Skip to main content

Coordination Chemistry of Nitrosyls and Its Biochemical Implications

  • Chapter
  • First Online:
Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 153))

Abstract

A comprehensive overview is presented of the biologically relevant coordination chemistry of nitrosyls and its biochemical consequences. Representative classes of metal nitrosyls are introduced along with the structural and bonding aspects that may have consequences for the biological functioning of these complexes. Next, the biological targets and functions of nitrogen (II) oxide are discussed. Up-to-date biochemical applications of metal nitrosyls are reviewed.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/430_2013_128

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to the definition of IUPAC: A description of the bonding of π-conjugated ligands to a transition metal which involves a synergic process with donation of electrons from the filled π-orbital or lone electron pair orbital of the ligand into an empty orbital of the metal (donor–acceptor bond), together with release (back-donation) of electrons from an nd orbital of the metal (which is of π-symmetry with respect to the metal–ligand axis) into the empty π*-antibonding orbital of the ligand [7].

  2. 2.

    The labile iron pool has recently been defined by Cabantchik et al. [103] as the pool of iron labilly bound to low-molecular complexes available for redox reactions. Typical LIP concentration in the cell does not exceed 1 μM [104].

  3. 3.

    c-Jun N-terminal kinases – mitogen-activated protein kinases which are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in T cell differentiation and apoptosis. Kinase (phosphotransferase) – a type of enzyme that transfers phosphate groups from high-energy donor molecules, such as ATP, to specific substrates.

  4. 4.

    Bcl-2–associated X protein (Bax) is a pro-apoptotic Bcl-2 type protein.

Abbreviations

5C:

Five-coordinate

AAA+:

ATPases associated with diverse cellular activities

ATP:

Adenosine triphosphate

Bax:

Bcl-2-associated X protein

BIPM:

2,2′-(phenylmethylene)bis(3-methylindole)

Bu:

Butyl

Cbl:

Cobalamin

cGMP:

Cyclic guanosine monophosphate

Cp:

Cyclopentadienyl

CPMAS:

Cross polarization magic angle spinning

CuFL:

Fluorescein-copper (II) complex

Cys:

Cysteine

DETC:

Diethyl thiocarbamate

DFT:

Density functional theory

DMSO:

Dimethyl sulfoxide

DNDGIC:

Dinitrosyl–diglutathionyl–iron complex

DNIC:

Dinitrosyl iron complex

DTC:

Dithiocarbamate

EDRF:

Endothelium-derived relaxing factor

ENDOR:

Electron nuclear double beam resonance

eNOS:

Endothelial nitrogen (II) oxide synthase

EPR:

Electron paramagnetic resonance

Et:

Ethyl

FL:

Fluorescein

GAF domain:

cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA characteristic domain

GC:

Guanylate cyclase

GSH:

Glutathione

GSNO:

Nitrosoglutathione

GST:

Glutathione transferase

GTP:

Guanosine triphosphate

H2bpb:

N,N′-bis(bipyridine-2-carboxamido)-1,2-diaminobenzene

Hb:

Hemoglobin

HiPIP:

High-potential iron–sulfur protein

His:

Histidine

HOMO:

Highest occupied molecular orbital

HTH:

Helix–turn–helix

iNOS:

Cytokine-inducible nitrogen (II) oxide synthase

IR:

Infrared

IRE:

Iron responsive element

IRP:

Iron regulatory protein

IUPAC:

International Union of Pure and Applied Chemistry

LIP:

Labile iron pool

LMW:

Low molecular weight

LUMO:

Lowest unoccupied molecular orbital

Me:

Methyl

metHb:

Methemoglobin

MNIC:

Mononitrosyl iron complex

MNIP:

4-Methoxy-2-(1H-naptho[2,3-d]imidazol-2-yl)phenol

MorDTC:

Morpholyldithiocarbamate

MRP1:

Multidrug resistance-associated protein1; iron regulatory protein1

MT:

Metallothionein

MTP1:

Ferroportin1

NAD:

Nicotinamide adenine dinucleotide

naphth-enH2 :

2-Hydroxy-1-naphthaldehyde and ethylenediamine

naphth-mphH2 :

4-Methyl-o-phenylenediamine

naphth-phH2 :

o-Phenylenediamine

NHase:

Nitrile hydratase

NHE:

Normal hydrogen electrode

NIR:

Nitric oxide reductase

NMR:

Nuclear magnetic resonance

nNOS:

Neuronal nitrogen (II) oxide synthase

NO:

Nitrogen (II) oxide

NorR:

Anaerobic nitric oxide reductase transcription regulator

NOS:

Nitrogen (II) oxide synthase

NRVS:

Nuclear resonance vibrational spectroscopy

OEP:

Octaethylporphyrin

PaPy3H:

N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide

PeT:

Photoinduced electron transfer

Ph:

Phenyl

porph:

Porphyrin

PPDEH2 :

Protoporphyrin IX diester

PPh3 :

Triphenylphosphine

PPN:

3-Phenyl-2-propynenitrile

RBS:

Roussin’s black salt

RRE:

Roussin’s red salt ester

RRS:

Roussin’s red salt

RSNO:

S-nitrosothiol

S2-o-xyl:

Dianion of 1,2-phenylenedimethanethiol

SCE:

Saturated calomel electrode

Ser:

Serine

sGC:

Soluble guanylate cyclase

SNP:

Sodium nitroprusside

SoxR:

Superoxide response DNA-binding transcriptional dual regulator

SoxS:

Activator of superoxide stress genes

TCPP:

meso-tetrakis (4-carboxyphenyl) porphyrin

TMPyP:

meso-tetrakis (4-N-methylpyridinium) porphyrin

TPE:

Two photon excitation

TPP:

Tetraphenylporphyrin

TPRR′:

tris(pyrazolyl) borato ligand

TTMAPP:

meso-tetrakis [4-(N,N,N-trimethyl) aminophenyl] porphyrin

Tyr:

Tyrosine

UTR:

Untranslated region of RNA

UV–VIS:

Ultraviolet–visible spectroscopy

References

  1. Greenwood NN, Earnshaw A, Earnshaw A (1997) Chemistry of the elements. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Laane J, Ohlsen JR (1980) Characterization of nitrogen oxides by vibrational spectroscopy. In: Progress in inorganic chemistry. Wiley, New York

    Google Scholar 

  3. Ford PC, Lorkovic IM (2002) Mechanistic aspects of the reactions of nitric oxide with transition-metal complexes. Chem Rev 102:993–1018

    CAS  Google Scholar 

  4. Richter-Addo GB, Legzdins P (1992) Metal nitrosyls. Oxford University Press, Oxford

    Google Scholar 

  5. McCleverty JA (2004) Chemistry of nitric oxide relevant to biology. Chem Rev 104:403–418

    CAS  Google Scholar 

  6. De La Cruz C, Sheppard N (2011) A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters. Spectrochim Acta A Mol Biomol Spectrosc 78:7–28

    Google Scholar 

  7. McNaught AD, Wilkinson A (2012) IUPAC. Compendium of chemical terminology, Version 2.3.2 (the “Gold Book”). Blackwell Scientific, Oxford

    Google Scholar 

  8. Scheidt WR, Barabanschikov A et al (2010) Electronic structure and dynamics of nitrosyl porphyrins. Inorg Chem 49:6240–6252

    CAS  Google Scholar 

  9. Zavarine IS, Kini AD et al (1998) Photochemistry of nitrosyl metalloporphyrins: mechanisms of the photoinduced release and recombination of NO. J Phys Chem B 102:7287–7292

    CAS  Google Scholar 

  10. Brockway LO, Anderson JS (1937) The molecular structures of iron nitrosocarbonyl Fe (NO)2 (CO)2 and cobalt nitrosocarbonyl Co(NO)(CO)3. Trans Faraday Soc 33:1233–1239

    CAS  Google Scholar 

  11. Dai RJ, Ke SC (2007) Detection and determination of the Fe(NO)2 core vibrational features in dinitrosyl-iron complexes from experiment, normal coordinate analysis, and density functional theory: an avenue for probing the nitric oxide oxidation state. J Phys Chem B 111:2335–2346

    CAS  Google Scholar 

  12. Brock CP, Collman JP et al (1973) Bent vs. linear nitrosyl paradox. Infrared and X-ray photoelectron spectra of dichloronitrosylbis (L)cobalt (II) and crystal structure with L = diphenylmethylphosphine. Inorg Chem 12:1304–1313

    CAS  Google Scholar 

  13. Haymore BL, Ibers JA (1975) Linear vs. bent nitrosyl ligands in four-coordinate transition metal complexes. Structure of dinitrosylbis (triphenylphosphine)osmium (−II) hemibenzene, Os (NO)2 (P (C6H5)3)2·1/2C6H6. Inorg Chem 14:2610–2617

    CAS  Google Scholar 

  14. Lin ZS, Chiou TW et al (2012) A dinitrosyliron complex within the homoleptic Fe(NO)4 anion: NO as nitroxyl and nitrosyl ligands within a single structure. Inorg Chem 51:10092–10094

    CAS  Google Scholar 

  15. Peterson ES, Larsen RD, Abbott EH (1988) Crystal and molecular structures of potassium aquatetrakis (nitrito)nitrosylplatinate (IV), a blue, mononuclear platinum complex with a bent nitrosyl group, and of potassium trichlorobis (nitrito)nitrosylplatinate (IV). Inorg Chem 27:3514–3518

    CAS  Google Scholar 

  16. Calderon JL, Fontana S et al (1976) The crystal structure of tris-cyclopentadienyldimanganese trisnitrosyl; a compound containing unsymmetrically bonded bridging nitrosyl groups. Inorg Chim Acta 17:L31–L32

    CAS  Google Scholar 

  17. Calderon JL, Cotton FA et al (1971) Molecular structure of an unusual binuclear manganese complex with highly unsymmetrical nitrosyl bridges. J Chem Soc D 1476–1477

    Google Scholar 

  18. Norton JR, Collman JP et al (1972) Preparation and structure of ruthenium and osmium nitrosyl carbonyl clusters containing double-nitrosyl bridges. Inorg Chem 11:382–388

    CAS  Google Scholar 

  19. Yan B, Xie Y et al (2009) (Cyclopentadienyl)nitrosylmanganese compounds: the original molecules containing bridging nitrosyl groups. Eur J Inorg Chem 2009:3982–3992

    Google Scholar 

  20. Müller J, Manzoni de Oliveira G, Sonn I (1988) Reaktionen von Nitrosylkomplexen: VIII. Ein alternativer Weg zu Cp3Co3(μ3NO)2 sowie Synthese des isoelektronischen clusters Cp3Co2Fe(μ3NH)(μ3NO). J Organomet Chem 340:C15–C18

    Google Scholar 

  21. Terrile C, Nascimento OR et al (1990) On the electronic structure of metastable nitroprusside ion in Na2[Fe(CN)5NO]·2H2O. A comparative single crystal ESR study. Solid State Commun 73:481–486

    CAS  Google Scholar 

  22. Maier G, Reisenauer HP, De Marco M (2000) Isomerizations between nitrosyl halides X-N=O and isonitrosyl halides X-O-N: a matrix-spectroscopic study. Chem Eur J 6:800–808

    CAS  Google Scholar 

  23. Connelly NG, Hartshorn RM et al (2005) Nomenclature of inorganic chemistry. In: IUPAC recommendations, 1990. N. G. Con. Royal Society of Chemistry, London

    Google Scholar 

  24. Reginato N, McCrory CTC et al (1999) Synthesis, X-ray crystal structure, and solution behavior of Fe (NO)2 (1-MeIm)2: implications for nitrosyl non-heme-iron complexes with g = 2.03. J Am Chem Soc 121:10217–10218

    CAS  Google Scholar 

  25. Enemark JH, Feltham RD (1974) Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord Chem Rev 13:339–406

    CAS  Google Scholar 

  26. Ozawa S, Fujii H, Morishima I (1992) NMR studies of iron (II) nitrosyl Pi-cation radicals of octaethylchlorin and octaethylisobacteriochlorin as models for reaction intermediate of nitrite reductase. J Am Chem Soc 114:1548–1554

    CAS  Google Scholar 

  27. Afshar RK, Patra AK et al (2004) Syntheses, structures, and reactivities of (Fe-NO)6 nitrosyls derived from polypyridine-carboxamide ligands: photoactive NO-donors and reagents for S-nitrosylation of alkyl thiols. Inorg Chem 43:5736–5743

    CAS  Google Scholar 

  28. Praneeth VKK, Nather C et al (2006) Spectroscopic properties and electronic structure of five- and six-coordinate iron (II) porphyrin NO complexes: effect of the axial N-donor ligand. Inorg Chem 45:2795–2811

    CAS  Google Scholar 

  29. Eroy-Reveles AA, Hoffman-Luca CG, Mascharak PK (2007) Formation of a triply bridged Mu-Oxo Diiron (III) core stabilized by two deprotonated carboxamide groups upon photorelease of NO from a [Fe-NO]6 iron nitrosyl. Dalton Trans 5268–5274

    Google Scholar 

  30. Hoffman-Luca CG, Eroy-Reveles AA et al (2009) Syntheses, structures, and photochemistry of manganese nitrosyls derived from designed Schiff base ligands: potential NO donors that can be activated by near-infrared light. Inorg Chem 48:9104–9111

    CAS  Google Scholar 

  31. Horsken A, Zheng G et al (1998) Iron dinitrosyl complexes of TCNE: a synthetic, X-ray crystallographic, high field NMR and electrochemical study. J Organomet Chem 558:1–9

    CAS  Google Scholar 

  32. Rose MJ, Mascharak PK (2009) Photosensitization of Ruthenium nitrosyls to red light with an isoelectronic series of heavy-atom chromophores: experimental and density functional theory studies on the effects of O-, S- and Se-substituted coordinated dyes. Inorg Chem 48:6904–6917

    CAS  Google Scholar 

  33. Sandala GM, Hopmann KH et al (2011) Calibration of DFT functionals for the prediction of Fe Mossbauer spectral parameters in iron-nitrosyl and iron-sulfur complexes: accurate geometries prove essential. J Chem Theory Comput 7:3232–3247

    CAS  Google Scholar 

  34. Conradie J, Hopmann KH, Ghosh A (2010) Understanding the unusually straight: a search for MO insights into linear {FeNO}7 units. J Phys Chem B 114:8517–8524

    CAS  Google Scholar 

  35. Hopmann KH, Ghosh A, Noodleman L (2009) Density functional theory calculations on mossbauer parameters of nonheme iron nitrosyls. Inorg Chem 48:9155–9165

    CAS  Google Scholar 

  36. Ghosh P, Bill E et al (2007) The molecular and electronic structure of the electron transfer series [Fe2(NO)2(S2C2R2)3] (z) (z = 0, -1, -2; R = phenyl, p-tolyl, p-tert-butylphenyl). Inorg Chem 46:2612–2618

    CAS  Google Scholar 

  37. Conradie J, Ghosh A (2006) Iron (III)-nitro porphyrins: theoretical exploration of a unique class of reactive molecules. Inorg Chem 45:4902–4909

    CAS  Google Scholar 

  38. Wondimagegn T, Ghosh A (2001) A quantum chemical survey of metalloporphyrin-nitrosyl linkage isomers: insights into the observation of multiple FeNO conformations in a recent crystallographic determination of nitrophorin 4. J Am Chem Soc 123:5680–5683

    CAS  Google Scholar 

  39. Sizova OV, Sokolov AY et al (2007) Quantum chemical study of the bond orders in the ruthenium, diruthenium and dirhodium nitrosyl complexes. Polyhedron 26:4680–4690

    CAS  Google Scholar 

  40. Feltham RD, Nyholm RS (1965) Metal nitrosyls. VI. Some new six-coordinate mononitrosyl complexes of cobalt. Inorg Chem 4:1334–1339

    CAS  Google Scholar 

  41. Herberhold M, Razavi A (1972) Tetranitrosylchromium[Cr(NO)4]. Angew Chem Int Ed Engl 11:1092–1094

    CAS  Google Scholar 

  42. Roussin ML (1858) Recherches sur les Nitrosulfures Doubles de Fer. (Nouvelle classe de sels.). Ann Chim Phys 52:285

    Google Scholar 

  43. Tinberg CE, Tonzetich ZJ et al (2010) Characterization of iron dinitrosyl species formed in the reaction of nitric oxide with a biological Rieske center. J Am Chem Soc 132:18168–18176

    CAS  Google Scholar 

  44. Wang R, Camacho-Fernandez MA et al (2009) Neutral and reduced Roussin’s red salt ester [Fe2 μ-RS)2(NO)4] (R = N-Pr, T-Bu, 6-Methyl-2-Pyridyl and 4,6-Dimethyl-2-Pyrimidyl): synthesis, X-ray crystal structures, spectroscopic, electrochemical and density functional theoretical investigations. Dalton Trans 777–786

    Google Scholar 

  45. Liu JG, Li MH (1989) Roussin red methyl ester, a tumor promoter isolated from pickled vegetables. Carcinogenesis 10:617–620

    CAS  Google Scholar 

  46. Janczyk A, Wolnicka-Glubisz A et al (2004) NO-dependent phototoxicity of Roussin’s black salt against cancer cells. Nitric Oxide 10:42–50

    CAS  Google Scholar 

  47. Mitchell JB, Wink DA et al (1993) Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res 53:5845–5848

    CAS  Google Scholar 

  48. Bourassa J, DeGraff W et al (1997) Photochemistry of Roussin’s red salt, Na2[Fe2S2 (NO)4], and of Roussin’s black salt, NH4[Fe4S3 (NO)7]. in situ nitric oxide generation to sensitize γ-radiation induced cell death. J Am Chem Soc 119:2853–2860

    CAS  Google Scholar 

  49. Butler AR, Glidewell C et al (1985) Formation of paramagnetic mononuclear iron nitrosyl complexes from diamagnetic di- and tetranuclear iron-sulphur nitrosyls: characterisation by EPR spectroscopy and study of thiolate and nitrosyl ligand exchange reactions. Polyhedron 4:797–809

    CAS  Google Scholar 

  50. Wanat A, Schneppensieper T et al (2002) Kinetics, mechanism, and spectroscopy of the reversible binding of nitric oxide to aquated iron (II). An undergraduate text book reaction revisited. Inorg Chem 41:4–10

    CAS  Google Scholar 

  51. Butler AR, Glidewell C, Li MH (1988) Nitrosyl complexes of iron-sulfur clusters. In: Sykes AG (ed) Advances in inorganic chemistry, vol 32. Academic, London

    Google Scholar 

  52. Connelly NG, Gardner C (1976) Simple halogenonitrosyl anions of iron. J Chem Soc Dalton Trans 1525–1527

    Google Scholar 

  53. Lu TT, Chiou SJ et al (2006) Mononitrosyl tris(thiolate) iron complex [Fe(NO) (SPh)3]- and dinitrosyl iron complex [(EtS)2Fe(NO)2]-: formation pathway of dinitrosyl iron complexes (DNICs) from nitrosylation of biomimetic rubredoxin [Fe(SR)4]2-/1- (R = Ph, Et). Inorg Chem 45:8799–8806

    CAS  Google Scholar 

  54. Tonzetich ZJ, McQuade LE, Lippard SJ (2010) Detecting and understanding the roles of nitric oxide in biology. Inorg Chem 49:6338–6348

    CAS  Google Scholar 

  55. Henry Y, Ducrocq C et al (1991) Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J 20:1–15

    CAS  Google Scholar 

  56. Singel DJ, Lancaster JR Jr (1996) Electron paramagnetic resonance spectroscopy and nitric oxide biology. In: Feelisch M, Stamler JS (eds) Methods in nitric oxide research. Wiley, Chichester

    Google Scholar 

  57. van Faassen E, Vanin AF (2007) Radicals for life: the various forms of nitric oxide. Elsevier, Amsterdam

    Google Scholar 

  58. Bouton C, Drapier JC (2003) Iron regulatory proteins as NO signal transducers. Sci STKE 182:pe17

    Google Scholar 

  59. Turella P, Pedersen JZ et al (2003) Glutathione transferase superfamily behaves like storage proteins for dinitrosyl-diglutathionyl-iron complex in heterogeneous systems. J Biol Chem 278:42294–42299

    CAS  Google Scholar 

  60. De Maria F, Pedersen JZ et al (2003) The specific interaction of dinitrosyl-diglutathionyl-iron complex, a natural NO carrier, with the glutathione transferase superfamily: suggestion for an evolutionary pressure in the direction of the storage of nitric oxide. J Biol Chem 278:42283–42293

    Google Scholar 

  61. Vanin AF (1998) Dinitrosyl iron complexes and S-nitrosothiols are two possible forms for stabilization and transport of nitric oxide in biological systems. Biochemistry 63:782–793

    CAS  Google Scholar 

  62. Vanin AF, Malenkova IV, Serezhenkov VA (1997) Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and electron paramagnetic resonance studies. Nitric Oxide 1:191–203

    CAS  Google Scholar 

  63. Stubauer G, Giuffre A, Sarti P (1999) Mechanism of S-nitrosothiol formation and degradation mediated by copper ions. J Biol Chem 274:28128–28133

    CAS  Google Scholar 

  64. Lim MD, Capps KB et al (2005) Further evidence supporting an inner sphere mechanism in the NO reduction of the copper (II) complex Cu (dmp)2 2+ (dmp= 2,9-dimethyl-1,10-phenanthroline). Nitric Oxide 12:244–251

    CAS  Google Scholar 

  65. Ueno T, Suzuki Y et al (2002) In vivo nitric oxide transfer of a physiological NO carrier, dinitrosyl dithiolato iron complex, to target complex. Biochem Pharmacol 63:485–493

    CAS  Google Scholar 

  66. Wiegant FA, Malyshev IY et al (1999) Dinitrosyl iron complexes with thiol-containing ligands and S-nitroso-D, L-penicillamine as inductors of heat shock protein synthesis in H35 hepatoma cells. FEBS Lett 455:179–182

    CAS  Google Scholar 

  67. Manukhina EB, Smirin BV et al (2002) [Nitric oxide storage in the cardiovascular system]. Izv Akad Nauk Ser Biol 585–596

    Google Scholar 

  68. Boese M, Mordvintcev PI et al (1995) S-nitrosation of serum albumin by dinitrosyl-iron complex. J Biol Chem 270:29244–29249

    CAS  Google Scholar 

  69. Mulsch A, Mordvintcev P et al (1991) The potent vasodilating and guanylyl cyclase activating dinitrosyl-iron (II) complex is stored in a protein-bound form in vascular tissue and is released by thiols. FEBS Lett 294:252–256

    CAS  Google Scholar 

  70. Henry Y, Lepoivre M et al (1993) EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 7:1124–1134

    CAS  Google Scholar 

  71. Alencar JL, Chalupsky K et al (2003) Inhibition of arterial contraction by dinitrosyl-iron complexes: critical role of the thiol ligand in determining rate of nitric oxide (NO) release and formation of releasable NO stores by S-nitrosation. Biochem Pharmacol 66:2365–2374

    CAS  Google Scholar 

  72. Mulsch A (1994) Nitrogen monoxide transport mechanisms. Arzneimittelforschung 44:408–411

    CAS  Google Scholar 

  73. Vanin AF, Mordvintcev PI et al (1993) The relationship between L-arginine-dependent nitric oxide synthesis, nitrite release and dinitrosyl-iron complex formation by activated macrophages. Biochim Biophys Acta 1177:37–42

    CAS  Google Scholar 

  74. Cooper CE (1999) Nitric oxide and iron proteins. Biochim Biophys Acta 1411:290–309

    CAS  Google Scholar 

  75. Richardson DR, Lok HC (2008) The nitric oxide-iron interplay in mammalian cells: transport and storage of dinitrosyl iron complexes. Biochim Biophys Acta 1780:638–651

    CAS  Google Scholar 

  76. Lewandowska H, Stepkowski TM et al (2012) Coordination of iron ions in the form of histidinyl dinitrosyl complexes does not prevent their genotoxicity. Bioorg Med Chem 20:6732–6738

    CAS  Google Scholar 

  77. Lewandowska H, Kalinowska M et al (2011) Nitrosyl iron complexes-synthesis, structure and biology. Dalton Trans 40:8273–8289

    CAS  Google Scholar 

  78. Hieber W, Nast R (1940) Uber Stickoxydverbindungen von Nickel[I]- und Eisen[I]-halogeniden. Z Anorg Allg Chem 244:23–47

    CAS  Google Scholar 

  79. Cotton FA (2013) Progress in inorganic chemistry. Wiley, New York

    Google Scholar 

  80. Herberhold M, Kremnitz W et al (1982) Solution and matrix photochemistry of the isoelectronic series of a ‘half -sandwich’ carbonyl (η5-Cyclopentadienyl)nitrosyl complexes of manganese, chromium, and vanadium, [M (η5-C5H5)(CO)3(NO)] (n= 0, M = Mn; n= 1, M = Cr; n= 2, M = V). J Chem Soc Dalton Trans 1261–1273

    Google Scholar 

  81. Haller KJ, Enemark JH (1978) Structural chemistry of the {CoNO}8 Group. III. The structure of N, N′-Ethylenebis (salicylideneiminato)nitrosylcobalt (II), Co(NO)(salen). Acta Crystallogr B 34:102–109

    Google Scholar 

  82. Collman JP, Farnham P, Dolcetti G (1971) Intramolecular redox equilibriums of cobalt-nitrosyl complexes. J Am Chem Soc 93:1788–1790

    CAS  Google Scholar 

  83. Pierpont CG, Van Derveer DG et al (1970) Ruthenium complex having both linear and bent nitrosyl groups. J Am Chem Soc 92:4760–4762

    CAS  Google Scholar 

  84. Martin RL, Taylor D (1976) Bending of linear nitric oxide ligands in four-coordinate transition metal complexes. Crystal and molecular structure of dinitrosyldithioacetylacetonatocobalt(−I), Co(NO)2. Inorg Chem 15:2970–2976

    CAS  Google Scholar 

  85. Henry Y, Giussani A, Ducastel B (1997) Nitric oxide research from chemistry to biology: EPR spectroscopy of nitrosylated compounds. Springer, Berlin

    Google Scholar 

  86. Tsai FT, Chiou SJ et al (2005) Dinitrosyl iron complexes (DNICs) [L2Fe(NO)2]- (L = Thiolate): interconversion among {Fe (NO)2}9 DNICs, {Fe(NO)2}10 DNICs, and [2Fe-2S] clusters, and the critical role of the thiolate ligands in regulating NO release of DNICs. Inorg Chem 44:5872–5881

    CAS  Google Scholar 

  87. Vithayathil AJ, Ternberg JL, Commoner B (1965) Changes in electron spin resonance signals of rat liver during chemical carcinogenesis. Nature 207:1246–1249

    CAS  Google Scholar 

  88. Cleare MJ, Fritz HP, Griffith WP (1972) Vibrational spectra of nitrosyl and carbonyl complexes: nitrosylpentahalogeno complexes of osmium, ruthenium and iridium. Spectrochim Acta A Mol Spectrosc 28:2013–2018

    CAS  Google Scholar 

  89. Vanin AF, Sanina NA et al (2007) Dinitrosyl-iron complexes with thiol-containing ligands: spatial and electronic structures. Nitric Oxide 16:82–93

    CAS  Google Scholar 

  90. Woolum JC, Tiezzi E, Commoner B (1968) Electron spin resonance of iron-nitric oxide complexes with amino acids, peptides and proteins. Biochim Biophys Acta 160:311–320

    CAS  Google Scholar 

  91. Bostanci MO, Bagirici F (2007) Neuroprotection by 7-nitroindazole against iron-induced hippocampal neurotoxicity. Cell Mol Neurobiol 27:933–941

    CAS  Google Scholar 

  92. Bostanci MO, Bagirici F (2008) Nitric oxide synthesis inhibition attenuates iron-induced neurotoxicity: a stereological study. Neurotoxicology 29:130–135

    CAS  Google Scholar 

  93. Gupta A, Sharma S, Chopra K (2008) Reversal of iron-induced nephrotoxicity in rats by molsidomine, a nitric oxide donor. Food Chem Toxicol 46:537–543

    CAS  Google Scholar 

  94. Kadkhodaee M, Gol A (2004) The role of nitric oxide in iron-induced rat renal injury. Hum Exp Toxicol 23:533–536

    CAS  Google Scholar 

  95. Feger F, Ferry-Dumazet H et al (2001) Role of iron in tumor cell protection from the pro-apoptotic effect of nitric oxide. Cancer Res 61:5289–5294

    CAS  Google Scholar 

  96. Watts RN, Richardson DR (2002) The mechanism of nitrogen monoxide (NO)-mediated iron mobilization from cells. NO intercepts iron before incorporation into ferritin and indirectly mobilizes iron from ferritin in a glutathione-dependent manner. Eur J Biochem 269:3383–3392

    CAS  Google Scholar 

  97. Watts RN, Hawkins C et al (2006) Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proc Natl Acad Sci USA 103:7670–7675

    CAS  Google Scholar 

  98. Fass U, Panickar K et al (2004) The role of glutathione in nitric oxide donor toxicity to SN56 cholinergic neuron-like cells. Brain Res 1005:90–100

    CAS  Google Scholar 

  99. Ueno T, Yoshimura T (2000) The physiological activity and in vivo distribution of dinitrosyl dithiolato iron complex. Jpn J Pharmacol 82:95–101

    CAS  Google Scholar 

  100. Boese M, Keese MA et al (1997) Inhibition of glutathione reductase by dinitrosyl-iron-dithiolate complex. J Biol Chem 272:21767–21773

    CAS  Google Scholar 

  101. Becker K, Savvides SN et al (1998) Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers. Nat Struct Biol 5:267–271

    CAS  Google Scholar 

  102. Vlasova MA, Vanin AF et al (2003) Detection and description of various stores of nitric oxide store in vascular wall. Bull Exp Biol Med 136:226–230

    CAS  Google Scholar 

  103. Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes (1). Free Radic Biol Med 33:1037–1046

    CAS  Google Scholar 

  104. Lipinski P, Drapier JC et al (2000) Intracellular iron status as a hallmark of mammalian cell susceptibility to oxidative stress: a study of L5178Y mouse lymphoma cell lines differentially sensitive to H2O2. Blood 95:2960–2966

    CAS  Google Scholar 

  105. Denninger JW, Marletta MA (1999) Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1411:334–350

    CAS  Google Scholar 

  106. Kubrina LN, Mikoyan VD et al (1993) Iron potentiates bacterial lipopolysaccharide-induced nitric oxide formation in animal organs. Biochim Biophys Acta 1176:240–244

    CAS  Google Scholar 

  107. Vanin AF, Men’shikov GB et al (1992) The source of non-heme iron that binds nitric oxide in cultivated macrophages. Biochim Biophys Acta 1135:275–279

    CAS  Google Scholar 

  108. Riley RF, Ho L (1962) Evidence for a pentacyanonitrosyl complex of molybdenum. J Inorg Nuclear Chem 24:1121–1127

    CAS  Google Scholar 

  109. Szaciłowski K, Oszajca J et al (2001) Photochemistry of the [Fe(CN)5N(O)SR]3- complex: a mechanistic study. J Photochem Photobiol A 143:93–262

    Google Scholar 

  110. Costanzo S, Ménage S et al (2001) Re-examination of the formation of dinitrosyl–iron complexes during reaction of S-nitrosothiols with Fe (II). Inorg Chim Acta 318:1–7

    CAS  Google Scholar 

  111. Baltusis LM, Karlin KD et al (1980) Synthesis and structure of Fe(L′H)(NO)2, a tetracoordinate complex having a twelve-membered chelate ring, and its conversion to pentacoordinate FeL′ (NO) through formal loss of “HNO” (L′ = SCH2CH2NMeCH2CH2CH2NMeCH2CH2S-). Inorg Chem 19:2627–2632

    CAS  Google Scholar 

  112. Szaci+éowski K, Macyk W et al (2000) Ligand and medium controlled photochemistry of iron and ruthenium mixed-ligand complexes: prospecting for versatile systems. Coord Chem Rev 208:277–297

    Google Scholar 

  113. Crayston JA, Glidewell C, Lambert RJ (1990) Redox properties of iron-sulphur-nitrosyl complexes: exploratory electrochemistry of mononuclear, dinuclear and tetranuclear complexes. Polyhedron 9:1741–1746

    CAS  Google Scholar 

  114. Wang PG, Xian M et al (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134

    CAS  Google Scholar 

  115. Jaworska M, Stasicka Z (2004) Structure and UV–vis spectroscopy of nitrosylthiolatoferrate mononuclear complexes. J Organomet Chem 689:1702–1713

    CAS  Google Scholar 

  116. Kennedy MC, Antholine WE, Beinert H (1997) An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J Biol Chem 272:20340–20347

    CAS  Google Scholar 

  117. Bryar TR, Eaton DR (1992) Electronic configuration and structure of paramagnetic iron dinitrosyl complexes. Can J Chem 70:1917–1926

    CAS  Google Scholar 

  118. Harrop TC, Tonzetich ZJ et al (2008) Reactions of synthetic [2Fe-2S] and [4Fe-4S] clusters with nitric oxide and nitrosothiols. J Am Chem Soc 130:15602

    CAS  Google Scholar 

  119. Sanina NA, Rakova OA et al (2004) Structure of the neutral mononuclear dinitrosyl iron complex with 1,2,4-triazole-3-thione[Fe(SC2H3N3)(SC2H2N3)(NO)2]·0.5 H2O. Mendeleev Commun 14:7–8

    Google Scholar 

  120. Sanina NA, Aldoshin SM (2004) Functional models of [Fe–S] nitrosyl proteins. Russ Chem Bull Int Ed 53:2428

    Google Scholar 

  121. Davies SC, Evans DJ et al (2002) J Chem Soc Dalton Trans 2473

    Google Scholar 

  122. Tsou CC, Lu TT, Liaw WF (2007) EPR, UV–vis, IR, and X-ray demonstration of the anionic dimeric dinitrosyl iron complex[(NO)2Fe(micro-S(t)Bu)2Fe(NO)2]-: relevance to the products of nitrosylation of cytosolic and mitochondrial aconitases, and high-potential iron proteins. J Am Chem Soc 129:12626–12627

    CAS  Google Scholar 

  123. Vanin AF, Stukan RA, Manukhina EB (1996) Physical properties of dinitrosyl iron complexes with thiol-containing ligands in relation with their vasodilator activity. Biochim Biophys Acta 1295:5–12

    Google Scholar 

  124. Vanin AF (1991) Endothelium-derived relaxing factor is a nitrosyl iron complex with thiol ligands. FEBS Lett 289:1–3

    CAS  Google Scholar 

  125. Michael D, Mingos P, Sherman DJ (1989) Transition metal nitrosyl complexes. In: Sykes AG (ed) Advances in inorganic chemistry, vol 34. Academic, London

    Google Scholar 

  126. Lu TT, Tsou CC et al (2008) Anionic Roussin’s Red Esters (RREs) syn-/anti-[Fe(μ-SEt)(NO)2]2-: the critical role of thiolate ligands in regulating the transformation of RREs into dinitrosyl iron complexes and the anionic RREs. Inorg Chem 47:6040–6050

    CAS  Google Scholar 

  127. Hung MC, Tsai MC et al (2006) Transformation and structural discrimination between the neutral {Fe(NO)2}10 dinitrosyliron complexes (DNICs) and the anionic/cationic {Fe(NO)2}9 DNICs. Inorg Chem 45:6041–6047

    CAS  Google Scholar 

  128. Yeh SW, Lin CW et al (2012) Insight into the dinuclear {Fe(NO)2}10{Fe (NO)2}10 and mononuclear {Fe(NO)2}10 dinitrosyliron complexes. Inorg Chem 51:4076–4087

    CAS  Google Scholar 

  129. Tsou CC, Liaw WF (2011) Transformation of the {Fe (NO)2}9 dinitrosyl iron complexes (DNICs) into S-nitrosothiols (RSNOs) triggered by acid–base pairs. Chemistry 17:13358–13366

    CAS  Google Scholar 

  130. Lin ZS, Lo FC et al (2011) Peptide-bound dinitrosyliron complexes (DNICs) and neutral/reduced-form Roussin’s Red Esters (RREs/rRREs): understanding nitrosylation of [Fe-S] clusters leading to the formation of DNICs and RREs using a de novo design strategy. Inorg Chem 50:10417–10431

    CAS  Google Scholar 

  131. Lu TT, Lai SH et al (2011) Discrimination of mononuclear and dinuclear dinitrosyl iron complexes (DNICs) by S K-edge X-ray absorption spectroscopy: insight into the electronic structure and reactivity of DNICs. Inorg Chem 50:5396–5406

    CAS  Google Scholar 

  132. Tsai FT, Chen PL, Liaw WF (2010) Roles of the distinct electronic structures of the {Fe(NO)2}9 and {Fe(NO)2}10 dinitrosyliron complexes in modulating nitrite binding modes and nitrite activation pathways. J Am Chem Soc 132:5290–5299

    CAS  Google Scholar 

  133. Tsai FT, Kuo TS, Liaw WF (2009) Dinitrosyl iron complexes (DNICs) bearing O-bound nitrito ligand: reversible transformation between the six-coordinate {Fe (NO)2}9[(1-MeIm)2(eta(2)-ONO)Fe(NO)2] (g = 2.013) and four-coordinate {Fe (NO)2}9[ (1-MeIm)(ONO)Fe(NO)2] (g = 2.03). J Am Chem Soc 131:3426–3427

    CAS  Google Scholar 

  134. Harrop TC, Song D, Lippard SJ (2006) Interaction of nitric oxide with tetrathiolato iron (II) complexes: relevance to the reaction pathways of iron nitrosyls in sulfur-rich biological coordination environments. J Am Chem Soc 128:3528–3529

    CAS  Google Scholar 

  135. Thomas JT, Robertson JH, Cox EG (1958) The crystal structure of Roussin’s red ethyl ester. Acta Crystallogr 11:599–604

    CAS  Google Scholar 

  136. Tsai ML, Hsieh CH, Liaw WF (2007) Dinitrosyl iron complexes (DNICs) containing S/N/O ligation: transformation of Roussin’s red ester into the neutral {Fe(NO)2}10 DNICs. Inorg Chem 46:5110–5117

    CAS  Google Scholar 

  137. Lu TT, Huang HW, Liaw WF (2009) Anionic mixed thiolate-sulfide-bridged Roussin’s red esters [(NO)2Fe(μ-SR)(μ-S)Fe(NO)2]- (R = Et, Me, Ph): a key intermediate for transformation of dinitrosyl iron complexes (DNICs) to [2Fe-2S] clusters. Inorg Chem 48:9027–9035

    CAS  Google Scholar 

  138. Sanina NA, Filipenko OS et al (2000) Influence of the cation on the properties of binuclear iron nitrosyl complexes. Synthesis and crystal structure of [Pr4nN]2[Fe2S2 (NO)4]. Russ Chem Bull 49:1109–1112

    CAS  Google Scholar 

  139. Collins DJ, Zhou HC (2011) Iron-sulfur models of protein active sites. In: Encyclopedia of inorganic and bioinorganic chemistry. Wiley, New York

    Google Scholar 

  140. King RB, Bitterwolf TE (2000) Metal carbonyl analogues of iron–sulfur clusters found in metalloenzyme chemistry. Coord Chem Rev 206–207:563–579

    Google Scholar 

  141. Noodleman L, Pique ME et al (2007) Iron-sulfur clusters: properties and functions. In: Wiley encyclopedia of chemical biology. Wiley, New York

    Google Scholar 

  142. Kurihara T, Mihara H et al (2003) Assembly of iron-sulfur clusters mediated by cysteine desulfurases, IscS, CsdB and CSD, from Escherichia coli. Biochim Biophys Acta Proteins Proteomics 1647:303–309

    CAS  Google Scholar 

  143. Ballmann J, Albers A et al (2008) A synthetic analogue of Rieske-type [2Fe-2S] clusters. Angew Chem Int Ed 47:9537–9541

    CAS  Google Scholar 

  144. Sharma VS, Traylor TG et al (1987) Reaction of nitric oxide with heme proteins and model compounds of hemoglobin. Biochemistry 26:3837–3843

    CAS  Google Scholar 

  145. Pavlos CM, Xu H, Toscano JP (2005) Photosensitive precursors to nitric oxide. Curr Top Med Chem 5:637–647

    CAS  Google Scholar 

  146. Tonzetich ZJ, Do LH, Lippard SJ (2009) Dinitrosyl iron complexes relevant to Rieske cluster nitrosylation. J Am Chem Soc 131:7964–7965

    CAS  Google Scholar 

  147. Foster MW, Cowan JA (1999) Chemistry of nitric oxide with protein-bound iron sulfur centers. Insights on physiological reactivity. J Am Chem Soc 121:4093–4100

    CAS  Google Scholar 

  148. Mitra D, Pelmenschikov V et al (2011) Dynamics of the [4Fe-4S] cluster in pyrococcus furiosus D14C ferredoxin via nuclear resonance vibrational and resonance Raman spectroscopies, force field simulations, and density functional theory calculations. Biochemistry 50:5220–5235

    CAS  Google Scholar 

  149. Huang HW, Tsou CC et al (2008) New members of a class of dinitrosyliron complexes (DNICs): interconversion and spectroscopic discrimination of the anionic {Fe(NO)2}9[(NO)2Fe(C3H3N2)2]- and[(NO)2Fe(C3H3N2)(SR)]- (C3H3N2 = deprotonated imidazole; R = tBu, Et, Ph). Inorg Chem 47:2196–2204

    CAS  Google Scholar 

  150. Tsai ML, Liaw WF (2006) Neutral {Fe(NO)2}9 dinitrosyliron complex (DNIC)[ (SC6H4-o-NHCOPh)(Im)Fe(NO)2] (Im = Imidazole): interconversion among the anionic/neutral {Fe(NO)2}9 DNICs and Roussin’s red ester. Inorg Chem 45:6583–6585

    CAS  Google Scholar 

  151. Chen TN, Lo FC et al (2006) Dinitrosyl iron complexes [E5Fe(NO)2]- (E = S, Se): a precursor of Roussin’s black salt [Fe4E3(NO)7]-. Inorg Chim Acta 359:2525–2533

    CAS  Google Scholar 

  152. Chen HW, Lin CW et al (2005) Homodinuclear iron thiolate nitrosyl compounds [(ON)Fe(S, S-C6H4)2Fe(NO)2]- and [(ON)Fe(SO2, S-C6H4)(S, S-C6H4)Fe(NO)2] with {Fe(NO)}7-{Fe (NO)2–9 electronic coupling: new members of a class of dinitrosyl iron complexes. Inorg Chem 44:3226–3232

    CAS  Google Scholar 

  153. Rogers PA, Eide L et al (2003) Reversible inactivation of E. coli endonuclease III via modification of its [4Fe-4S] cluster by nitric oxide. DNA Repair 2:809–817

    CAS  Google Scholar 

  154. Crack JC, Smith LJ et al (2010) Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like proteins. J Am Chem Soc 133:1112–1121

    Google Scholar 

  155. Crack JC, den Hengst CD et al (2009) Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 48:12252–12264

    CAS  Google Scholar 

  156. Smith LJ, Stapleton MR et al (2010) Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem J 432:417–427

    CAS  Google Scholar 

  157. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    CAS  Google Scholar 

  158. Cassoly R, Gibson QH (1975) Conformation, cooperativity and ligand binding in human hemoglobin. J Mol Biol 91:301–313

    CAS  Google Scholar 

  159. Sharma VS, Ranney HM (1978) The dissociation of NO from nitrosylhemoglobin. J Biol Chem 253:6467–6472

    CAS  Google Scholar 

  160. Kharitonov VG, Sharma VS et al (1997) Kinetics of nitric oxide dissociation from five- and six-coordinate nitrosyl hemes and heme proteins, including soluble guanylate cyclase. Biochemistry 36:6814–6818

    CAS  Google Scholar 

  161. Moore EG, Gibson QH (1976) Cooperativity in the dissociation of nitric oxide from hemoglobin. J Biol Chem 251:2788–2794

    CAS  Google Scholar 

  162. Hoshino M, Ozawa K et al (1993) Photochemistry of nitric oxide adducts of water-soluble iron (III) porphyrin and ferrihemoproteins studied by nanosecond laser photolysis. J Am Chem Soc 115:9568–9575

    CAS  Google Scholar 

  163. Ascenzi P, Coletta M et al (1994) Nitric oxide binding to ferrous native horse heart cytochrome c and to its carboxymethylated derivative: A spectroscopic and thermodynamic study. J Inorg Biochem 53:273–280

    CAS  Google Scholar 

  164. Hoshino M, Maeda M et al (1996) Studies on the reaction mechanism for reductive nitrosylation of ferrihemoproteins in buffer solutions. J Am Chem Soc 118:5702–5707

    CAS  Google Scholar 

  165. Sharma VS, Isaacson RA et al (1983) Reaction of nitric oxide with heme proteins: studies on metmyoglobin, opossum methemoglobin, and microperoxidase. Biochemistry 22:3897–3902

    CAS  Google Scholar 

  166. Sharpe MA, Cooper CE (1998) Reactions of nitric oxide with mitochondrial cytochrome C: a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J 332(Pt 1):9–19

    CAS  Google Scholar 

  167. Osipov AN, Borisenko GG, Vladimirov YA (2007) Biological activity of hemoprotein nitrosyl complexes. Biochemistry 72:1491–1504

    CAS  Google Scholar 

  168. Khrapova NV, Malenkova IV, Vanin AF (1995) S-nitrosothiols and dinitrosothiol iron complexes as a source of nitric oxide in animals. Biofizika 40:117–121

    CAS  Google Scholar 

  169. Shumaev KB, Kosmachevskaya OV et al (2008) Dinitrosyl iron complexes bind with hemoglobin as markers of oxidative stress. Methods Enzymol 436:445–461

    CAS  Google Scholar 

  170. Timoshin AA, Vanin AF et al (2007) Protein-bound dinitrosyl-iron complexes appearing in blood of rabbit added with a low-molecular dinitrosyl-iron complex: EPR studies. Nitric Oxide 16:286–293

    CAS  Google Scholar 

  171. Kadish KM, Smith KM, Guillard R (2000) Binding and activation of nitric oxide by metalloporphyrins and heme. In: Kadish KM, Smith KM, Guillard R (eds) The porphyrin handbook. Academic, New York

    Google Scholar 

  172. Wyllie GR, Scheidt WR (2002) Solid-state structures of metalloporphyrin NOx compounds. Chem Rev 102:1067–1090

    CAS  Google Scholar 

  173. Goodrich LE, Paulat F et al (2010) Electronic structure of heme-nitrosyls and its significance for nitric oxide reactivity, sensing, transport, and toxicity in biological systems. Inorg Chem 49:6293–6316

    CAS  Google Scholar 

  174. Sulok CD, Bauer JL et al (2012) A detailed investigation into the electronic structures of macrocyclic iron (II)-nitrosyl compounds and their similarities to ferrous heme-nitrosyls. Inorg Chim Acta 380:148–160

    CAS  Google Scholar 

  175. Praneeth VK, Neese F, Lehnert N (2005) Spin density distribution in five- and six-coordinate iron (II)-porphyrin NO complexes evidenced by magnetic circular dichroism spectroscopy. Inorg Chem 44:2570–2572

    CAS  Google Scholar 

  176. Larkworthy LF, Sengupta SK (1991) Mononitrosyl derivatives of iron and cobalt complexes of quadridentate ligands from 2-hydroxy-1-naphthaldehyde and ethylenediamine, O-phenylenediamine, and 4-methyl-O-phenylenediamine. Inorg Chim Acta 179:157–160

    CAS  Google Scholar 

  177. Groombridge CJ, Larkworthy LF et al (1992) Synthesis and 15N nuclear magnetic resonance shift tensors of bent nitrosyl complexes with N-substituted salicylideneiminate coligands; the shift tensor as a criterion of MNO bond angle. J Chem Soc Dalton Trans 3125–3131

    Google Scholar 

  178. Zeng W, Silvernail NJ et al (2005) Direct probe of iron vibrations elucidates NO activation of heme proteins. J Am Chem Soc 127:11200–11201

    CAS  Google Scholar 

  179. Sage JT et al (2001) Nuclear resonance vibrational spectroscopy of a protein active-site mimic. J Phys Condens Matter 13:7707

    Google Scholar 

  180. Wolfgang S (2004) Nuclear resonant spectroscopy. J Phys Condens Matter 16:S497

    Google Scholar 

  181. Lehnert N, Galinato MG et al (2010) Nuclear resonance vibrational spectroscopy applied to [Fe (OEP) (NO)]: the vibrational assignments of five-coordinate ferrous heme-nitrosyls and implications for electronic structure. Inorg Chem 49:4133–4148

    CAS  Google Scholar 

  182. Ellison MK, Schulz CE, Scheidt WR (2000) Structural and electronic characterization of nitrosyl (octaethylporphinato)iron (III) perchlorate derivatives. Inorg Chem 39:5102–5110

    CAS  Google Scholar 

  183. Ellison MK, Schulz CE, Scheidt WR (2002) Nitrosyliron (III) porphyrinates: porphyrin core conformation and FeNO geometry. Any correlation? J Am Chem Soc 124:13833–13841

    CAS  Google Scholar 

  184. Ellison MK, Scheidt WR (1998) Tilt/asymmetry in nitrosyl metalloporphyrin complexes the cobalt case. Inorg Chem 37:382–383

    CAS  Google Scholar 

  185. Richter-Addo GB, Wheeler RA et al (2001) Unexpected nitrosyl-group bending in six-coordinate[M(NO)]6 sigma-bonded aryl (iron) and -(ruthenium) porphyrins. J Am Chem Soc 123:6314–6326

    CAS  Google Scholar 

  186. Guilard R, Lagrange G et al (1985) Reactions of sigma-bonded alkyl- and aryliron porphyrins with nitric oxide. Synthesis and electrochemical characterization of six-coordinate nitrosyl sigma-bonded alkyl- and aryliron porphyrins. Inorg Chem 24:3649–3656

    CAS  Google Scholar 

  187. Nasri H, Ellison MK et al (1997) Sharing the π-bonding. An iron porphyrin derivative with trans, π-accepting axial ligands. Synthesis, EPR and Mössbauer spectra, and molecular structure of two forms of the complex nitronitrosyl(α, α, α, α-tetrakis(o-pivalamidophenyl)- porphinato)ferrate(II). J Am Chem Soc 119:6274–6283

    CAS  Google Scholar 

  188. Wyllie GR, Schulz CE, Scheidt WR (2003) Five- to six-coordination in (nitrosyl)iron (II) porphyrinates: effects of binding the sixth ligand. Inorg Chem 42:5722–5734

    CAS  Google Scholar 

  189. Mason J, Larkworthy LF, Moore EA (2002) Nitrogen NMR spectroscopy of metal nitrosyls and related compounds. Chem Rev 102:913–934

    CAS  Google Scholar 

  190. Kadish KM, Caemelbecke EV (2007) Electrochemistry of metalloporphyrins in nonaqueous media. In: Encyclopedia of electrochemistry. Wiley-VCH, New York

    Google Scholar 

  191. Li CG, Rand MJ (1993) Effects of hydroxocobalamin and haemoglobin on NO-mediated relaxations in the rat anococcygeus muscle. Clin Exp Pharmacol Physiol 20:633–640

    CAS  Google Scholar 

  192. Rajanayagam MAS, Li CG, Rand MJ (1993) Differential effects of hydroxocobalamin on NO-mediated relaxations in rat aorta and anococcygeus muscle. Br J Pharmacol 108:3–5

    CAS  Google Scholar 

  193. Rand MJ, Li CG (1993) Differential effects of hydroxocobalamin on relaxations induced by nitrosothiols in rat aorta and anococcygeus muscle. Eur J Pharmacol 241:249–254

    CAS  Google Scholar 

  194. Jenkinson KM, Reid JJ, Rand MJ (1995) Hydroxocobalamin and haemoglobin differentiate between exogenous and neuronal nitric oxide in the rat gastric fundus. Eur J Pharmacol 275:145–152

    CAS  Google Scholar 

  195. De Man JG, Boeckxstaens GE et al (1995) Comparison of the pharmacological profile of S-nitrosothiols, nitric oxide and the nitrergic neurotransmitter in the canine ileocolonic junction. Br J Pharmacol 114:1179–1184

    Google Scholar 

  196. Akinori A, Yutaka T et al (1993) Protective effects of a vitamin B12 analog, methylcobalamin, against glutamate cytotoxicity in cultured cortical neurons. Eur J Pharmacol 241:1–6

    Google Scholar 

  197. Greenberg SS, Xie J et al (1995) Hydroxocobalamin (vitamin B12a) prevents and reverses endotoxin-induced hypotension and mortality in rodents: role of nitric oxide. J Pharmacol Exp Ther 273:257–265

    CAS  Google Scholar 

  198. Wolak M, Zahl A et al (2001) Kinetics and mechanism of the reversible binding of nitric oxide to reduced cobalamin B12r (Cob(II)alamin). J Am Chem Soc 123:9780–9791

    CAS  Google Scholar 

  199. Ignarro L (2000) Nitric oxide: biology and pathobiology. Academic, San Diego

    Google Scholar 

  200. Rose MJ, Mascharak PK (2008) Photoactive ruthenium nitrosyls: effects of light and potential application as NO donors. Coord Chem Rev 252:2093–2114

    CAS  Google Scholar 

  201. McGarvey BR, Ferro AA et al (2000) Detection of the EPR spectra of NO in ruthenium (II) complexes. Inorg Chem 39:3577–3581

    CAS  Google Scholar 

  202. Callahan RW, Meyer TJ (1977) Reversible electron transfer in ruthenium nitrosyl complexes. Inorg Chem 16:574–581

    CAS  Google Scholar 

  203. Videla M, Jacinto JS et al (2006) New ruthenium nitrosyl complexes with tris(1-pyrazolyl)methane (tpm) and 2,2′-bipyridine (bpy) coligands. Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl. Inorg Chem 45:8608–8617

    CAS  Google Scholar 

  204. Roncaroli F, Videla M et al (2007) New features in the redox coordination chemistry of metal nitrosyls {M-NO+; M-NO; M-NO- (HNO)}. Coord Chem Rev 251:1903–1930

    CAS  Google Scholar 

  205. Roncaroli F, Ruggiero ME et al (2002) Kinetic, mechanistic, and DFT study of the electrophilic reactions of nitrosyl complexes with hydroxide. Inorg Chem 41:5760–5769

    CAS  Google Scholar 

  206. Patra AK, Mascharak PK (2003) A ruthenium nitrosyl that rapidly delivers NO to proteins in aqueous solution upon short exposure to UV light. Inorg Chem 42:7363–7365

    CAS  Google Scholar 

  207. Serres RG, Grapperhaus CA et al (2004) Structural, spectroscopic, and computational study of an octahedral, non-heme [Fe-NO]6–8 series: [Fe(NO) (cyclam-ac)]2+/+/0. J Am Chem Soc 126:5138–5153

    CAS  Google Scholar 

  208. Coppens P, Novozhilova I, Kovalevsky A (2002) Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chem Rev 102:861–884

    CAS  Google Scholar 

  209. Cheng L, Novozhilova I et al (2000) First observation of photoinduced nitrosyl linkage isomers of iron nitrosyl porphyrins. J Am Chem Soc 122:7142–7143

    CAS  Google Scholar 

  210. Schmitt F, Govindaswamy P et al (2008) Ruthenium porphyrin compounds for photodynamic therapy of cancer. J Med Chem 51:1811–1816

    CAS  Google Scholar 

  211. Xu N, Yi J, Richter-Addo GB (2010) Linkage isomerization in heme-NOx compounds: understanding NO, nitrite, and hyponitrite interactions with iron porphyrins. Inorg Chem 49:6253–6266

    CAS  Google Scholar 

  212. Fomitchev V, Coppens P et al (1999) Photo-induced metastable linkage isomers of ruthenium nitrosyl porphyrins. Chem Commun 2013–2014

    Google Scholar 

  213. Adman ET, Murphy ME (2001) Copper nitrite reductase. In: Encyclopedia of inorganic and bioinorganic chemistry. Wiley, New York

    Google Scholar 

  214. Kroneck PMH, Beuerle J, Schumacher (1992) Metal-dependent conversion of inorganic nitrogen and sulfur compounds. In: Sigel A, Sigel H (ed) Metal ions in biological systems: degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker, New York

    Google Scholar 

  215. Tocheva EI, Rosell FI et al (2004) Side-on copper-nitrosyl coordination by nitrite reductase. Science 304:867–870

    CAS  Google Scholar 

  216. Tocheva EI, Rosell FI et al (2007) Stable copper-nitrosyl formation by nitrite reductase in either oxidation state. Biochemistry 46:12366–12374

    CAS  Google Scholar 

  217. Paul PP, Tyeklar Z et al (1990) Isolation and X-ray structure of a dinuclear copper-nitrosyl complex. J Am Chem Soc 112:2430–2432

    CAS  Google Scholar 

  218. Gennari M, Marchio L (2009) Cu-complexes with scorpionate ligands as models for the binding sites of copper proteins. Curr Bioact Compounds 5:244–263

    CAS  Google Scholar 

  219. Averill BA (1996) Dissimilatory nitrite and nitric oxide reductases. Chem Rev 96:2951–2964

    CAS  Google Scholar 

  220. Hulse CL, Tiedje JM, Averill BA (1989) Evidence for a copper-nitrosyl intermediate in denitrification by the copper-containing nitrite reductase of Achromobacter cycloclastes. J Am Chem Soc 111:2322–2323

    CAS  Google Scholar 

  221. Adman ET, Godden JW, Turley S (1995) The structure of copper-nitrite reductase from achromobacter cycloclastes at five pH values, with NO-2 bound and with type II copper depleted. J Biol Chem 270:27458–27474

    CAS  Google Scholar 

  222. Murphy MEP, Turley S, Adman ET (1997) Structure of nitrite bound to copper-containing nitrite reductase from Alcaligenes faecalis: mechanistic implications. J Biol Chem 272:28455–28460

    CAS  Google Scholar 

  223. Kataoka K, Furusawa H et al (2000) Functional analysis of conserved aspartate and histidine residues located around the type 2 copper site of copper-containing nitri reductase. J Biochem 127:345–350

    CAS  Google Scholar 

  224. Suzuki S, Kataoka K, Yamaguchi K (2000) Metal coordination and mechanism of multicopper nitrite reductase. Acc Chem Res 33:728–735

    CAS  Google Scholar 

  225. Olesen K, Veselov A et al (1998) Spectroscopic, kinetic, and electrochemical characterization of heterologously expressed wild-type and mutant forms of copper-containing nitrite reductase from Rhodobacter sphaeroides 2.4.3. Biochemistry 37:6086–6094

    CAS  Google Scholar 

  226. Veselov A, Olesen K et al (1998) Electronic structural information from Q-band ENDOR on the type 1 and type 2 copper liganding environment in wild-type and mutant forms of copper-containing nitrite reductase. Biochemistry 37:6095–6105

    CAS  Google Scholar 

  227. Antonyuk SV, Strange RW et al (2005) Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism. Proc Natl Acad Sci USA 102:12041–12046

    CAS  Google Scholar 

  228. Ghosh S, Dey A et al (2007) Resolution of the spectroscopy versus crystallography issue for NO intermediates of nitrite reductase from Rhodobacter sphaeroides. J Am Chem Soc 129:10310–10311

    CAS  Google Scholar 

  229. Fujisawa K, Tateda A et al (2008) Structural and spectroscopic characterization of mononuclear copper (I) nitrosyl complexes: end-on versus side-on coordination of NO to copper (I). J Am Chem Soc 130:1205–1213

    CAS  Google Scholar 

  230. Woolum JC, Commoner B (1970) Isolation and identification of a paramagnetic complex from the livers of carcinogen-treated rats. Biochim Biophys Acta 201:131–140

    CAS  Google Scholar 

  231. Vanin AF, Nalbandian RM (1965) Free radicals of a new type in yeast cells. Biofizika 10:167–168

    CAS  Google Scholar 

  232. Vanin AF, Nalbandian RM (1966) Free radical states with localization of the unpaired electron on the sulfur atom in yeast cells. Biofizika 11:178–179

    CAS  Google Scholar 

  233. Maruyama T, Kataoka N et al (1971) Identification of three-line electron spin resonance signal and its relationship to ascites tumors. Cancer Res 31:179–184

    CAS  Google Scholar 

  234. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    CAS  Google Scholar 

  235. Waldman SA, Rapoport RM et al (1986) Desensitization to nitroglycerin in vascular smooth muscle from rat and human. Biochem Pharmacol 35:3525–3531

    CAS  Google Scholar 

  236. Ignarro LJ (1999) Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep 19:51–71

    CAS  Google Scholar 

  237. Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    CAS  Google Scholar 

  238. Yamamoto T, Bing RJ (2000) Nitric oxide donors. Exp Biol Med 225:200–206

    CAS  Google Scholar 

  239. Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706

    CAS  Google Scholar 

  240. Liu Q, Gross SS (1996) Binding sites of nitric oxide synthases. In: Lester P (ed) Methods in enzymology. Nitric oxide Part A: Sources and detection of NO; NO synthase, vol 268. Academic, London

    Google Scholar 

  241. del Río LA, Corp J, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    Google Scholar 

  242. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298(Pt 2):249–258

    CAS  Google Scholar 

  243. Martinez MC, Andriantsitohaina R (2009) Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 11:669–702

    CAS  Google Scholar 

  244. Myers PR, Minor RL et al (1990) Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 345:161–163

    CAS  Google Scholar 

  245. Myers PR, Guerra R, Harrison DG (1992) Release of multiple endothelium-derived relaxing factors from porcine coronary arteries. J Cardiovasc Pharmacol 20:392–400

    CAS  Google Scholar 

  246. Lancaster JR (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 91:8137–8141

    CAS  Google Scholar 

  247. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    CAS  Google Scholar 

  248. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, applications in coordination, organometallic, and bioinorganic chemistry. Wiley, New York

    Google Scholar 

  249. Le XC, Xing JZ et al (1998) Inducible repair of thymine glycol detected by an ultrasensitive assay For DNA damage. Science 280:1066–1069

    CAS  Google Scholar 

  250. Stanbury DM (1989) Reduction potentials involving inorganic free radicals in aqueous solution. In: Sykes AG (ed) Advances in inorganic chemistry, vol 33. Academic, London

    Google Scholar 

  251. Bartberger MD, Liu W et al (2002) The reduction potential of nitric oxide (NO) and its importance to NO biochemistry. Proc Natl Acad Sci USA 99:10958–10963

    CAS  Google Scholar 

  252. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    CAS  Google Scholar 

  253. Henry Y, Singel DJ (1996) Metal-nitrosyl interactions in nitric oxide biology probed by electron paramagnetic resonance spectroscopy. In: Feelisch M, Stamler JS (eds) Methods in nitric oxide research. Wiley, Chichester

    Google Scholar 

  254. Brown GC (1995) Reversible binding and inhibition of catalase by nitric oxide. Eur J Biochem 232:188–191

    CAS  Google Scholar 

  255. Bellamy TC, Griffiths C, Garthwaite J (2002) Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations. J Biol Chem 277:31801–31807

    CAS  Google Scholar 

  256. Craven PA, DeRubertis FR (1978) Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 253:8433–8443

    CAS  Google Scholar 

  257. Ignarro LJ (1990) Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol Toxicol 67:1–7

    CAS  Google Scholar 

  258. Ferrero R, Rodriguez-Pascual F (2000) Nitric oxide-sensitive guanylyl cyclase activity inhibition through cyclic GMP-dependent dephosphorylation. J Neurochem 75:2029–2039

    CAS  Google Scholar 

  259. Works CF, Jocher CJ et al (2002) Photochemical nitric oxide precursors: synthesis, photochemistry, and ligand substitution kinetics of ruthenium salen nitrosyl and ruthenium salophen nitrosyl complexes. Inorg Chem 41:3728–3739

    CAS  Google Scholar 

  260. Garbers DL, Lowe DG (1994) Guanylyl cyclase receptors. J Biol Chem 269:30741–30744

    CAS  Google Scholar 

  261. Karow DS, Pan D et al (2004) Spectroscopic characterization of the soluble guanylate cyclase-like heme domains from Vibrio cholerae and Thermoanaerobacter tengcongensis. Biochemistry 43:10203–10211

    CAS  Google Scholar 

  262. Gilles-Gonzalez MA, Gonzalez G (2005) Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses. J Inorg Biochem 99:1–22

    CAS  Google Scholar 

  263. Zhao Y, Hoganson C et al (1998) Structural changes in the heme proximal pocket induced by nitric oxide binding to soluble guanylate cyclase. Biochemistry 37:12458–12464

    CAS  Google Scholar 

  264. Paulat F, Berto TC et al (2008) Vibrational assignments of six-coordinate ferrous heme nitrosyls: new insight from nuclear resonance vibrational spectroscopy. Inorg Chem 47:11449–11451

    CAS  Google Scholar 

  265. Cary SPL, Winger JA et al (2006) Nitric oxide signaling: no longer simply on or off. Trends Biochem Sci 31:231–239

    CAS  Google Scholar 

  266. Caulton KG (1975) Synthetic methods in transition metal nitrosyl chemistry. Coord Chem Rev 14:317–355

    CAS  Google Scholar 

  267. Patel RP, Gladwin MT (2004) Physiologic, pathologic and therapeutic implications for hemoglobin interactions with nitric oxide. Free Radic Biol Med 36:399–401

    CAS  Google Scholar 

  268. Huang Z, Shiva S et al (2005) Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J Clin Invest 115:2099–2107

    CAS  Google Scholar 

  269. Lancaster JR Jr, Gaston B (2004) NO and nitrosothiols: spatial confinement and free diffusion. Am J Physiol Lung Cell Mol Physiol 287:L465–L466

    CAS  Google Scholar 

  270. Robinson JM, Lancaster JR Jr (2005) Hemoglobin-mediated, hypoxia-induced vasodilation via nitric oxide: mechanism(s) and physiologic versus pathophysiologic relevance. Am J Respir Cell Mol Biol 32:257–261

    CAS  Google Scholar 

  271. Sanina NA, Syrtsova LA et al (2007) Reactions of sulfur-nitrosyl iron complexes of “g=2.03” family with hemoglobin (Hb): kinetics of Hb-NO formation in aqueous solutions. Nitric Oxide 16:181–188

    CAS  Google Scholar 

  272. Brunelli L, Yermilov V, Beckman JS (2001) Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic Biol Med 30:709–714

    CAS  Google Scholar 

  273. Giuffre A, Barone MC et al (2000) Reaction of nitric oxide with the turnover intermediates of cytochrome C oxidase: reaction pathway and functional effects. Biochemistry 39:15446–15453

    CAS  Google Scholar 

  274. Cooper CE (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem Sci 27:33–39

    CAS  Google Scholar 

  275. Blackmore RS, Greenwood C, Gibson QH (1991) Studies of the primary oxygen intermediate in the reaction of fully reduced cytochrome oxidase. J Biol Chem 266:19245–19249

    CAS  Google Scholar 

  276. Doyle MP, Herman JG, Dykstra RL (1985) Autocatalytic oxidation of hemoglobin induced by nitrite: activation and chemical inhibition. J Free Radic Biol Med 1:145–153

    CAS  Google Scholar 

  277. Spagnuolo C, Rinelli P et al (1987) Oxidation reaction of human oxyhemoglobin with nitrite: a reexamination. Biochim Biophys Acta 911:59–65

    CAS  Google Scholar 

  278. Doyle MP, Pickering RA et al (1981) Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J Biol Chem 256:12393–12398

    CAS  Google Scholar 

  279. Antonini E, Brunori M et al (1966) Preparation and kinetic properties of intermediates in the reaction of hemoglobin with ligands. J Biol Chem 241:3236–3238

    CAS  Google Scholar 

  280. Gray RD, Gibson QH (1971) The effect of inositol hexaphosphate on the kinetics of CO and O2 binding by human hemoglobin. J Biol Chem 246:7168–7174

    CAS  Google Scholar 

  281. Gray RD, Gibson QH (1971) The binding of carbon monoxide to and chains in tetrameric mammalian hemoglobin. J Biol Chem 246:5176–5178

    CAS  Google Scholar 

  282. Wang QZ, Jacobs J et al (1991) Nitric oxide hemoglobin in mice and rats in endotoxic shock. Life Sci 49:L55–L60

    Google Scholar 

  283. Arnold EV, Bohle DS (1996) Isolation and oxygenation reactions of nitrosylmyoglobins. In: Lester P (ed) Methods in enzymology. Nitric oxide Part B: Physiological and pathological processes, vol 269. Academic, London

    Google Scholar 

  284. Addison AW, Stephanos JJ (1986) Nitrosyliron (III) hemoglobin: autoreduction and spectroscopy. Biochemistry 25:4104–4113

    CAS  Google Scholar 

  285. Yonetani T, Yamamoto H et al (1972) Electromagnetic properties of hemoproteins: V. Optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin-apohemoprotein complexes. J Biol Chem 247:2447–2455

    CAS  Google Scholar 

  286. Salerno JC (1996) Nitric oxide complexes of metalloproteins: an introductory overview. In: Lancaster JR Jr (ed) Nitric oxide: principles and actions. Academic, San Diego

    Google Scholar 

  287. Le Brun NE, Andrews SC et al (1997) Interaction of nitric oxide with non-haem iron sites of Escherichia coli bacterioferritin: reduction of nitric oxide to nitrous oxide and oxidation of iron (II) to iron (III). Biochem J 326:173–179

    Google Scholar 

  288. Lee M, Arosio P et al (1994) Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins. Biochemistry 33:3679–3687

    CAS  Google Scholar 

  289. Kim HR, Kim TH et al (2012) Direct detection of tetrahydrobiopterin (BH4) and dopamine in rat brain using liquid chromatography coupled electrospray tandem mass spectrometry. Biochem Biophys Res Commun 419:632–637

    CAS  Google Scholar 

  290. Nelson MJ (1987) The nitric oxide complex of ferrous soybean lipoxygenase-1. Substrate, pH, and ethanol effects on the active-site iron. J Biol Chem 262:12137–12142

    CAS  Google Scholar 

  291. Rubbo H, Parthasarathy S et al (1995) Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives. Arch Biochem Biophys 324:15–25

    CAS  Google Scholar 

  292. Kennedy MC, Gan T et al (1993) Metallothionein reacts with Fe2+ and NO to form products with a g = 2.039 ESR signal. Biochem Biophys Res Commun 196:632–635

    CAS  Google Scholar 

  293. Flint DH, Allen RM (1996) Iron-sulfur proteins with nonredox functions. Chem Rev 96:2315–2334

    CAS  Google Scholar 

  294. Brzoska K, Meczynska S, Kruszewski M (2006) Iron-sulfur cluster proteins: electron transfer and beyond. Acta Biochim Pol 53:685–691

    CAS  Google Scholar 

  295. Cheung PY, Danial H et al (1998) Thiols protect the inhibition of myocardial aconitase by peroxynitrite. Arch Biochem Biophys 350:104–108

    CAS  Google Scholar 

  296. Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269:29405–29408

    CAS  Google Scholar 

  297. Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269:29409–29415

    CAS  Google Scholar 

  298. Haile DJ, Rouault TA et al (1992) Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc Natl Acad Sci USA 89:7536–7540

    CAS  Google Scholar 

  299. Rouault TA, Stout CD et al (1991) Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications. Cell 64:881–883

    CAS  Google Scholar 

  300. Rouault TA, Haile DJ et al (1992) An iron-sulfur cluster plays a novel regulatory role in the iron-responsive element binding protein. Biometals 5:131–140

    CAS  Google Scholar 

  301. Drapier JC, Hibbs JB Jr (1996) Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis. Methods Enzymol 269:26–36

    CAS  Google Scholar 

  302. Haile DJ, Rouault TA et al (1992) Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. Proc Natl Acad Sci USA 89:11735–11739

    CAS  Google Scholar 

  303. Gardner PR, Costantino G et al (1997) Nitric oxide sensitivity of the aconitases. J Biol Chem 272:25071–25076

    CAS  Google Scholar 

  304. Pantopoulos K, Weiss G, Hentze MW (1994) Nitric oxide and the post-transcriptional control of cellular iron traffic. Trends Cell Biol 4:82–86

    CAS  Google Scholar 

  305. Soum E, Brazzolotto X et al (2003) Peroxynitrite and nitric oxide differently target the iron-sulfur cluster and amino acid residues of human iron regulatory protein 1. Biochemistry 42:7648–7654

    CAS  Google Scholar 

  306. Weiss G, Goossen B et al (1993) Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J 12:3651–3657

    CAS  Google Scholar 

  307. Drapier JC, Hirling H et al (1993) Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J 12:3643–3649

    CAS  Google Scholar 

  308. Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266:19328–19333

    CAS  Google Scholar 

  309. Navarre DA, Wendehenne D et al (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol 122:573–582

    CAS  Google Scholar 

  310. Gupta KJ, Shah JK et al (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63:1773–1784

    CAS  Google Scholar 

  311. Tortora V, Quijano C et al (2007) Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation. Free Radic Biol Med 42:1075–1088

    CAS  Google Scholar 

  312. Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4:95–102

    CAS  Google Scholar 

  313. Endo I, Nojiri M et al (2001) Fe-type nitrile hydratase. J Inorg Biochem 83:247–253

    CAS  Google Scholar 

  314. Nakasako M, Odaka M et al (1999) Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme. Biochemistry 38:9887–9898

    CAS  Google Scholar 

  315. Nagashima S, Nakasako M et al (1998) Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atoms. Nat Struct Biol 5:347–351

    CAS  Google Scholar 

  316. Huang W, Jia J et al (1997) Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure 5:691–699

    CAS  Google Scholar 

  317. Harrop TC, Olmstead MM, Mascharak PK (2004) Structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme a synthase/CO dehydrogenase: binuclear sulfur-bridged Ni-Cu and Ni-Ni complexes and their reactions with CO. J Am Chem Soc 126:14714–14715

    CAS  Google Scholar 

  318. Murakami T, Nojiri M et al (2000) Post-translational modification is essential for catalytic activity of nitrile hydratase. Protein Sci 9:1024–1030

    CAS  Google Scholar 

  319. Odaka M, Fujii K et al (1997) Activity regulation of photoreactive nitrile hydratase by nitric oxide. J Am Chem Soc 119:3785–3791

    CAS  Google Scholar 

  320. Endo I, Odaka M, Yohda M (1999) An enzyme controlled by light: the molecular mechanism of photoreactivity in nitrile hydratase. Trends Biotechnol 17:244–248

    CAS  Google Scholar 

  321. Voloshin ON, Camerini-Otero RD (2007) The ding protein from Escherichia coli is a structure-specific helicase. J Biol Chem 282:18437–18447

    CAS  Google Scholar 

  322. Shestakov AF, Shul’ga YM et al (2009) Experimental and theoretical study of the arrangement, electronic structure and properties of neutral paramagnetic binuclear nitrosyl iron complexes with azaheterocyclic thyolyls having ‘S-C-N type’ coordination of bridging ligands. Inorg Chim Acta 362:2499–2504

    CAS  Google Scholar 

  323. Nunoshiba T, DeRojas-Walker T et al (1993) Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 90:9993–9997

    CAS  Google Scholar 

  324. D’Autreaux B, Tucker NP et al (2005) A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature 437:769–772

    Google Scholar 

  325. Hidalgo E, Bollinger JM Jr et al (1995) Binuclear[2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J Biol Chem 270:20908–20914

    CAS  Google Scholar 

  326. Ding H, Demple B (2000) Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci USA 97:5146–5150

    CAS  Google Scholar 

  327. Stamler JS (1994) Cell 78:931

    CAS  Google Scholar 

  328. Butler AR, Megson IL (2002) Non-heme iron nitrosyls in biology. Chem Rev 102:1155–1166

    CAS  Google Scholar 

  329. Weinberg JB, Chen Y et al (2009) Inhibition of nitric oxide synthase by cobalamins and cobinamides. Free Radic Biol Med 46:1626–1632

    CAS  Google Scholar 

  330. Brouwer M, Chamulitrat W et al (1996) Nitric oxide interactions with cobalamins: biochemical and functional consequences. Blood 88:1857–1864

    CAS  Google Scholar 

  331. Bunn HF, Aster JC (2010) Pathophysiology of blood disorders. McGraw Hill, Boston

    Google Scholar 

  332. Sharma VS, Pilz RB et al (2003) Reactions of nitric oxide with vitamin B12 and its precursor, cobinamide. Biochemistry 42:8900–8908

    CAS  Google Scholar 

  333. Weinberg JB, Chen YC et al (2005) Cobalamins and cobinamides inhibit nitric oxide synthase enzymatic activity. Blood 106:2225

    Google Scholar 

  334. Wheatley C (2006) A scarlet pimpernel for the resolution of inflammation? The role of supra-therapeutic doses of cobalamin, in the treatment of systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or traumatic shock. Med Hypotheses 67:124–142

    CAS  Google Scholar 

  335. Wheatley C (2007) The return of the scarlet pimpernel: cobalamin in inflammation II-cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS. J Nutr Environ Med 16:181–211

    CAS  Google Scholar 

  336. Forsyth JC, Mueller PD et al (1993) Hydroxocobalamin as a cyanide antidote: safety, efficacy and pharmacokinetics in heavily smoking normal volunteers. Clin Toxicol 31:277–294

    CAS  Google Scholar 

  337. Houeto P, Borron SW et al (1996) Pharmacokinetics of hydroxocobalamin in smoke inhalation victims. Clin Toxicol 34:397–404

    CAS  Google Scholar 

  338. Sharina I, Sobolevsky M et al (2012) Cobinamides are novel coactivators of nitric oxide receptor that target soluble guanylyl cyclase catalytic domain. J Pharmacol Exp Ther 340:723–732

    CAS  Google Scholar 

  339. Lewandowska H, Brzoska K et al (2010) [Dinitrosyl iron complexes–structure and biological functions]. Postepy Biochem 56:298–304

    Google Scholar 

  340. Meczynska S, Lewandowska H et al (2008) Variable inhibitory effects on the formation of dinitrosyl iron complexes by deferoxamine and salicylaldehyde isonicotinoyl hydrazone in K562 cells. Hemoglobin 32:157–163

    CAS  Google Scholar 

  341. Lo BM, Nuccetelli M et al (2001) Human glutathione transferase P1-1 and nitric oxide carriers; a new role for an old enzyme. J Biol Chem 276:42138–42145

    Google Scholar 

  342. Lewandowska H, Meczynska S et al (2007) Crucial role of lysosomal iron in the formation of dinitrosyl iron complexes in vivo. J Biol Inorg Chem 12:345–352

    CAS  Google Scholar 

  343. Toledo JC Jr, Bosworth CA et al (2008) Nitric oxide-induced conversion of cellular chelatable iron into macromolecule-bound paramagnetic dinitrosyliron complexes. J Biol Chem 283:28926–28933

    CAS  Google Scholar 

  344. Hickok JR, Sahni S et al (2011) Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance. Free Radic Biol Med 51:1558–1566

    CAS  Google Scholar 

  345. Pedersen JZ, De Maria F et al (2007) Glutathione transferases sequester toxic dinitrosyl-iron complexes in cells. A protection mechanism against excess nitric oxide. J Biol Chem 282:6364–6371

    CAS  Google Scholar 

  346. Hidalgo E, Ding H, Demple B (1997) Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 22:207–210

    CAS  Google Scholar 

  347. Chiang RW, Woolum JC, Commoner B (1972) Biochim Biophys Acta 257:452

    CAS  Google Scholar 

  348. Pellat C, Henry Y, Drapier JC (1990) IFN-gamma-activated macrophages: detection by electron paramagnetic resonance of complexes between L-arginine-derived nitric oxide and non-heme iron proteins. Biochem Biophys Res Commun 166:119–125

    CAS  Google Scholar 

  349. Ueno T, Suzuki Y et al (1999) In vivo distribution and behavior of paramagnetic dinitrosyl dithiolato iron complex in the abdomen of mouse. Free Radic Res 31:525–534

    CAS  Google Scholar 

  350. Ignarro LJ, Ross G, Tillisch J (1991) Pharmacology of endothelium-derived nitric oxide and nitrovasodilators. West J Med 154:51–62

    CAS  Google Scholar 

  351. Wang YX, Legzdins P et al (2000) Vasodilator effects of organotransition-metal nitrosyl complexes, novel nitric oxide donors. J Cardiovasc Pharmacol 35:73–77

    Google Scholar 

  352. Saklayen MG, Mandal AK (1996) Nitric oxide: biological and clinical perspectives. Int J Artif Organs 19:630–632

    CAS  Google Scholar 

  353. Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18

    CAS  Google Scholar 

  354. Mannervik B, Alin P et al (1985) Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA 82:7202–7206

    CAS  Google Scholar 

  355. Litwack G, Ketterer B, Arias IM (1971) Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions. Nature 234:466–467

    CAS  Google Scholar 

  356. Adler V, Yin Z et al (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334

    CAS  Google Scholar 

  357. Kampranis SC, Damianova R et al (2000) A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J Biol Chem 275:29207–29216

    CAS  Google Scholar 

  358. Dulhunty A, Gage P et al (2001) The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J Biol Chem 276:3319–3323

    CAS  Google Scholar 

  359. Caccuri AM, Antonini G et al (1999) Proton release on binding of glutathione to alpha, mu and delta class glutathione transferases. Biochem J 344(Pt 2):419–425

    CAS  Google Scholar 

  360. Ford PC (2008) Polychromophoric metal complexes for generating the bioregulatory agent nitric oxide by single- and two-photon excitation. Acc Chem Res 41:190–200

    CAS  Google Scholar 

  361. Rose MJ, Mascharak PK (2008) Fiat Lux: selective delivery of high flux of nitric oxide (NO) to biological targets using photoactive metal nitrosyls. Curr Opin Chem Biol 12:238–244

    CAS  Google Scholar 

  362. Silva JJN, Osakabe AL et al (2007) In vitro and in vivo antiproliferative and trypanocidal activities of ruthenium NO donors. Br J Pharmacol 152:112–121

    CAS  Google Scholar 

  363. Haas KL, Franz KJ (2009) Application of metal coordination chemistry to explore and manipulate cell biology. Chem Rev 109:4921–4960

    CAS  Google Scholar 

  364. Vanin AF, Vanin AF (2008) P103. Dinitrosyl iron complexes with thiolate ligands as future medicines. Nitric Oxide 19:67

    Google Scholar 

  365. Vanin AF, Mokh VP et al (2007) Vasorelaxing activity of stable powder preparations of dinitrosyl iron complexes with cysteine or glutathione ligands. Nitric Oxide 16:322–330

    CAS  Google Scholar 

  366. Lakomkin VL, Vanin AF et al (2007) Long-lasting hypotensive action of stable preparations of dinitrosyl-iron complexes with thiol-containing ligands in conscious normotensive and hypertensive rats. Nitric Oxide 16:413–418

    CAS  Google Scholar 

  367. Fujii S, Yoshimura T (2000) Detection and imaging of endogenously produced nitric oxide with electron paramagnetic resonance spectroscopy. Antioxid Redox Signal 2:879–901

    CAS  Google Scholar 

  368. Yoshimura T, Yokoyama H et al (1996) In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nat Biotechnol 14:992–994

    CAS  Google Scholar 

  369. Yasui H, Fujii S et al (2004) Spinnokinetic analyses of blood disposition and biliary excretion of nitric oxide (NO)-Fe (II)-N-(Dithiocarboxy)sarcosine complex in rats: BCM-ESR and BEM-ESR studies. Free Radic Res 38:1061–1072

    CAS  Google Scholar 

  370. Chen YJ, Ku WC et al (2008) Nitric oxide physiological responses and delivery mechanisms probed by water-soluble Roussin’s red ester and {Fe(NO)2}10 DNIC. J Am Chem Soc 130:10929–10938

    CAS  Google Scholar 

  371. Dillinger SAT, Schmalle HW et al (2007) Developing iron nitrosyl complexes as NO donor prodrugs. Dalton Trans 3562–3571

    Google Scholar 

  372. Huerta S, Chilka S, Bonavida B (2008) Nitric oxide donors: novel cancer therapeutics. Int J Oncol 33:909–927

    CAS  Google Scholar 

  373. Wecksler SR, Mikhailovsky A et al (2006) Single- and two-photon properties of a dye-derivatized Roussin’s red salt ester (Fe2(mu-RS)2(NO)4) with a large TPA cross section. Inorg Chem 46:395–402

    Google Scholar 

  374. Wecksler SR, Mikhailovsky A et al (2006) A two-photon antenna for photochemical delivery of nitric oxide from a water-soluble, dye-derivatized iron nitrosyl complex using NIR light. J Am Chem Soc 128:3831–3837

    CAS  Google Scholar 

  375. Wecksler SR, Hutchinson J, Ford PC (2006) Toward development of water soluble dye derivatized nitrosyl compounds for photochemical delivery of NO. Inorg Chem 45:1192–1200

    CAS  Google Scholar 

  376. Wecksler S, Mikhailovsky A, Ford PC (2004) Photochemical production of nitric oxide via two-photon excitation with NIR light. J Am Chem Soc 126:13566–13567

    CAS  Google Scholar 

  377. Zheng Q, Bonoiu A et al (2008) Water-soluble two-photon absorbing nitrosyl complex for light-activated therapy through nitric oxide release. Mol Pharm 5:389–398

    CAS  Google Scholar 

  378. Fry NL, Rose MJ et al (2010) Ruthenium nitrosyls derived from tetradentate ligands containing carboxamido-N and phenolato-O donors: syntheses, structures, photolability, and time dependent density functional theory studies. Inorg Chem 49:1487–1495

    CAS  Google Scholar 

  379. Fry NL, Mascharak PK (2011) Photoactive ruthenium nitrosyls as NO donors: how to sensitize them toward visible light. Acc Chem Res 44:289–298

    CAS  Google Scholar 

  380. Fry NL, Mascharak PK (2012) Photolability of NO in designed metal nitrosyls with carboxamido-N donors: a theoretical attempt to unravel the mechanism. Dalton Trans 41:4726–4735

    CAS  Google Scholar 

  381. Afshar RK, Patra AK, Mascharak PK (2005) Light-induced inhibition of papain by a {Mn-NO}6 nitrosyl: identification of papain-SNO adduct by mass spectrometry. J Inorg Biochem 99:1458–1464

    CAS  Google Scholar 

  382. Eroy-Reveles AA, Leung Y et al (2008) Near-infrared light activated release of nitric oxide from designed photoactive manganese nitrosyls: strategy, design, and potential as NO donors. J Am Chem Soc 130:4447–4458

    CAS  Google Scholar 

  383. Szundi I, Rose MJ et al (2006) A new approach for studying fast biological reactions involving nitric oxide: generation of NO using photolabile ruthenium and manganese NO donors. Photochem Photobiol 82:1377–1384

    CAS  Google Scholar 

  384. Ghosh K, Eroy-Reveles AA et al (2004) Reactions of NO with Mn (II) and Mn (III) centers coordinated to carboxamido nitrogen: synthesis of a manganese nitrosyl with photolabile NO. Inorg Chem 43:2988–2997

    CAS  Google Scholar 

  385. Madhani M, Patra AK et al (2006) Biological activity of designed photolabile metal nitrosyls: light-dependent activation of soluble guanylate cyclase and vasorelaxant properties in rat aorta. J Med Chem 49:7325–7330

    CAS  Google Scholar 

  386. Patra AK, Rose MJ et al (2004) Photolabile ruthenium nitrosyls with planar dicarboxamide tetradentate N (4) ligands: effects of in-plane and axial ligand strength on NO release. Inorg Chem 43:4487–4495

    CAS  Google Scholar 

  387. Rose MJ, Fry NL et al (2008) Sensitization of ruthenium nitrosyls to visible light via direct coordination of the dye resorufin: trackable NO donors for light-triggered NO delivery to cellular targets. J Am Chem Soc 130:8834–8846

    CAS  Google Scholar 

  388. Rose MJ, Olmstead MM, Mascharak PK (2007) Photosensitization via dye coordination: a new strategy to synthesize metal nitrosyls that release NO under visible light. J Am Chem Soc 129:5342–5343

    CAS  Google Scholar 

  389. Rose MJ, Mascharak PK (2008) A photosensitive {Ru-NO}6 nitrosyl bearing dansyl chromophore: novel NO donor with a fluorometric on/off switch. Chem Commun 3933–3935

    Google Scholar 

  390. Lim MH, Lippard SJ (2007) Metal-based turn-on fluorescent probes for sensing nitric oxide. Acc Chem Res 40:41–51

    CAS  Google Scholar 

  391. Soh N, Imato T et al (2002) Ratiometric direct detection of nitric oxide based on a novel signal-switching mechanism. Chem Commun 2650–2651

    Google Scholar 

  392. Hilderbrand SA, Lippard SJ (2004) Nitric oxide reactivity of fluorophore coordinated carboxylate-bridged diiron (II) and dicobalt (II) complexes. Inorg Chem 43:5294–5301

    CAS  Google Scholar 

  393. Hilderbrand SA, Lippard SJ (2004) Cobalt chemistry with mixed aminotroponiminate salicylaldiminate ligands: synthesis, characterization, and nitric oxide reactivity. Inorg Chem 43:4674–4682

    CAS  Google Scholar 

  394. Lim MH, Lippard SJ (2004) Fluorescence-based nitric oxide detection by ruthenium porphyrin fluorophore complexes. Inorg Chem 43:6366–6370

    CAS  Google Scholar 

  395. Lim MH, Kuang C, Lippard SJ (2006) Nitric oxide-induced fluorescence enhancement by displacement of dansylated ligands from cobalt. Chembiochem 7:1571–1576

    CAS  Google Scholar 

  396. Smith RC, Tennyson AG, Lippard SJ (2006) Polymer-bound dirhodium tetracarboxylate films for fluorescent detection of nitric oxide. Inorg Chem 45:6222–6226

    CAS  Google Scholar 

  397. Hilderbrand SA, Lim MH, Lippard SJ (2004) Dirhodium tetracarboxylate scaffolds as reversible fluorescence-based nitric oxide sensors. J Am Chem Soc 126:4972–4978

    CAS  Google Scholar 

  398. Lim MH (2007) Preparation of a copper-based fluorescent probe for nitric oxide and its use in mammalian cultured cells. Nat Protoc 2:408–415

    CAS  Google Scholar 

  399. Lim MH, Lippard SJ (2006) Fluorescent nitric oxide detection by copper complexes bearing anthracenyl and dansyl fluorophore ligands. Inorg Chem 45:8980–8989

    CAS  Google Scholar 

  400. Smith RC, Tennyson AG et al (2005) Conjugated polymer-based fluorescence turn-on sensor for nitric oxide. Org Lett 7:3573–3575

    CAS  Google Scholar 

  401. Lim MH, Lippard SJ (2005) Copper complexes for fluorescence-based NO detection in aqueous solution. J Am Chem Soc 127:12170–12171

    CAS  Google Scholar 

  402. Ford PC, Fernandez BO, Lim MD (2005) Mechanisms of reductive nitrosylation in iron and copper models relevant to biological systems. Chem Rev 105:2439–2455

    CAS  Google Scholar 

  403. Smith RC, Tennyson AG et al (2006) Conjugated metallopolymers for fluorescent turn-on detection of nitric oxide. Inorg Chem 45:9367–9373

    CAS  Google Scholar 

  404. Xing C, Yu M et al (2007) Fluorescence turn-on detection of nitric oxide in aqueous solution using cationic conjugated polyelectrolytes. Macromol Rapid Commun 28:241–245

    CAS  Google Scholar 

  405. Do L, Smith RC et al (2006) Luminescent properties of water-soluble conjugated metallopolymers and their application to fluorescent nitric oxide detection. Inorg Chem 45:8998–9005

    CAS  Google Scholar 

  406. Franz KJ, Singh N et al (2000) Aminotroponiminates as ligands for potential metal-based nitric oxide sensors. Inorg Chem 39:4081–4092

    CAS  Google Scholar 

  407. Lim MH, Wong BA et al (2006) Direct nitric oxide detection in aqueous solution by copper (II) fluorescein complexes. J Am Chem Soc 128:14364–14373

    CAS  Google Scholar 

  408. Lim MH, Xu D, Lippard SJ (2006) Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat Chem Biol 2:375–380

    CAS  Google Scholar 

  409. Ouyang J, Hong H et al (2008) A novel fluorescent probe for the detection of nitric oxide in vitro and in vivo. Free Radic Biol Med 45:1426–1436

    CAS  Google Scholar 

  410. Vanin AF (2009) Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Nitric Oxide 21:1–13

    CAS  Google Scholar 

  411. Keese MA, Bose M et al (1997) Dinitrosyl-dithiol-iron complexes, nitric oxide (NO) carriers in vivo, as potent inhibitors of human glutathione reductase and glutathione-S-transferase. Biochem Pharmacol 54:1307–1313

    CAS  Google Scholar 

  412. Vasilieva SV, Moshkovskaya EY et al (2004) Genetic signal transduction by nitrosyl-iron complexes in Escherichia coli. Biochemistry 69:883–889

    CAS  Google Scholar 

  413. Tran NG, Kalyvas H et al (2011) Phenol nitration induced by an {Fe(NO)2}10 dinitrosyl iron complex. J Am Chem Soc 133:1184–1187

    CAS  Google Scholar 

  414. Bellota-Anton C, Munnoch J et al (2011) Spectroscopic analysis of protein Fe-NO complexes. Biochem Soc Trans 39:1293–1298

    CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Professor I. Szumiel from the Institute of Nuclear Chemistry and Technology for her invaluable meritorical and editorial remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Lewandowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewandowska, H. (2013). Coordination Chemistry of Nitrosyls and Its Biochemical Implications. In: Mingos, D. (eds) Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine I. Structure and Bonding, vol 153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2013_102

Download citation

Publish with us

Policies and ethics