL, Balasingham RG, Coogan MP (2012) Organometallic complexes of transition metals in luminescent cell imaging applications. J Organomet Chem 714:12–21

    Article  CAS  Google Scholar 

  451. Geldmacher Y, Oleszak M, Sheldrick WS (2012) Rhodium(III) and iridium(III) complexes as anticancer agents. Inorg Chim Acta 393:84–102

    Article  CAS  Google Scholar 

  452. Stacey OJ, Pope SJA (2013) New avenues in the design and potential application of metal complexes for photodynamic therapy. RSC Adv 3:25550–25564

    Article  CAS  Google Scholar 

  453. Li SPY, Lau CTS, Louie MW, Lam YW, Cheng SH, Lo KKW (2013) Mitochondria-targeting cyclometalated iridium(III)–PEG complexes with tunable photodynamic activity. Biomaterials 34:7519–7532

    Article  CAS  Google Scholar 

  454. Moromizato S, Hisamatsu Y, Suzuki T, Matsuo Y, Abe R, Aoki S (2012) Design and synthesis of a luminescent cyclometalated iridium(III) complex having N, N-diethylamino group that stains acidic intracellular organelles and induces cell death by photoirradiation. Inorg Chem 51:12697–12706

    Article  CAS  Google Scholar 

  455. Kastl A, Wilbuer A, Merkel AL, Feng L, Fazio PD, Ocker M, Meggers E (2012) Dual anticancer activity in a single compound: visible-light-induced apoptosis by an antiangiogenic iridium complex. Chem Commun 48:1863–1865

    Article  CAS  Google Scholar 

  456. Man BYW, Chan HM, Leung CH, Chan DSH, Bai LP, Jiang ZH, Li HW, Ma DL (2011) Group 9 metal-based inhibitors of β-amyloid (1–40) fibrillation as potential therapeutic agents for Alzheimer’s disease. Chem Sci 2:917–921

    Article  CAS  Google Scholar 

  457. Schmidbaur H (1995) Ludwig Mond lecture. High-cart gold compounds. Chem Soc Rev 24:391–400

    Article  CAS  Google Scholar 

  458. Pyykkö P (1997) Strong closed-shell interactions in inorganic chemistry. Chem Rev 97:597–636

    Article  Google Scholar 

  459. Vogler A, Kunkely H (1988) Absorption and emission spectra of tetrameric gold(I) complexes. Chem Phys Lett 150:135–137

    Article  CAS  Google Scholar 

  460. Puddephatt RJ (2001) Coordination polymers: polymers, rings and oligomers containing gold(I) centres. Coord Chem Rev 216–217:313–332

    Article  Google Scholar 

  461. Yam VWW, Cheng ECC (2008) Highlights on the recent advances in gold chemistry – a photophysical perspective. Chem Soc Rev 37:1806–1813

    Article  CAS  Google Scholar 

  462. Yam VWW, Au VKM, Leung SYL (2015) Light-emitting self-assembled materials on d8 and d10 transition metal complexes. Chem Rev 115:7589–7728

    Article  CAS  Google Scholar 

  463. Balch AL (2007) Remarkable luminescence behaviors and structural variations of two-coordinate gold(I) complexes. Struct Bond 123:1–40

    Article  CAS  Google Scholar 

  464. Schmidbaur H, Schier A (2012) Aurophilic interactions as a subject of current research: an up-date. Chem Soc Rev 41:370–412

    Article  CAS  Google Scholar 

  465. He X, Lam WH, Zhu N, Yam VWW (2009) Design and synthesis of calixarene-based bis-alkynyl-bridged dinuclear AuI isonitrile complexes as luminescent ion probes by the modulation of Au⋅⋅⋅Au interactions. Chem Eur J 15:8842–8851

    Article  CAS  Google Scholar 

  466. Hau FKW, He X, Lam WH, Yam VWW (2011) Highly selective ion probe for Al3+ based on Au(I)⋅⋅⋅Au(I) interactions in a bis-alkynyl calix[4]arene Au(I) isocyanide scaffold. Chem Commun 47:8778–8780

    Article  CAS  Google Scholar 

  467. He X, Cheng ECC, Zhu N, Yam VWW (2009) Selective ion probe for Mg2+ based on Au(I)⋅⋅⋅Au(I) interactions in a tripodal alkynylgold(I) complex with oligoether pendants. Chem Commun 4016–4018

    Google Scholar 

  468. Zhou YP, Liu EB, Wang J, Chao HY (2013) Highly Ag+ selective tripodal gold(I) acetylide-based “off–on” luminescence chemosensors based on 3(ππ*) emission switching. Inorg Chem 52:8629–8637

    Article  CAS  Google Scholar 

  469. Lintang HO, Kinbara K, Tanaka K, Yamashita T, Aida T (2010) Self-repair of a one-dimensional molecular assembly in mesoporous silica by a nanoscopic template effect. Angew Chem Int Ed 49:4241–4245

    Article  CAS  Google Scholar 

  470. Lintang HO, Kinbara K, Yamashita T, Aida T (2012) Metal-ion permeation in congested nanochannels: the exposure effect of Ag+ ions on the phosphorescent properties of a gold(I)-pyrazolate complex that is confined in the nanoscopic channels of mesoporous silica. Chem Asian J 7:2068–2072

    Article  CAS  Google Scholar 

  471. Lee TKM, Zhu N, Yam VWW (2010) An unprecedented luminescent polynuclear gold(I) μ 3-sulfido cluster with a thiacrown-like architecture. J Am Chem Soc 132:17646–17648

    Article  CAS  Google Scholar 

  472. Jiang XF, Hau FKW, Sun QF, Yu SY, Yam VWW (2014) From {AuI⋅⋅⋅AuI}-coupled cages to the cage-built 2-D {AuI⋅⋅⋅AuI} arrays: AuI⋅⋅⋅AuI bonding interaction driven self-assembly and their AgI sensing and photo-switchable behavior. J Am Chem Soc 136:10921–10929

    Article  CAS  Google Scholar 

  473. Han S, Yoon YY, Jung OS, Lee YA (2011) Luminescence on–off switching via reversible interconversion between inter- and intramolecular aurophilic interactions. Chem Commun 47:10689–10691

    Article  CAS  Google Scholar 

  474. Koshevoy IO, Lin CL, Karttunen AJ, Haukka M, Shih CW, Chou PT, Tunik SP, Pakkanen TA (2011) Octanuclear gold(I) alkynyl-phosphine clusters showing thermochromic luminescence. Chem Commun 47:5533–5535

    Article  CAS  Google Scholar 

  475. Elbjeirami O, Omary MA (2007) Photochemistry of neutral isonitrile gold(I) complexes: modulation of photoreactivity by aurophilicity and π-acceptance ability. J Am Chem Soc 129:11384–11393

    Article  CAS  Google Scholar 

  476. Lei Z, Pei XL, Jiang ZG, Wang QM (2014) Cluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with gold(I) cluster. Angew Chem Int Ed 53:12771–12775

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from The University of Hong Kong under the URC Strategic Research Theme on New Materials. Financial supports from the University Grants Committee Areas of Excellence Scheme (AoE/P-03/08) and General Research Fund (GRF) (HKU 7060/12P, HKU 7051/13P, HKU 17305614, and HKU 17302414) from the Research Grants Council of Hong Kong Special Administrative Region, China, and The University of Hong Kong are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Wing-Wah Yam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wong, HL., Yeung, M.CL., Yam, V.WW. (2016). Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications. In: Mingos, D. (eds) 50 Years of Structure and Bonding – The Anniversary Volume. Structure and Bonding, vol 172. Springer, Cham. https://doi.org/10.1007/430_2015_204

Download citation

Publish with us

Policies and ethics