Skip to main content

Sphingolipids and Cancer

  • Chapter
  • 3255 Accesses

Summary

Sphingolipids regulate processes that are dysregulated in cancer such as cell growth and death, adhesion and motility. Changes in sphingolipid metabolism in cancer cells that result in an altered sphingolipid composition may contribute to unlimited proliferation in cancer cells and aide progression, invasion and metastasis. Thus, exogenous sphingolipid metabolites such as ceramides and sphingoid bases have been used both in vivo and in vitro to reverse aberrant cell behavior and suppress tumorigenesis. Here we review the role of sphingolipids and sphingolipid metabolites in cancer development, prevention and treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Alphonse G, Bionda C, Aloy MT, Ardail D, Rousson R, Rodriguez-Lafrasse C (2004) Overcoming resistance to c-rays in squamous carcinoma cells by poly-drug elevation of ceramide levels. Oncogene, 23, 2703–2715.

    Article  PubMed  CAS  Google Scholar 

  • Allouche M, Bettaieb A, Vindis C, Rousse A, Grignon C, Laurent G (1997) Influence of Bcl-2 overexpression on the ceramide pathway in daunorubicin-induced apoptosis of leukemic cells. Oncogene, 14, 1837–1845.

    Article  PubMed  CAS  Google Scholar 

  • Andrews WJ, Winnett G, Rehman F, Shanmugasundaram P, Hagen D, Schrey MP (2005) Aromatase inhibition by 15-deoxy-prostaglandin J(2) (15-dPGJ(2)) and N-(4-hydroxyphenyl)-retinamide (4HPR) is associated with enhanced ceramide production. J Steroid Biochem Mol Biol, 94, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Appierto V, Villani MG, Cavadini E, Lotan R, Vinson C, Formelli F (2004) Involvement of c-Fos in fenretinide-induced apoptosis in human ovarian carcinoma cells. Cell Death Diff, 11, 270–279.

    Article  CAS  Google Scholar 

  • Asakuma J, Sumitomo M, Asano T, Asano T, Hayakawa M (2003) Selective Akt inactivation and tumor necrosis actor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res, 63, 1365–1370.

    PubMed  CAS  Google Scholar 

  • Birt DF, Merrill AH, Jr, Barnett T, Enkvetchakul B, Pour PM, Liotta DC, Geisler V, Menaldino DS, Schwartzbauer J (1998) Inhibition of skin papillomas by sphingosine, N-methyl sphingosine, and N-acetyl sphingosine. Nutr Cancer, 31, 119–126.

    PubMed  CAS  Google Scholar 

  • Biswal SS, Datta K, Acquaah-Mensah GK, Kehrer JP (2000) Changes in ceramide and sphingomyelin following fludarabine treatment of human chronic B-cell leukemia cells. Toxicol, 154, 45–53.

    Article  CAS  Google Scholar 

  • Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell, 82, 405–414.

    Article  PubMed  CAS  Google Scholar 

  • Cabot MC, Giuliano AE, Volner A, Han TY (1996) Tamoxifen retards glycosphingolipid metabolism in human cancer cells. FEBS Letters, 394, 129–131.

    Article  PubMed  CAS  Google Scholar 

  • Cai Z, Bettaieb A, Mahdani NE, Legres LG, Stancou R, Masliah J, Chouaib S (1997) Alteration of the sphingomyelin/ceramide pathway is associated with resistance of human breast carcinoma MCF7 cells to tumor necrosis factor-alpha-mediated cytotoxicity. J Biol Chem, 272, 6918–6926.

    Article  PubMed  CAS  Google Scholar 

  • Carpio LC, Shiau H, Dziak R (2000) Changes in sphingolipid levels induced by epidermal growth factor in osteoblastic cells. Effects of these metabolites on cytosolic calcium levels. Prostaglandins Leukot Essent Fatty Acids, 62, 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Chalfant CE, Rathman K, Pinkerman RL, Wood RE, Obeid LM, Ogretmen B, Hannun YA (2002) De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J Biol Chem, 277, 12587–12595.

    Article  PubMed  CAS  Google Scholar 

  • Chauvier D, Morjani H, Manfait M (2002) Ceramide involvement in homocamptothecin-and camptothecin-induced cytotoxicity and apoptosis in colon HT29 cells. Int J Oncol, 20, 855–863.

    PubMed  CAS  Google Scholar 

  • Chi FL, Yuan YS, Wang SY, Wang ZM (2004) Study on ceramide expression and DNA content in patients with healthy mucosa, leukoplakia, and carcinoma of the larynx. Arch Otolaryngol Head Neck Surg, 130, 307–310.

    Article  PubMed  Google Scholar 

  • Chigorno V, Giannotta C, Ottico E, Sciannamblo M, Mikulak J, Prinetti A, Sonnino S (2004) Sphingolipid uptake by cultured cells: complex aggregates of cell sphingolipids with serum proteins and lipoproteins are rapidly catabolized. J Biol Chem, 280, 2668–2675.

    Article  PubMed  CAS  Google Scholar 

  • Constantinou AI, Mehta R, Husband A (2003) Phenoxodiol, a novel isoflavone derivative, inhibits dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in female Sprague-Dawley rats. Eur J Cancer, 39, 1012–108.

    Article  PubMed  CAS  Google Scholar 

  • Cuvillier O, Nava VE, Murthy SK, Edsall LC, Levade T, Milstien S, Spiegel S (2001) Sphingosine generation, cytochrome c release, and activation of caspase-7 in doxorubicin-induced apoptosis of MCF7 breast adenocarcinoma cells. Cell Death Different, 8, 162–171.

    Article  CAS  Google Scholar 

  • Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr. (1994) Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr, 124, 615–620.

    PubMed  CAS  Google Scholar 

  • Di Marzio L, Di Leo A, Cinque B, Fanini D, Agnifili A, Berloco P, Linsalata M, Lorusso D, Barone M, De Simone C, Cifone MG (2005) Detection of alkaline sphingomyelinase activity in human stool: proposed role as a new diagnostic and prognostic marker of colorectal cancer. Cancer Epidemiol Biomarkers Prev, 14, 856–862.

    Article  PubMed  Google Scholar 

  • Dudeja PK, Dahiya R, Brasitus TA (1986) The role of sphingomyelin synthase and sphingomyelinase in 1,2-dimethylhydrazine-induced lipid alterations of rat colonic plasma membranes. Biochem Biophys Acta, 863, 309–312.

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Igarashi Y, Nisar M, Zhou Q, Hakomori S-I (1991) Cell membrane signaling as target in cancer therapy: inhibitory effect of N,N-dimethyl and N,N,N-trimethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice. Cancer Res, 51, 1613–1618.

    PubMed  CAS  Google Scholar 

  • Enkvetchakul B, Barnett T, Liotta DC, Geisler V, Menaldino DS, Merrill AH Jr, Birt DF (1992) Influences of sphingosine on two-stage skin tumorigenesis in SENCAR mice. Cancer Lett, 62, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Erdreich-Epstein A, Tran LB, Bowman NN, Wang H, Cabot MC, Durden DL, Vlckova J, Reynolds CP, Stins MF, Groshen S, Millard M (2002) Ceramide signaling in fenretinide-induced endothelial cell apoptosis. J Biol Chem, 277, 49531–49537.

    Article  PubMed  CAS  Google Scholar 

  • Exon JH, South EH (2003) Effects of sphingomyelin on aberrant colonic crypt foci development, colon crypt cell proliferation and immune function in an aging rat tumor model. Food Chem Toxicol, 41, 471–476.

    Article  PubMed  CAS  Google Scholar 

  • French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL, Yun JK, Smith CD (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res, 63, 5962–5969.

    PubMed  CAS  Google Scholar 

  • Garcia-Lloret M, Yui J, Winkler-Lowen B, O’Brien L, Brindley DN (1996) Epidermal growth factor inhibits cytokine-induced apoptosis of primary human trophoblasts. J Cell Physiol, 167, 324–333.

    Article  PubMed  CAS  Google Scholar 

  • Grazide S, Maestre N, Veldman RJ, Bezombes C, Maddens S, Levade T, Laurent G, Jaffrezou JP (2002) Ara-C-and daunorubicin-induced recruitment of Lyn in sphingomyelinase-enriched membrane rafts. FASEB J, 16, 1685–1687.

    PubMed  CAS  Google Scholar 

  • Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene, 22, 7070–7077.

    Article  PubMed  CAS  Google Scholar 

  • Hertervig E, Nilsson A, Nyberg L, Duan RD (1997) Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer, 79, 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Hong G, Baudhuin LM, Xu Y (1999) Sphinogsine-1-phosphate modulates cell growth and adhesion of ovarian cancer cells. FEBS Lett, 460, 513–518.

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Kitano T, Watanabe M, Kondo T, Yabu T, Taguchi Y, Iwai K, Tashima M, Uchiyama T, Okazaki T (2003) Possible role of ceramide as an indicator of chemoresistance: decrease of ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin Cancer Res, 8, 415–423.

    Google Scholar 

  • Jatoi A, Suman VJ, Schaefer P, Block M, Loprinzi C, Roche P, Garneau S, Morton R, Stella PJ, Alberts SR, Pittelkow M, Sloan J, Pagano R (2003) A phase II study of topical ceramides for cutaneous breast cancer. Breast Cancer Res Treat, 80, 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Wong J, Fyrst H, Saba JD, Ames BN (2004) gamma-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc Natl Acad Sci USA, 101, 17825–17830.

    Article  PubMed  CAS  Google Scholar 

  • Johnson KR, Johnson KY, Crellin HG, Ogretmen B, Boylan AM, Harley RA, Obeid LM (2005) Immunohistochemical Distribution of Sphingosine Kinase 1 in Normal and Tumor Lung Tissue. J Histochem Cytochem, 59, 1159–1166.

    Article  CAS  Google Scholar 

  • Kamsteeg M, Rutherford T, Sapi E, Hanczaruk B, Shahabi S, Flick M, Brown D, Mor G. (2003) Phenoxodiol—an isoflavone analog—induces apoptosis in chemoresistant ovarian cancer cells. Oncogene, 22, 2611–2620.

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Crooks H, Foxworth A, Waldman T (2002) Proof-of-principle: oncogenic β-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol Cancer Ther, 1, 1355–1359.

    PubMed  CAS  Google Scholar 

  • Kimura K, Markowski M, Edsall LC, Spiegel S, Gelmann EP (2003) Role of ceramide in mediating apoptosis of irradiated LNCaP prostate cancer cells. Cell Death Different, 10, 240–248.

    Article  CAS  Google Scholar 

  • Koyanagi S, Kuga M, Soeda S, Hosoda Y, Yokomatsu T, Takechi H, Akiyama T, Shibuya S, Shimeno H (2003) Elevation of de novo ceramide synthesis in tumor masses and the role of microsomal dihydroceramide synthase. Int J Cancer, 105, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Koybasi S, Senkal CE, Sundararaj K, Spassieva S, Bialewski J, Osta W, Day TA, Jiango JC, Jazwinskio SM, Hannun YA, Obeid LM, Ogretmen B (2004) Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 (LAG1) in human head and neck squamous cell carcinomas (HNSCC). J Biol Chem, 279, 44311–44319.

    Article  PubMed  CAS  Google Scholar 

  • Lavie Y, Cao H, Volner A, Lucci A, Han TY, Geffen V, Giuliano AE, Cabot MC (1997) Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem, 272, 1682–1687.

    Article  PubMed  CAS  Google Scholar 

  • Lemonnier LA, Dillehay DL, Vespremi MJ, Abrams J, Brody E, Schmelz EM (2003) Sphingomyelin in the suppression of colon tumors: prevention versus intervention. Arch Biochem Biophys, 419, 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Le Stunff H, Galve-Roperh I, Peterson C, Milstien S, Spiegel S (2002) Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J Cell Biol, 158, 1039–1049.

    Article  PubMed  CAS  Google Scholar 

  • Lucci A, Han TY, Liu YY, Giuliano AE, Cabot MC (1999) Multidrug resistance modulators and doxorubicin synergize to elevate ceramide levels and elicit apoptosis in drug-resistant cancer cells. Cancer, 86, 300–311.

    Article  PubMed  CAS  Google Scholar 

  • Macchia M, Barontini S, Bertini S, Di Bussolo V, Fogli S, Giovannetti E, Grossi E, Minutolo F, Danesi R (2001) Design, synthesis, and characterization of the antitumor activity of novel ceramide analogues. J Med Chem, 44, 3994–4000.

    Article  PubMed  CAS  Google Scholar 

  • Maeda I, Takano T, Matsuzuka F, Maruyama T, Higashiyama T, Liu G, Kuma K, Amino N (1999) Rapid screening of specific changes in mRNA in thyroid carcinomas by sequence specific-differential display: decreased expression of acid ceramidase mRNA in malignant and benign thyroid tumors. Int J Cancer, 81, 700–704.

    Article  PubMed  CAS  Google Scholar 

  • Meyer zu Heringdorf D, Lass H, Kuchar I, Alemany R, Guo Y, Schmidt M, Jakobs KH (1999) Role of sphingosine kinase in Ca2+ signaling by epidermal growth factor receptor. FEBS Lett, 461, 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Meng A, Luberto C, Meier P, Bai A, Yang X, Hannun YA, Zhou D (2004) Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells. Exp Cell Res, 292, 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Michael JM, Lavin MF, Watters DJ (1997) Resistance to radiation-induced apoptosis in Burkitt’s lymphoma cells is associated with defective ceramide signaling. Cancer Res, 57, 3600–3605.

    PubMed  CAS  Google Scholar 

  • Min J, Van Veldhoven PP, Zhang L, Hanigan MH, Alexander H, Alexander S (2005) Sphingosine-1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner. Mol Cancer Res, 3, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Modrak DE, Lew W, Goldenberg DM, Blumenthal R (2000) Sphingomyelin potentiates chemotherapy of human cancer xenografts. Biochem Biophys Res Commun, 268, 603–606.

    Article  PubMed  CAS  Google Scholar 

  • Modrak DE, Cardillo TM, Newsome GA, Goldenberg DM, Gold DV (2004) Synergistic interaction between sphingomyelin and gemcitabine potentiates ceramide-mediated apoptosis in pancreatic cancer. Cancer Res, 64, 8405–8410.

    Article  PubMed  CAS  Google Scholar 

  • Musumarra G, Barresi V, Condorelli DF, Scire S (2003) A bioinformatic approach to the identification of candidate genes for the development of new cancer diagnostics. Biol Chem, 384, 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Myrick D, Blackinton D, Klostergaard J, Kouttab N, Maizel A, Wanebo H, Mehta S (1999) Paclitaxel-induced apoptosis in Jurkat cells, a leukemic T cell line, is enhanced by ceramide. Leuk Res, 23, 569–578.

    Article  PubMed  CAS  Google Scholar 

  • Nava VE, Cuvillier O, Edsall LC, Kimura K, Milstien S, Gelmann EP, Spiegel S (2000) Sphingosine Enhances Apoptosis of Radiation-resistant Prostate Cancer Cells. Cancer Res, 60, 4468–4474.

    PubMed  CAS  Google Scholar 

  • Nava VE, Hobson JP, Murthy S, Milstien S, Spiegel S (2002) Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Exp Cell Res, 281, 115–127.

    Article  PubMed  CAS  Google Scholar 

  • Noda S, Yoshimura S, Sawada M, Naganawa T, Iwama T, Nakashima S, Sakai N (2001) Role of ceramide during cisplatin-induced apoptosis in C6 glioma cells. J Neurooncol, 52, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Notterman DA, Alon U, Sierk AJ, Levine AJ (2001) Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res, 61, 3124–3130.

    PubMed  CAS  Google Scholar 

  • Olshefski RS, Ladisch S (2001) Glucosylceramide synthase inhibition enhances vincristine-induced cytotoxicity. Int J Cancer, 93, 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Payne SG, Brindley DN, Guilbert LJ (1999) Epidermal growth factor inhibits ceramide-induced apoptosis and lowers ceramide levels in primary placental trophoblasts. J Cell Physiol, 180, 263–270.

    Article  PubMed  CAS  Google Scholar 

  • Perry DK, Carton J, Shah AK, Meredith F, Uhlinger DJ, Hannun YA (2000) Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem, 275, 9078–9084.

    Article  PubMed  CAS  Google Scholar 

  • Prinetti A, Basso L, Appierto V, Villani MG, Valsecchi M, Loberto N, Prioni S, Chigorno V, Cavadini E, Formelli F, Sonnino S (2003) Altered sphingolipid metabolism in N-(4-hydroxyphenyl) retinamide-resistant A2780 human ovarian carcinoma cells. J Biol Chem, 278, 5574–5583.

    Article  PubMed  CAS  Google Scholar 

  • Riboni I, Campanella R, Bassi R, Villani R, Gaini SM, Martinelli-Boneschi F, Viani P, Tettamanti G (2002) Ceramide levels are inversely associated with malignant progression of glial tumors. Glia, 39, 105–113.

    Article  PubMed  Google Scholar 

  • Sachs CW, Safa AR, Harrison SD, Fine RL (1995) Partial inhibition of multidrug resistance by safingol is independent of modulation of P-glycoprotein substrate activities and correlated with inhibition of Protein Kinase C. J Biol Chem, 270, 26639–26648.

    Article  PubMed  CAS  Google Scholar 

  • Samsel L, Zaidel G, Drumgoole HM, Jelovac D, Drachenberg C, Rhee JG, Brodie AM, Bielawska A, Smyth MJ (2004) The ceramide analog, B13, induces apoptosis in prostate cancer cell lines and inhibits tumor growth in prostate cancer xenografts. Prostate, 58, 382–393.

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Nakashima S, Banno Y, Yamakawa H, Hayashi K, Takenaka K, Nishimura Y, Sakai N, Nozawa Y (2000) Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ, 7, 761–772.

    Article  PubMed  CAS  Google Scholar 

  • Scarlatti F, Sala G, Somenzi G, Signorelli P, Sacchi N, Ghidoni R (2003) Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J, 17, 2339–2341.

    PubMed  CAS  Google Scholar 

  • Schmelz EM, Crall KL, LaRocque R, Dillehay DL, Merrill AH Jr. (1994) Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J Nutr, 124, 702–712.

    PubMed  CAS  Google Scholar 

  • Schmelz EM, Dillehay DL, Webb SK, Reiter A, Adams J, Merrill AH Jr. (1996) Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res, 56, 4936–4941.

    PubMed  CAS  Google Scholar 

  • Schmelz EM, Bushnev AB, Dillehay DL, Liotta DC, Merrill AH Jr. (1997) Suppression of aberrant colonic crypt foci by synthetic sphingomyelins with saturated or unsaturated sphingoid base backbones. Nutr Cancer, 28, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz EM, Bushnev AS, Dillehay DL, Sullards MC, Liotta DC, Merrill AH Jr. (1999) Ceramide-ß-glucuronide: synthesis, digestion, and suppression of early markers of colon carcinogenesis. Cancer Res, 59, 5768–5772.

    PubMed  CAS  Google Scholar 

  • Schmelz EM, Sullards MC, Dillehay DL, Merrill AH Jr. (2000) Inhibition of colonic cell proliferation and aberrant crypt foci formation by dairy glycosphingolipids in 1,2 dimethylhydrazine-treated CF1 mice. J Nutr, 130, 522–527.

    PubMed  CAS  Google Scholar 

  • Schmelz EM, Roberts PC, Kustin EM, Lemonnier LA, Sullards MC, Dillehay DL, Merrill AH Jr. (2001) Modulation of intracellular ß-catenin localization and intestinal tumorigenesis in vivo and in vitro by sphingolipids. Cancer Res, 61, 6723–6729.

    PubMed  CAS  Google Scholar 

  • Seelan RS, Qian C, Yokomizo A, Bostwick DG, Smith DI, Liu W (2000) Human acid ceramidase is overexpressed but not mutated in prostate cancer. Genes Chromosomes Cancer, 29, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Selzner M, Bielawska A, Morse MA, Rudiger HA, Sindram D, Hannun YA, Clavien PA (2001) Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res, 61, 1233–1240.

    PubMed  CAS  Google Scholar 

  • Shabbits JA, Mayer LD (2003) Intracellular delivery of ceramide lipids via liposomes enhances apoptosis in vitro. Biochim. Biophys. Acta. 1612: 98–106.

    Article  PubMed  CAS  Google Scholar 

  • Shabbits JA, Mayer LD (2003a) High ceramide content liposomes with in vivo antitumor activity. Anticancer Res, 23, 3663–3669.

    PubMed  CAS  Google Scholar 

  • Sietsma H, Veldman RJ, Kolk D, Ausema B, Nijhof W, Kamps W, Vellenga E, Kok JW (2000) l-phenyl-2-decanoylamino-3-morpholino-l-propanol chemosensitizes neuroblastoma cells for taxol and vincristine. Clin Cancer Res, 6(3), 942–948.

    PubMed  CAS  Google Scholar 

  • Silins I, Nordstrand, M, Hogberg J, Stenius U (2003) Sphingolipids suppress preneoplastic rat hepatocytes in vitro and in vivo. Carcinogenesis, 24, 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  • Stover TC, Kester M (2003) Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. J Pharmacol Exp Ther, 307, 468–475.

    Article  PubMed  CAS  Google Scholar 

  • Stover TC, Sharma A, Robertson GP, Kester M (2005) Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res, 11, 3465–3474.

    Article  PubMed  CAS  Google Scholar 

  • Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Kronke M, Adam D (2000) Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med, 192, 601–612.

    Article  PubMed  CAS  Google Scholar 

  • Sullards MC, Merrill AH Jr. (2003) Analysis of sphingosine 1-phosphate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Sci STKE, 67, PL1.

    Google Scholar 

  • Sumitomo M, Ohba M, Asakuma J, Asano T, Kuroki T, Asano T, Hayakawa M. (2002) Protein kinase Cdelta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest, 109, 827–836.

    Article  PubMed  CAS  Google Scholar 

  • Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC, LaPolla JP, Arango H, Hoffman MS, Martino M, Wakely K, Griffin D, Blanco RW, Cantor AB, Xiao YJ, Krischer JP (2004) Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev, 13, 1185–1191.

    PubMed  CAS  Google Scholar 

  • Symolon H, Schmelz EM, Dillehay DL, Merrill AH Jr. (2004) Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice. J Nutr, 134, 1157–1161.

    PubMed  CAS  Google Scholar 

  • Takenaga M, Igarashi R, Matsumoto K, Takeuchi J, Mizushima N, Nakayama T, Morizawa Y, Mizushima, Y (1999) Lipid microsphere preparation of a lipophilic ceramide derivative suppresses colony formation in a murine experimental metastasis model. J Drug Target, 7, 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Veldman RJ, Zerp S, van Blitterswijk WJ, Verheij M (2004) N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx. Br J Cancer, 90, 917–925.

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Maurer BJ, Reynolds CP, Cabot MC (2001) N-(4-hydroxyphenyl)retinamide elevates ceramide in neuroblastoma cell lines by coordinate activation of serine palmitoyltransferase and ceramide synthase. Cancer Res, 61, 5102–5105.

    PubMed  CAS  Google Scholar 

  • Wang H Giuliano AE, Cabot MC (2002) Enhanced de novo ceramide generation through activation of serin palmitoyltransferase by the P-glycoprotein antagonist SDZ PCS 833 in breast cancer cells. Mol Cancer Therapeutics, 1, 719–726.

    CAS  Google Scholar 

  • Wang H, Charles AG, Frankel AJ, Cabot MC, (2003) Increasing intracellular ceramide: an approach that enhances the cytotoxic response in prostate cancer cells. Urology, 61, 1047–1052.

    Article  PubMed  Google Scholar 

  • Wang Z, Liu Y, Mori M, Kulesz-Martin M (2002) Gene expression profiling of initiated epidermal cells with benign or malignant tumor fates. Carcinogene-sis, 23, 635–643.

    Article  CAS  Google Scholar 

  • Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW, D’Andrea RJ, Vadas MA.(2000) An oncogenic role of sphingosine kinase. Curr Biol, 10, 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka M, Shegogue D, Pei H, Bu S, Bielawska A, Bielawski J, Pettus B, Hannun YA, Obeid L, Trojanowska M (2004) Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-beta and mediates TIMP-1 up-regulation. J Biol Chem, 279, 53994–534001.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA (1996) Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA, 93, 5325–5328.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Schmelz, E.M., Symolon, H. (2006). Sphingolipids and Cancer. In: Hirabayashi, Y., Igarashi, Y., Merrill, A.H. (eds) Sphingolipid Biology. Springer, Tokyo. https://doi.org/10.1007/4-431-34200-1_29

Download citation

Publish with us

Policies and ethics