Skip to main content

New Nitrogen-Rich High Explosives

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 125))

Abstract

The possibility of new high explosives based on nitrogen-rich tetrazole building blocks is discussed. The expected advantages include gaseous products, high heats of formation, high propulsive/expolosive power, high specific impulse, and high flame temperatures. In addition, these new explosives do not have the toxicity and environmental activity of currently used organo-nitro explosives. The synthesis and characteristics of a series of neutral tetrazole compounds are looked at as well as the neutral nitramine, dinitrobiuret.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klapötke TM, Holl G (2001) Green Chem 3:G75

    Google Scholar 

  2. Klapötke TM, Holl G (2002) Chem Aust, p 11

    Google Scholar 

  3. Kanekar P, Dautpure P, Sarnaik S (2003) Ind J Exp Biol 41:991

    CAS  Google Scholar 

  4. Robidoux PY, Gong P, Sarrazin M, Bardai G, Paquet L, Hawari J, Dubois C, Sunahara GI (2004) Can Ecotoxicol Environ Safe 58:300

    Article  CAS  Google Scholar 

  5. Robidoux PY, Sunahara GI, Savard K, Berthelot Y, Dodard S, Martel M, Gong P, Hawari J (2004) Can Environ Toxicol Chem 23:1026

    Article  CAS  Google Scholar 

  6. Simini M, Checkai RT, Kuperman RG, Phillips CT, Kolakowski JE, Kurnas CW, Sunahara GI (2003) Pedobiologia 47:657

    CAS  Google Scholar 

  7. Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2002) Can Arch Environ Contam Toxicol 43:379

    Article  CAS  Google Scholar 

  8. Steevens JA, Duke BM, Lotufo GR, Bridges TS (2002) Environ Toxicol Chem 21:1475

    Article  CAS  Google Scholar 

  9. Pennington JC, Brannon JM (2002) Thermochim Act 384:163

    Article  CAS  Google Scholar 

  10. Fournier D, Halasz A, Spain J, Spanggord RJ, Bottaro JC, Hawari J (2004) Appl Environment Microbiol 70:1123

    Article  CAS  Google Scholar 

  11. Doherty RM (2003) In: De Luca LT, Galfetti L, Pesce-Rodriguez RA (eds) Novel energetic materials and applications. Proceedings of the 9th IWCP, Lerici, La Specia, Italy

    Google Scholar 

  12. Karaghiosoff K, Klapötke TM, Michailovski A, Nöth H, Suter M (2003) Prop Explos Pyrotech 28:1

    Article  CAS  Google Scholar 

  13. Klapötke TM, Krumm B, Holl G, Kaiser M (1999) Proc of 30th int annual conference of ICT, June 29–July 2, Karlsruhe, Germany, p 120

    Google Scholar 

  14. Hammerl A, Klapötke TM, Nöth H, Warchhold M, Holl M, Kaiser M (2001) Inorg Chem 40:3570

    Article  CAS  Google Scholar 

  15. Klapötke TM (2007) Nichtmetallchemie. In: Riedel E (ed) Moderne Anorganische Chemie, 3rd edn. Walter de Gruyter, Berlin

    Google Scholar 

  16. Eremets MI, Gavriliuk AG, Serebryanaya NR, Trojan IA, Dzivenko DA, Boehler R, Mao HK, Hemley RJ (2004) J Chem Phys 121:11296

    Article  CAS  Google Scholar 

  17. Eremets MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R (2004) Nat Mater 3:558

    Article  CAS  Google Scholar 

  18. Eremets MI, Popov MY, Trojan IA, Denisov VN, Boehler R, Hemley RJ (2004) J Chem Phys 120:10618

    Article  CAS  Google Scholar 

  19. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) Angew Chem Int Ed 38:2004

    Article  CAS  Google Scholar 

  20. Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO (2001) J Am Chem Soc 123:6308

    Article  CAS  Google Scholar 

  21. Klapötke TM (1999) Angew Chem 111:2694

    Article  Google Scholar 

  22. Schroer T, Haiges R, Schneider S, Christe KO (2005) Chem Comm, p 1607

    Google Scholar 

  23. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Angew Chem Int Ed 41:3051

    Article  CAS  Google Scholar 

  24. Lauderdale WJ, Stanton JF, Bartlett RJ (1992) J Phys Chem 96:1173

    Article  CAS  Google Scholar 

  25. Perera SA, Bartlett RJ (1999) Chem Phys Lett 314:381

    Article  CAS  Google Scholar 

  26. Tobita M, Bartlett RJ (2001) J Phys Chem A 105:4107

    Article  CAS  Google Scholar 

  27. Glukhovtsev MN, Jiao H, Schleyer PVR (1996) Inorg Chem 35:7124

    Article  CAS  Google Scholar 

  28. Glukhovtsev MN, Schleyer PVR (1992) Chem Phys Lett 198:547

    Article  CAS  Google Scholar 

  29. Klapötke TM (2000) J Mol Struct (THEOCHEM) 499:99

    Article  Google Scholar 

  30. Klapötke TM, Harcourt RD (2001) J Mol Struct (THEOCHEM) 541:237

    Article  Google Scholar 

  31. Schmidt MW, Gordon MS, Boatz JA (2005) J Phys Chem A 109:7285

    Article  CAS  Google Scholar 

  32. Wang R, Gao H, Ye C, Twamley B, Shreeve JM (2007) Inorg Chem 46:932

    Article  CAS  Google Scholar 

  33. Geith J, Klapötke TM, Weigand JJ, Holl H (2004) Prop Explos Pyrotech 29:3

    Article  CAS  Google Scholar 

  34. Klapötke TM, Mayer P, Schulz A, Weigand JJ (2005) J Am Chem Soc 127:2032

    Article  CAS  Google Scholar 

  35. Fischer G, Holl G, Klapötke TM, Weigand JJ (2005) Thermochim Acta 437:168

    Article  CAS  Google Scholar 

  36. Raap R (1969) Can J Chem 47:3677

    Article  CAS  Google Scholar 

  37. Gaponik PN, Karavai VP (1984) Khim Geterotsikl Soedin 12:1683

    Google Scholar 

  38. Stolle R, Netz H, Kramer O, Rothschild S, Erbe E, Schick O (1933) J Prak Chem 138:1

    Article  CAS  Google Scholar 

  39. Gálvez-Ruiz JC, Holl G, Karaghiosoff K, Klapötke TM, Löhnwitz K, Mayer P, Nöth H, Polborn K, Rohbogner CJ, Suter M, Weigand JJ (2005) Inorg Chem 44:4237

    Article  CAS  Google Scholar 

  40. Darwich C, Klapötke TM (2006) New trends in research of energetic materials. Proceedings of the 9th seminar, Pardubice, Czech Republic, p 551

    Google Scholar 

  41. Gálvez-Ruiz JC, Holl G, Karaghiosoff K, Klapötke TM, Löhnwitz K, Mayer P, Nöth N, Polborn K, Rohbogner CJ, Suter M, Weigand JJ (2005) Inorg Chem 44:5192

    Article  CAS  Google Scholar 

  42. Boese R, Klapötke TM, Mayer P, Verma V (2006) Prop Explos Pyrotech 31:263

    Article  CAS  Google Scholar 

  43. Murray WM, Sauer WC (Arthur D, Little Inc) (1961) US Patent 3006957

    Google Scholar 

  44. Marans NS, Zelinski RP (1950) J Am Chem Soc 72:5329

    Article  CAS  Google Scholar 

  45. Göbel M, Klapötke TM (2007) New trends in research of energetic materials. Proceedings of the 10th seminar, Pardubice, Czech Republic, p L13

    Google Scholar 

  46. Adam D, Karaghiosoff K, Holl G, Kaiser M, Klapötke TM (2002) Prop Explos Pyrotech 27:7

    Article  CAS  Google Scholar 

  47. Karaghiosoff K, Klapötke TM, Michailovski A, Nöth H, Suter M (2003) Prop Explos Pyrotech 28:1

    Article  CAS  Google Scholar 

  48. Klapötke TM, Mayer P, Verma V (2006) Prop Explos Pyrotech 31:263

    Article  CAS  Google Scholar 

  49. Deal WE (1957) J Chem Phys 27:796

    Article  CAS  Google Scholar 

  50. Mader CL (1963) Report LA-2900: Fortran BKW code for computing the detonation properties of explosives. Los Alomos Scientific Laboratory, NM

    Google Scholar 

  51. Urbanski T (1985) Chemistry and technology of explsoives. Pergamon, England

    Google Scholar 

  52. Astakhov AM, Vasilev AD, Molokeev MS, Revenko VA, Stepanov RS (2005) Russ J Org Chem 41:910

    Article  CAS  Google Scholar 

  53. Klapötke TM, Stierstorfer J (2007) New trends in research of energetic materials. Proceedings of the 10th seminar, Pardubice, Czech Republic, p 35

    Google Scholar 

  54. Bryden JH (1953) Acta Cryst 6:669

    Article  CAS  Google Scholar 

  55. Karahiosoff K, Klapötke TM, Mayer P, Piotrowski H, Polborn K, Willer RL, Weigand JJ (2005) J Org Chem 71:1295

    Article  CAS  Google Scholar 

  56. Tappan BC, Beal RW, Brill TB (2002) Thermochim Act 288:227

    Article  Google Scholar 

  57. Tappan BC, Incarnito CD, Rheingold AL, Brill TB (2002) Thermochim Act 384:113

    Article  CAS  Google Scholar 

  58. Brill TB, Tappan BC, Beal RW (2001) New trends in research of energetic materials. Proceedings of the 4th seminar, Pardubice, Czech Rep, p 17

    Google Scholar 

  59. Thiele J (1892) Ann 270:1

    Google Scholar 

  60. Herbst RM, Garrison JA (1953) J Org Chem 18:941

    Article  CAS  Google Scholar 

  61. Lieber E, Sherman E, Henry RA, Cohen J (1951) J Am Chem Soc 73:2327

    Article  CAS  Google Scholar 

  62. Astachov AM, Nefedo AA, Vasiliev AD, Kruglyakova LA, Dyugaev KP, Stepanov RS (2005) Proc of 36th int annual conference of ICT, Jun 28–July 1, Karlsruhe, Germany, p 113

    Google Scholar 

  63. Lieber E, Sherman E, Henry RA, Cohen J (1951) J Am Chem Soc 73:2327

    Article  CAS  Google Scholar 

  64. O'Connor TE, Fleming G, Reilly J (1949) J Soc Chem Ind (London) 68:309

    Article  Google Scholar 

  65. Mayants AG, Klimenko VS, Erina VV, Pyreseva KG, Gordeichuk SS, Leibzon VN, Kuz'min VS, Burtsev UN (1991) Khim Geterot Soed 8:1067

    Google Scholar 

  66. Göbel M, Klapötke TM, Mayer E (2006) Z Anorg Allg Chem 2632:1043

    Article  CAS  Google Scholar 

  67. Thiele J (1892) Ann 270:1

    Google Scholar 

  68. Henry RA, Finnegan WG (1954) J Am Chem Soc 76:923

    Article  CAS  Google Scholar 

  69. Henry RA, Finnegan WG (1956) J Am Chem Soc 78:411

    Article  Google Scholar 

  70. Oxford Diffraction (2005) CrysAlis CCD, Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET)

    Google Scholar 

  71. Oxford Diffraction (2005) CrysAlis RED, Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET)

    Google Scholar 

  72. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A (1993) SIR-92, A program for crystal structure solution. J App Cryst 26:343

    Article  Google Scholar 

  73. Sheldrick GM (1994) SHELXL97 program for the refinement of crystal structures. University of Göttingen, Germany

    Google Scholar 

  74. Spek AL (1999) PLATON, a multipurpose crystallographic tool. Utrecht University, Utrecht, The Netherlands

    Google Scholar 

  75. Oxford Diffraction (2005) SCALE3 ABSPACK (1.0.4,gui:1.0.3) (C)

    Google Scholar 

  76. Cambridge Crystallographic Data Centre (2007) http://www.ccdc.cam.ac.uk/ , last visited: 30 Mar 2007

  77. Lieber E, Patinkin T (1951) J Am Chem Soc 73:1792

    Article  CAS  Google Scholar 

  78. Bray DD, White JG (1979) Acta Cryst B 35:3089

    Article  Google Scholar 

  79. Riedel E (1999) Anorganische Chemie, 4th edn. Walter de Gruyter, Berlin, p 134

    Google Scholar 

  80. Lieber E, Levering DR, Patterson LJ (1951) Anal Chem 23:1594

    Article  CAS  Google Scholar 

  81. Weigand JJ (2005) Dissertation, Ludwig Maximilian University Munich

    Google Scholar 

  82. Daszkiewicz Z, Nowakowska EM, Preźdo WW, Kyzioł JB (1995) Pol J Chem 69:1437

    CAS  Google Scholar 

  83. PerkinElmer (2007) http://www.perkinelmer.com , last visited: 30 Mar 2007

  84. Linseis (2007) http://www.linseis.com , last visited: 30 Mar 2007

  85. United Nations Economic Commission for Europe (2005) UN recommendations on the transport of dangerous goods, 14th edn. http://www.unece.org/trans/danger/publi/unrec/rev14/14files_.html , last visited: 30 Mar 2007

  86. Bundesanstalt für Materialforschung und -prüfung (2007) http://www.bam.de , last visited: 30 Mar 2007

  87. Parr Instrument Company (2007) http://www.parrinst.com , last visited: 30 Mar 2007

  88. West RC, Selby SM (eds) (1967–1968) Handbook of chemistry and physics, 48th edn. CRC, Cleveland, OH

    Google Scholar 

  89. McEwan WS, Rigg MW (1951) J Am Chem Soc 73:4725

    Article  CAS  Google Scholar 

  90. Ostrovskii VA, Pevzner MS, Kofman TP, Tselinskii IV (1999) Targets Heterocycl Syst 3:467

    CAS  Google Scholar 

  91. Suceska M (1999) Proc of 30th int annual conference of ICT, June 29–July 2, Karlsruhe, Germany, p 50

    Google Scholar 

  92. Suceska M (2001) EXPLO5.V2: computer program for calculation of detonation parameters. Proc of 32nd int annual conference of ICT, July 3–6, Karlsruhe, German, p 110

    Google Scholar 

  93. Suceska M (1991) Prop Explos Pyrotech 16:197

    Article  CAS  Google Scholar 

  94. Mecke R, Langenbucher F (1965) Infrared spectra. Heyden, London, Serial no. 6

    Google Scholar 

  95. Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated, vol II. J Phys Chem Ref Data 6:993

    Article  Google Scholar 

  96. National Institue of Standards and Technology (2007) Vibrational energy search http://webbook.nist.gov/chemistry/vib-ser.html , last visited: 30 Mar 2007

  97. Nakamoto K (1986) Infrared and Raman Spectra of inorganic and coordination compounds, 4th edn. Wiley, New York

    Google Scholar 

  98. Hypercube (2002) HyperChem 7.52: Molecular visualization and simulation program package. Hypercube, Gainsville, FL

    Google Scholar 

  99. Murray JS, Lane P, Politzer P (1995) Mol Phys 85:1

    Article  CAS  Google Scholar 

  100. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187

    Article  CAS  Google Scholar 

  101. Politzer P, Murray JS (1999) Computational characterization of energetic materials. In: Maksic ZB, Orville-Thomas WJ (eds) Pauling's legacy: modern modelling of the chemical bond. Theor Comput Chem 6:347

    Article  Google Scholar 

  102. Politzer P, Murray JS, Seminario JM, Lane P, Grice ME, Concha MC (2001) J Mol Struct (THEOCHEM) 573:1

    Article  CAS  Google Scholar 

  103. Rice BM, Chabalowski CF, Adams GF, Mowrey RC, Page M (1991) Chem Phys Lett 184:335

    Article  CAS  Google Scholar 

  104. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770

    Article  CAS  Google Scholar 

  105. Rice BM, Sahu S, Owens FJ (2002) J Mol Struct (THEOCHEM) 583:69

    Article  CAS  Google Scholar 

  106. Rice BM (2005) Adv Ser Phys Chem 16:33

    Article  Google Scholar 

  107. Systag (2007) Process development and safety http://www.systag.ch , last visited: 30 Mar 2007

  108. Karaghiosoff K, Klapötke TM, Mayer P, Piotrowski H, Polborn K, Willer RL, Weigand JJ (2005) J Org Chem 71:1295

    Article  CAS  Google Scholar 

  109. Geith J, Klapötke TM, Weigand JJ, Holl G (2004) Prop Explos Pyrotech 29:3

    Article  CAS  Google Scholar 

  110. Geith J, Holl G, Klapötke TM, Weigand JJ (2004) Combust Flame 139:358

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Klapötke .

Editor information

T. M. Klapötke

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klapötke, T.M. (2007). New Nitrogen-Rich High Explosives. In: Klapötke, T.M. (eds) High Energy Density Materials. Structure and Bonding, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2007_057

Download citation

Publish with us

Policies and ethics