Skip to main content

Biomedical membranes from hydrogels and interpolymer complexes

  • Conference paper
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 122))

Abstract

Biomedical applications of hydrogel membranes require understanding of their structural characteristics and diffusive behavior. Thus, the subject of this review is the analysis of the response of such biomembranes to their surrounding environment. This responsive behavior may be due to the presence of certain functional groups along the polymer chains or specific interactions between polymer chains (complexation). This behavior is particularly important in the use of these physiologically responsive materials in membrane applications. We begin with an introduction to the structural characteristics and behavior of hydrogel membranes followed by a discussion of the types of environmentally responsive behavior seen with hydrogels. The subject of interpolymer complexation is then treated with emphasis on complexation due to hydrogen bonding and how this type of behavior may be used to produce responsive membranes. Finally, the theories of transport in membranes are reviewed.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a1 :

activity of swelling agent

c:

concentration

D:

diffusivity

Da :

diffusivity through amorphous polymer portion of semicrystalline polymer

Dc :

diffusivity through crystalline polymer portion of semicrystalline polymer

G:

shear modulus

Deff :

effective diffusivity of solute in porous membrane

Dim :

diffusivity of solute i in polymer membrane

Diw :

diffusivity of solute i in pure water

D2,1 :

diffusivity of solute in pure water

D2,13 :

diffusivity of solute in water swollen polymer

D :

diffusivity in bulk solution

E:

elastic modulus

Ed :

activation energy for diffusion

Fs :

drag force between solute and solvent

f :

friction factor

G:

shear modulus

g:

lag coefficient

H:

membrane hydration

I:

ionic strength

i:

ionization

J:

solute flux

K:

ratio of pore to bulk friction coefficients

Kp :

partition coefficient in pores

k:

Boltzmann constant

K′:

partition coefficient

L:

mechanochemical compliance

\(\bar M_c\) :

number average molecular weight between crosslinks

\(\bar M_n\) :

number average molecular weight of uncrosslinked polymer

Mt :

mass released at time t

M :

mass released as t approaches ∞

N:

Avogadro's number

\(\bar N_s\) :

average solute flux

n:

diffusional exponent

n1 :

moles of swelling agent

P:

permeability coefficient

P2, 13 :

permeability coefficient of solute in water swollen polymer

Q:

equilibrium volume swelling ratio

q:

equilibrium weight swelling ratio

qs :

cross-sectional area of solute

R:

gas constant

rp :

pore radius

rs :

solute radius

T:

absolute temperature

t:

time

Us :

net solute velocity

V:

volume

Vf,1 :

free volume of water in swollen membrane

V0 :

molecular volume of unswollen network

\(\bar V_1\) :

molar volume of swelling agent

V′1 :

free volume of water

V1 :

donor cell volume

V13 :

free volume in swollen membrane

x1 :

mole fraction of swelling agent

αs :

linear deformation factor

γ1 :

activity coefficient of swelling agent

δ:

membrane thickness

ΔG:

total free energy change

ΔGel :

elastic free energy

ΔGion :

ionic free energy

ΔGmix :

free energy of mixing

ΔSel :

entropy change due to deformation

ε:

porosity

ζ:

ratio of pore to bulk diffusivity

λ:

ratio of rs to rp

λ2,1 :

solute difusional jump length in water

λ2,13 :

solute diffusional jump length in swollen polymer

μ:

chemical potential

ν:

Poisson's ratio

νe :

effective number of crosslinks per unit chain

ρ:

density

ρx :

crosslinking density

τ:

tortuosity

υa :

amorphous polymer volume fraction in semicrystalline polymer

υc :

crystalline polymer volume fraction in semicrystalline polymer

υ1 :

volume fraction of swelling agent

υ2 :

volume fraction of polymer

υs :

size of solute

υ2,s :

equilibrium polymer volume fraction

υ2,r :

polymer volume fraction after crosslinking but before swelling

\(\bar \upsilon _{2,s}\) :

specific volume of polymer

Φ(v):

free volume contributions

ϕ(qs):

sieving mechanism parameter

χ:

sieving coefficient

χ1 :

Flory polymer-solvent interaction parameter

5 References

  1. Kudela V (1985). In: Mark HF, Kroschwitz JI (eds) Encyclopedia of polymer science and technology. Wiley-Interscience, New York pp 783–807

    Google Scholar 

  2. Peppas NA (1991) J Bioact and Compat Polym 6: 241–246

    Google Scholar 

  3. Peppas NA, Barr-Howell BD (1986). In: Peppas NA (ed) Hydrogels in medicine and pharmacy. CRC, Boca Raton pp 28–55

    Google Scholar 

  4. Brannon-Peppas L (1990). In: Brannon-Peppas L, Harland RS (eds) Absorbent polymer technology. Elsevier, Amsterdam pp 45–66

    Google Scholar 

  5. Flory PJ, Rehner R Jr (1943) J Chem Phys 11: 521

    Article  Google Scholar 

  6. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca

    Google Scholar 

  7. Peppas NA, Lucht LM (1984) Chem Eng Comm 30: 291

    Google Scholar 

  8. Kovac J (1978) Macromolecules 11: 362

    Article  Google Scholar 

  9. Galli A and Brummage WH (1983) J Chem Phys 79: 2411

    Article  Google Scholar 

  10. Oppermann W (1992). In: Harland RS, Prud'homme RK (eds) Polyelectrolyte gels: Properties, Preparation, and Applications, American Chemical Society, Washington, DC pp 159–170

    Google Scholar 

  11. Siegel RA (1990). In: Kost J (ed) Pulsed and self-regulated drug delivery. CRC Press, Boca Raton, Florida pp 129–155

    Google Scholar 

  12. Peppas NA, Khare AR (1993) Adv Drug Del Rev 11: 1–35

    Article  Google Scholar 

  13. Brannon-Peppas L, Peppas NA (1991) Chem Eng Sci 46: 715–722

    Article  Google Scholar 

  14. Brannon-Peppas L, Peppas NA (1988) Polym Bull 20: 285–289

    Article  Google Scholar 

  15. Brannon-Peppas L, Peppas N (1990). In: Brannon-Peppas L, Harland RS (eds) Absorbent Polymer Technology. Elsevier pp 67–75

    Google Scholar 

  16. Hooper HH, Baker JP, Blanch HW, Prausnitz JP (1990) Macromolecules 23: 1096–1104

    Article  Google Scholar 

  17. Konak C, Bansil R (1989) Polymer 30: 677–680

    Article  Google Scholar 

  18. Nielsen LE (1974) Mechanical properties of polymers and composites. Marcel Dekker, Inc, New York vol I p 39

    Google Scholar 

  19. Treloar LRG (1975) The physics of rubber elasticity. Oxford University Press, Oxford

    Google Scholar 

  20. Dubrovskii SA, Ilavsky M, Arkhipovich GN (1992). Polym Bull 29: 587–594

    Article  Google Scholar 

  21. Zrinyi M, Horkay F (1987) Polymer 28: 1139–1143

    Article  Google Scholar 

  22. Kuhn W, Hagarty B, Katchalsky A, Eisenberg H (1950) Nature 165(4196): 514–516

    Google Scholar 

  23. Liu G, Guillet JE, Al-Takrity ETB, Jenkins AD, Walton DRM (1991) Macromolecules 24: 68–74

    Article  Google Scholar 

  24. Horsky J (1987) Polym Comm 29: 110–111

    Google Scholar 

  25. Katchalsky A (1949) Experientia pp 319–320

    Google Scholar 

  26. Katchalsky A, Kunzle O, Kuhn W (1950) J Polym Sci 5: 283–300

    Article  Google Scholar 

  27. Katchalsky A, Michaeli I (1955) J Polym Sci 15: 68–86

    Article  Google Scholar 

  28. Katchalsky A (1949) J Polym Sci 4: 393–412

    Google Scholar 

  29. Steinberg IZ, Oplatka A, Katchalsky A (1966) Nature 210: 568–571

    Google Scholar 

  30. Ohmine I, Tanaka T (1992) J Chem Phys 77: 5725–5729

    Article  Google Scholar 

  31. Nicoli D, Young C, Tanaka T, Pollak A, Whitsides G (1983) Macromolecules 16: 887–890

    Article  Google Scholar 

  32. Kokufuta E, Tanaka T (1991) Macromolecules 24: 1605–1607

    Article  Google Scholar 

  33. Sato E, Tanaka T (1992) Nature 358: 482–485

    Article  Google Scholar 

  34. Annaka M, Tanaka T, Osada Y (1992) Macromolecules 25: 4826–4827

    Article  Google Scholar 

  35. Khare AR, Peppas NA (1991) Polym News 16: 230–236

    Google Scholar 

  36. Brannon-Peppas L, Peppas NA (1991) Inter J Pharm 70: 53–57

    Article  Google Scholar 

  37. Brannon-Peppas L, Peppas NA (1991) Chem Eng Sci 46: 715–722

    Article  Google Scholar 

  38. Brannon-Peppas L, Peppas NA (1991) J Contr Rel 16: 319–330

    Article  Google Scholar 

  39. Brannon-Peppas L, Peppas NA (1989) J Contr Rel 8: 267–274

    Article  Google Scholar 

  40. Khare AR, Peppas NA (1993) Polymer 34: 4736–4739

    Article  Google Scholar 

  41. Hariharan D (1993) PhD thesis. Purdue University, West Lafayette, IN, USA

    Google Scholar 

  42. Peppas NA, Foster LK (1994) J Appl Polym Sci 52: 763–768

    Article  Google Scholar 

  43. Siegel RA, Firestone BA (1988) Macromolecules 21: 3254–3259

    Article  Google Scholar 

  44. Firestone BA, Siegel RA (1988) Polym Comm 29: 204–208

    Google Scholar 

  45. Siegel RA, Falamarzian M, Firestone BA, Moxley BC (1988) J Contr Rel 8: 79–182

    Article  Google Scholar 

  46. Tirrell DA (1987) J Contr Rel 6: 15–21

    Article  Google Scholar 

  47. Borden KA, Eum KM, Langley KH, Tirrell DA (1987) Macromolecules 20: 454–456

    Article  Google Scholar 

  48. Gehrke SH, Cussler EL (1989) Chem Eng Sci 44: 559–566

    Article  Google Scholar 

  49. Bromberg LE (1991) J Membr Sci 62: 117–130

    Article  Google Scholar 

  50. Bromberg LE (1991) J Membr Sci 62: 131–143

    Article  Google Scholar 

  51. Ito Y, Inaba M, Chung D-J, Imanishi Y (1992) Macromolecules 25: 7313–7316

    Article  Google Scholar 

  52. Osada Y, Honda K, Ohta M (1986) J Membr Sci 27: 327–338

    Article  Google Scholar 

  53. Tanaka T (1979) Polymer 20: 1404–1412

    Article  Google Scholar 

  54. Hirotsu S, Hirokawa Y, Tanaka T (1987) J Chem Phys 87: 1392–1395

    Article  Google Scholar 

  55. Sagrario Beltran, John P Baker, Herbert H Hooper, Harvey W Blanch, John M Prausnitz (1991) Macromolecules 24: 549–551

    Article  Google Scholar 

  56. Beltran S, Hooper HH, Blanch HW, Prausnitz JM (1990) J Chem Phys 92: 2061–2066

    Article  Google Scholar 

  57. Hoffman AS, Afrassiabi A, Dong LC (1986) J Contr Rel 4: 213–222

    Article  Google Scholar 

  58. Dong LC, Hoffman AS (1982). In: Paul S Russo (ed) ACS Symposium Series: Reversible Polymeric Gels and Related Systems. American Chemical Society pp 237–244

    Google Scholar 

  59. Cole C-A, Schreiner SM, Priest JH, Monji N, Hoffman AS (1987). In: Paul S Russo (ed) ACS Symposium Series: Reversible Polymeric Gels and Related Systems. American Chemical Society pp 245–254

    Google Scholar 

  60. Dong LC, Yan Q, Hoffman AS (1992) J Contr Rel 19: 171–178

    Article  Google Scholar 

  61. Park TG, Hoffman AS (1992) J Appl Polym Sci 46: 659–671

    Article  Google Scholar 

  62. Kabra BG, Gehrke SH (1991) Polym Comm 32: 322–323

    Google Scholar 

  63. Okano T, Bae YH, Jacobs H, Kim SW (1990) J Contr Rel 11: 255–265

    Article  Google Scholar 

  64. Gutowska A, Bae YH, Feijen J, Kim SW (1992) J Contr Rel 22: 95–104

    Article  Google Scholar 

  65. Feil H, Bae YH, Feijen J, Kim SW (1991) J Membr Sci 64: 283–294

    Article  Google Scholar 

  66. Bae TH, Okano T, Kim SW (1989) J Contr Rel 9: 271–279

    Article  Google Scholar 

  67. Feil H, Bae YH, Feijen J, Kim SW (1992) Macromolecules 25: 5528–5530

    Article  Google Scholar 

  68. Yoshida R, Sakai K, Okano T, Sakurai Y (1992) J Biomater Sci Polym (ed) 3: 243–252

    Google Scholar 

  69. Freitas RFS, Cussler EL (1987) Chem Eng Sci 42: 97–103

    Article  Google Scholar 

  70. Trank SJ, Cussler EL (1987) Chem Eng Sci 42: 381

    Article  Google Scholar 

  71. Marchetti M, Prager S, Cussler EL (1990) Macromolecules 23: 1760–1765

    Article  Google Scholar 

  72. Otake K, Inomata H, Konno M, Saito S (1989) J Chem Phys 91: 1345–1350

    Article  Google Scholar 

  73. Ishihara K, Matsui K (1986) J Polym Sci: Polym Lett (ed) 24: 413–417

    Google Scholar 

  74. Ishihara K, Kobayashi M, Shinohara I (1984) Polymer J 16: 647–651

    Google Scholar 

  75. Ishihara K, Kobayashi M, Ishimaru N, Shinohara I (1984) Polymer J 16: 625–631

    Google Scholar 

  76. Ito Y, Casolaro M, Kono K, Imanishi Y (1989) J Contr Rel 10: 195–203

    Article  Google Scholar 

  77. Chung DJ, Ito Y, Imanishi Y (1992) J Contr Rel 18: 45–54

    Article  Google Scholar 

  78. Heller J, Chang AC, Rodd G, Grodsky GM (1990) J Contr Rel 13: 295–302

    Article  Google Scholar 

  79. Kim SW, Pai CM, Makino K, Seminoff LA, Holmberg DL, Gleeson JM, Wilson DE, Mack EJ (1990) J Contr Rel 11: 193–201

    Article  Google Scholar 

  80. Horbett TA, Ratner BD, Kost J, Singh M (1984). In: Anderson JM, Kim SW (eds) Recent advances in drug delivery systems. Plenum Press, New York, pp 209–220

    Google Scholar 

  81. Doi M, Mitsumoto M, Hirose Y (1992) Macromolecules 25: 5504–5511

    Article  Google Scholar 

  82. Shiga T, Hirose Y, Okada A, Kurauchi T (1993) J Appl Polym Sci 47: 113–119

    Article  Google Scholar 

  83. Shinkai S, Nakaji T, Ogawa T, Shigematsu K, Manabe O (1981) J Am Chem Soc 103: 111–115

    Article  Google Scholar 

  84. Irie M, Kuwatchaku D (1986) Macromolecules 19: 2476–2480

    Article  Google Scholar 

  85. Irie M (1986) Macromolecules 19: 2890–2892

    Article  Google Scholar 

  86. Peiffer DG, Lundberg RD (1985) Polymer 26: 1058–1068

    Article  Google Scholar 

  87. Khoklov AR, Kramarenko EYu, Makhaeva EE, Starodubtzev SG (1992) Macromolecules 25: 4779–4783

    Article  Google Scholar 

  88. Bekturov E, Bimendina L (1981) Adv Polym Sci 41: 99–147

    Google Scholar 

  89. Osada Y (1987) Adv Polym Sci 82: 2–46

    Google Scholar 

  90. Chatterjee SK, Yadav D, Sudipta Ghosh, Khan AM (1989) J Polym Sci: Part A: Polym Chem 27: 3855–3863

    Article  Google Scholar 

  91. Kopylova YeM, Valuyeva SP, El'tsefon BS, Rogacheva VB, Zezin AB (1987) Vysokomolekul Soed A29: 517–524

    Google Scholar 

  92. Kono K, Tabata F, Takagishi T (1993) J Membr Sci 76: 233–243

    Article  Google Scholar 

  93. Kalyuzhnaya RI, Rudman AR, Vengerova NA, Razvodovskii YeF, El'tsefon BS, Zezin AB (1975) Vysokomolekul Soed A17: 2786–2792

    Google Scholar 

  94. Kalyuzhnaya RI, Volynskii AL, Rudman AR, Vengerova NA, Razvodovskii YeF, El'tsefon BS, Zezin AB (1976) Vysokomolekul Soed A18: 71–76

    Google Scholar 

  95. Khokhlov AR, Kramarenko EYu, Makhaeva EE, Starodubtzev SG (1992) Macromolecules 25: 4779–4783

    Article  Google Scholar 

  96. Samsonov GV (1979) Vysokomolekul Soed A21: 723–733

    Google Scholar 

  97. Tsuchida E, Abe K (1982) Adv Polym Sci 45: 1–119

    Google Scholar 

  98. Ferguson J, Shah SAO (1968) European Polym J 4: 343–354

    Article  Google Scholar 

  99. Matuszewska-Czerwik J, Polowinski S (1988) Polym Bull 19: 149–154

    Article  Google Scholar 

  100. Van de Grampel HT, Santing AGM, Tan YY, Challa G (1992) J Polym Sci: Part A, Polym Chem (ed) 30: 787–796

    Google Scholar 

  101. Bimendina LA, Roganov VV, Ye A Bekturov (1974) Vysokomolekul Soed A16: 2810–2814

    Google Scholar 

  102. Ohno H, Abe K, Tsuchida E (1978) Makromol Chem 179: 755–763

    Article  Google Scholar 

  103. Chatterjee SK, Rajabi FH, Farahani BV, Chatterjee N (1991) Polym Comm 32: 473–476

    Google Scholar 

  104. Chatterjee SK, Chatterjee N, Amarendra M Khan, Sudipta Ghosh (1991) Polym Comm 32: 220–224

    Google Scholar 

  105. Jeun SH, Park SM, Ree T (1989) J Polym Sci: Part C: Polym Lett 27: 161–165

    Article  Google Scholar 

  106. Park SM, Jeun SH, Ree T (1989), J Polym Sci: Part A: Polym Chem 27: 4109–4117

    Article  Google Scholar 

  107. Lee JY, Painter PC, Coleman MM (1988) Macromolecules 21: 346–354

    Article  Google Scholar 

  108. Lee JY, Painter PC, Coleman MM (1988) Macromolecules 21: 954–960

    Article  Google Scholar 

  109. Lichkus AM, Painter PC, Coleman MM (1988) Macromolecules 21: 2636–2641

    Article  Google Scholar 

  110. Staikos G, Bokias G (1991) Makromol Chem 192: 2649–2657

    Article  Google Scholar 

  111. Kim O-K, Choi LS, Long T, McGrath K, Armistead JP, Yoon TH (1993) Macromolecules 26: 379–384

    Article  Google Scholar 

  112. Bailey FE Jr, Lundberg RD, Callard RW (1964) J Polym Sci: Part A 2: 845–851

    Article  Google Scholar 

  113. Antipina AD, Baranovskii WYu, Papisov IM, Kabanov VA (1972) Vysokomol Soyed A14: 941–949

    Google Scholar 

  114. Osada Y, Sato M (1976) J Polym Sci: Polym Lett (ed) 14: 129–134

    Article  Google Scholar 

  115. Osada Y (1979) J Polym Sci: Polym Chem 17: 3485–3498

    Google Scholar 

  116. Baranovsky V, Shenkov S, Rashkov I, Borisov G (1991) European Polym J 27: 643–647

    Article  Google Scholar 

  117. Bokias G, Staikos G, Iliopoulos I, Audebert R (1994) Macromolecules 27: 427–431

    Article  Google Scholar 

  118. Papisov IM, Baranovskii VYu, Sergieva YeI, Antipina AD, Kabanov VA (1974) Vysokomol Soyed A16: 1133–1141

    Google Scholar 

  119. Oyama HT, Tang WT, Frank CW (1987) Macromolecules 20: 474–480

    Article  Google Scholar 

  120. Oyama HT, Tang WT, Frank CW (1987) Macromolecules 20: 1839–1847

    Article  Google Scholar 

  121. Hemker DJ, Garza V, Frank CW (1987) Macromolecules 23: 4411–4418

    Article  Google Scholar 

  122. Hemker DJ, Frank CW (1987) Macromolecules 23: 4404–4410

    Article  Google Scholar 

  123. Scranton AB, Klier J, Peppas NA (1991) J Polym Sci: Part B: Polymer Physics

    Google Scholar 

  124. Daoust H, Darveau R, Laberge F (1990) Polymer 31: 1946–1949

    Article  Google Scholar 

  125. Jeon SH, Ree T (1988) J Polym Sci: Part A: Polym Chem 26: 1419–1428

    Article  Google Scholar 

  126. Chen H-L, Morawetz H (1982) Macromolecules 15: 1445–1447

    Article  Google Scholar 

  127. Soutar I, Swanson L (1990) Macromolecules 23: 5170–5172

    Article  Google Scholar 

  128. Adachi H, Nishi S, Kotaka T (1982) Polym, J 14: 985–992

    Google Scholar 

  129. Nishi S, Kotaka T (1985) Macromolecules 18: 1519–1525

    Article  Google Scholar 

  130. Nishi S, Kotaka T (1989) Polym J 21: 393–402

    Article  Google Scholar 

  131. Nishi S, Kotaka T (1986) Polym J 21: 393–402

    Article  Google Scholar 

  132. Osada Y, Takeuchi Y (1981) J Polym Sci: Polym Lett (ed) 19: 303–308

    Article  Google Scholar 

  133. Osada Y (1980) J Polym Sci: Polym Lett (ed) 18: 281–286

    Article  Google Scholar 

  134. Khokhlov and Kramarenko EY (1993) Makromol Chem, Theory Simul 2: 169–177

    Google Scholar 

  135. Drummond RK, Klier J, Alameda JA, Peppas NA (1989) Macromolecules 22: 3816–3818

    Article  Google Scholar 

  136. Klier J, Scranton AB, Peppas NA (1990) Macromolecules 23: 4944–4949

    Article  Google Scholar 

  137. Bell CL (1994) PhD thesis. Purdue University

    Google Scholar 

  138. Peppas NA, Klier J (1991) J Contr Rel 16: 203–214

    Article  Google Scholar 

  139. Flynn GL, Yalkowsky SH, Roseman TJ (1974) J Pharm Sci 63: 479–510

    PubMed  Google Scholar 

  140. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford, 2 edition

    Google Scholar 

  141. Peppas NA, Meadows DL (1983) J Membr Sci 16: 361–377

    Article  Google Scholar 

  142. Anderson JL, Quinn JA (1974) Biophys J 14: 130–150

    PubMed  Google Scholar 

  143. Dubin SB, Lunacek JH, Benedek GB (1967) Proc Natl Acad Sci USA 57: 1164–1171

    PubMed  Google Scholar 

  144. Gladden JK, Dole M (1953) J Am Chem Soc 75: 3900–3904

    Article  Google Scholar 

  145. Brenner H, Gaydos LJ (1977) J Coll Interfac Sci 58: 312–356

    Article  Google Scholar 

  146. Deen WM (1987) AIChE J 33: 1409–1425

    Article  Google Scholar 

  147. Malone DM, Quinn JL (1978) Chem Eng Sci 33: 1429–1440

    Article  Google Scholar 

  148. Smith III FG, Deen WM (1980) J Coll Interfac Sci 78: 444–465

    Google Scholar 

  149. Kim JT, Anderson JL (1991) Ind Eng Chem Res 30: 1008–1016

    Article  Google Scholar 

  150. Yasuda H, Peterlin A, Colton CK, Smith KA, Merrill EW (1969) Die Makromol Chem 126: 177–186

    Article  Google Scholar 

  151. Yasuda H, Lamaze CE, Ikenberry LD (1968) Die Makromol Chem 118: 19–35

    Article  Google Scholar 

  152. Yasuda H, Ikenberry LD, Lamaze CE (1969) Die Makromol Chem 125: 108–118

    Article  Google Scholar 

  153. Yasuda H, Lamaze CE (1971) J Macromol Sci Phys B5: 111–134

    Google Scholar 

  154. Kim SW, Cardinal JR, Wisnewski S, Zentner GM (1990). In: Rowland SP (ed) Water in Polymers. American Chemical Society, Washington, DC pp 347–359

    Google Scholar 

  155. Peppas NA, Reinhart CT (1983) J Membr Sci 15: 275–287

    Article  Google Scholar 

  156. Reinhart CT, Peppas NA (1984) J Membr Sci 18: 227–239

    Article  Google Scholar 

  157. Burzak K, Fujisato T, Hatada M, Ikada Y (1994) Biomaterials, 15: 231–238

    Article  PubMed  Google Scholar 

  158. Peppas NA, Moynihan HJ (1985) J Appl Polym Sci 30: 2589–2606

    Article  Google Scholar 

  159. Harland RS, Peppas NA (1987) Polym Bull 18: 553–556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicholas A. Peppas Robert S. Langer

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Bell, C.L., Peppas, N.A. (1995). Biomedical membranes from hydrogels and interpolymer complexes. In: Peppas, N.A., Langer, R.S. (eds) Biopolymers II. Advances in Polymer Science, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540587888_15

Download citation

  • DOI: https://doi.org/10.1007/3540587888_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58788-0

  • Online ISBN: 978-3-540-49102-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics