Skip to main content

Mechanisms of Metal-Catalyzed Electrophilic F/CF3/SCF3 Transfer Reactions from Quantum Chemical Calculations

  • Chapter
  • First Online:
New Directions in the Modeling of Organometallic Reactions

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 67))

Abstract

Electrophilic F/CF3/SCF3 transfer reactions have recently emerged as a promising strategy to introduce fluorine substituents to organic compounds at mild conditions with high reactivity and selectivity. Several safe and stable electrophilic reagents have been introduced and have found interesting applications in synthetic chemistry. To control the reactivity and selectivity of these reactions, metal catalysts are typically used in combination with the reagents. Herein, we describe our recent efforts to elucidate the detailed mechanisms and origins of selectivity for a number of metal-catalyzed electrophilic F/CF3/SCF3 transfer reactions using density functional theory calculations. Focus is on reactions employing hypervalent fluoroiodine and nitrogen-based reagents, with zinc or rhodium as the metal catalysts. The roles of the metal ions are discussed, and some novel mechanistic ideas have emerged from these calculations that can have bearing on other reactions for introducing fluorine-containing groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Hagan D (2008) Chem Soc Rev 37:308–319

    Google Scholar 

  2. Harsanyi A, Sandford G (2015) Green Chem 17:2081–2086

    CAS  Google Scholar 

  3. Müller K, Faeh C, Diederich F (2007) Science 317:1881–1886

    Google Scholar 

  4. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Chem Rev 114:2432–2506

    CAS  Google Scholar 

  5. Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H (2016) Chem Rev 116:422–518

    CAS  Google Scholar 

  6. Jeschke P (2004) ChemBioChem 5:570–589

    CAS  Google Scholar 

  7. Jeschke P (2010) Pest Manag Sci 66:10–27

    CAS  Google Scholar 

  8. Zeng J-L, Wang J, Ma J-A (2015) Bioconjugate Chem 26:1000–1003

    CAS  Google Scholar 

  9. Chansaenpak K, Vabre B, Gabbai FP (2016) Chem Soc Rev 45:954–971

    CAS  Google Scholar 

  10. Preshlock S, Tredwell M, Gouverneur V (2016) Chem Rev 116:719–766

    CAS  Google Scholar 

  11. Charpentier J, Früh N, Togni A (2015) Chem Rev 115:650–682

    CAS  Google Scholar 

  12. Egami H, Sodeoka M (2014) Angew Chem Int Ed 53:8294–8308

    CAS  Google Scholar 

  13. Merino E, Nevado C (2014) Chem Soc Rev 43:6598–6608

    CAS  Google Scholar 

  14. Umemoto T (1996) Chem Rev 96:1757–1778

    CAS  Google Scholar 

  15. Liang T, Neumann CN, Ritter T (2013) Angew Chem Int Ed 52:8214–8264

    CAS  Google Scholar 

  16. Wolstenhulme JR, Gouverneur V (2014) Acc Chem Res 47:3560–3570

    CAS  Google Scholar 

  17. Yang X, Wu T, Phipps RJ, Toste FD (2015) Chem Rev 115:826–870

    CAS  Google Scholar 

  18. Ma J-A, Cahard D (2008) Chem Rev 108:PR1–PR43

    CAS  Google Scholar 

  19. Champagne PA, Desroches J, Hamel J-D, Vandamme M, Paquin J-F (2015) Chem Rev 115:9073–9174

    CAS  Google Scholar 

  20. Kohlhepp SV, Gulder T (2016) Chem Soc Rev 45:6270–6288

    CAS  Google Scholar 

  21. Ilchenko NO, Tasch BOA, Szabó KJ (2014) Angew Chem Int Ed 53:12897–12901

    CAS  Google Scholar 

  22. Ilchenko NO, Cortés MA, Szabó KJ (2016) ACS Catal 6:447–450

    CAS  Google Scholar 

  23. Yuan W, Szabó KJ (2015) Angew Chem Int Ed 54:8533–8537

    CAS  Google Scholar 

  24. Yuan W, Eriksson L, Szabó KJ (2016) Angew Chem Int Ed 55:8410–8415

    CAS  Google Scholar 

  25. Yuan W, Szabó KJ (2016) ACS Catal 6:6687–6691

    CAS  Google Scholar 

  26. Lübcke M, Yuan W, Szabó KJ (2017) Org Lett 19:4548–4551

    Google Scholar 

  27. Ilchenko NO, Hedberg M, Szabo KJ (2017) Chem Sci 8:1056–1061

    CAS  Google Scholar 

  28. Differding E, Ofner H (1991) Synlett 1991:187–189

    Google Scholar 

  29. Li Y, Zhang Q (2015) Synthesis 47:159–174

    CAS  Google Scholar 

  30. Zhang P, Li M, Xue X-S, Xu C, Zhao Q, Liu Y, Wang H, Guo Y, Lu L, Shen Q (2016) J Org Chem 81:7486–7509

    CAS  Google Scholar 

  31. Geary GC, Hope EG, Singh K, Stuart AM (2013) Chem Commun 49:9263–9265

    CAS  Google Scholar 

  32. Ulmer A, Brunner C, Arnold AM, Pöthig A, Gulder T (2016) Chem A Eur J 22:3660–3664

    CAS  Google Scholar 

  33. He Y, Yang Z, Thornbury RT, Toste FD (2015) J Am Chem Soc 137:12207–12210

    CAS  Google Scholar 

  34. Miró J, del Pozo C, Toste FD, Fustero S (2016) Angew Chem Int Ed 55:9045–9049

    Google Scholar 

  35. Thornbury RT, Saini V, Fernandes TDA, Santiago CB, Talbot EPA, Sigman MS, McKenna JM, Toste FD (2017) Chem Sci 8:2890–2897

    CAS  Google Scholar 

  36. Yamamoto K, Li J, Garber JAO, Rolfes JD, Boursalian GB, Borghs JC, Genicot C, Jacq J, van Gastel M, Neese F, Ritter T (2018) Nature 554:511–514

    CAS  Google Scholar 

  37. Yoshimura A, Zhdankin VV (2016) Chem Rev 116:3328–3435

    CAS  Google Scholar 

  38. Li Y, Hari DP, Vita MV, Waser J (2016) Angew Chem Int Ed 55:4436–4454

    CAS  Google Scholar 

  39. Zhao Y-M, Cheung MS, Lin Z, Sun J (2012) Angew Chem Int Ed 51:10359–10363

    CAS  Google Scholar 

  40. Lam Y-H, Houk KN (2014) J Am Chem Soc 136:9556–9559

    CAS  Google Scholar 

  41. Arimitsu S, Yonamine T, Higashi M (2017) ACS Catal 7:4736–4740

    CAS  Google Scholar 

  42. Sreenithya A, Surya K, Sunoj RB (2017) WIREs Comput Mol Sci 7:e1299

    Google Scholar 

  43. Malmgren J, Santoro S, Jalalian N, Himo F, Olofsson B (2013) Chem A Eur J 19:10334–10342

    CAS  Google Scholar 

  44. Ariafard A (2014) ACS Catal 4:2896–2907

    CAS  Google Scholar 

  45. Frei R, Wodrich MD, Hari DP, Borin P-A, Chauvier C, Waser J (2014) J Am Chem Soc 136:16563–16573

    CAS  Google Scholar 

  46. Beaulieu S, Legault CY (2015) Chem A Eur J 21:11206–11211

    CAS  Google Scholar 

  47. Tolnai GL, Szekely A, Mako Z, Gati T, Daru J, Bihari T, Stirling A, Novak Z (2015) Chem Commun 51:4488–4491

    CAS  Google Scholar 

  48. Jiang J, Ramozzi R, Moteki S, Usui A, Maruoka K, Morokuma K (2015) J Org Chem 80:9264–9271

    CAS  Google Scholar 

  49. Funes-Ardoiz I, Sameera WMC, Romero RM, Martínez C, Souto JA, Sampedro D, Muñiz K, Maseras F (2016) Chem A Eur J 22:7545–7553

    CAS  Google Scholar 

  50. Sreenithya A, Patel C, Hadad CM, Sunoj RB (2017) ACS Catal 7:4189–4196

    CAS  Google Scholar 

  51. Pluta R, Krach PE, Cavallo L, Falivene L, Rueping M (2018) ACS Catal 8:2582–2588

    CAS  Google Scholar 

  52. Zhou B, Haj MK, Jacobsen EN, Houk KN, Xue X-S (2018) J Am Chem Soc 140:15206–15218

    CAS  Google Scholar 

  53. Shu S, Li Y, Jiang J, Ke Z, Liu Y (2019) J Org Chem 84:458–462

    CAS  Google Scholar 

  54. Zhou B, Yan T, Xue X-S, Cheng J-P (2016) Org Lett 18:6128–6131

    CAS  Google Scholar 

  55. Zhou B, Xue X-S, Cheng J-P (2017) Tetrahedron Lett 58:1287–1291

    CAS  Google Scholar 

  56. Yan T, Zhou B, Xue X-S, Cheng J-P (2016) J Org Chem 81:9006–9011

    CAS  Google Scholar 

  57. Andries-Ulmer A, Brunner C, Rehbein J, Gulder T (2018) J Am Chem Soc 140:13034–13041

    CAS  Google Scholar 

  58. Sala O, Lüthi HP, Togni A (2014) J Comput Chem 35:2122–2131

    CAS  Google Scholar 

  59. Ling L, Liu K, Li X, Li Y (2015) ACS Catal 5:2458–2468

    CAS  Google Scholar 

  60. Sala O, Lüthi HP, Togni A, Iannuzzi M, Hutter J (2015) J Comput Chem 36:785–794

    CAS  Google Scholar 

  61. Sala O, Santschi N, Jungen S, Lüthi HP, Iannuzzi M, Hauser N, Togni A (2016) Chem A Eur J 22:1704–1713

    CAS  Google Scholar 

  62. Sun T-Y, Wang X, Geng H, Xie Y, Wu Y-D, Zhang X, Schaefer III HF (2016) Chem Commun 52:5371–5374

    CAS  Google Scholar 

  63. Pinto de Magalhaes H, Luthi HP, Bultinck P (2016) Phys Chem Chem Phys 18:846–856

    CAS  Google Scholar 

  64. Pinto de Magalhães H, Togni A, Lüthi HP (2017) J Org Chem 82:11799–11805

    Google Scholar 

  65. Sameera WMC, Maseras F (2012) WIREs Comput Mol Sci 2:375–385

    CAS  Google Scholar 

  66. Sperger T, Sanhueza IA, Kalvet I, Schoenebeck F (2015) Chem Rev 115:9532–9586

    CAS  Google Scholar 

  67. Lam Y-H, Grayson MN, Holland MC, Simon A, Houk KN (2016) Acc Chem Res 49:750–762

    CAS  Google Scholar 

  68. Santoro S, Kalek M, Huang G, Himo F (2016) Acc Chem Res 49:1006–1018

    CAS  Google Scholar 

  69. Balcells D, Clot E, Eisenstein O, Nova A, Perrin L (2016) Acc Chem Res 49:1070–1078

    CAS  Google Scholar 

  70. Sunoj RB (2016) Acc Chem Res 49:1019–1028

    CAS  Google Scholar 

  71. Peng Q, Paton RS (2016) Acc Chem Res 49:1042–1051

    CAS  Google Scholar 

  72. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Google Scholar 

  73. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  74. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    CAS  Google Scholar 

  75. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    CAS  Google Scholar 

  76. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    CAS  Google Scholar 

  77. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104–154122

    Google Scholar 

  78. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    CAS  Google Scholar 

  79. Zhang J, Szabó KJ, Himo F (2017) ACS Catal 7:1093–1100

    CAS  Google Scholar 

  80. Kalek M, Himo F (2017) J Am Chem Soc 139:10250–10266

    CAS  Google Scholar 

  81. Mai BK, Szabó KJ, Himo F (2018) ACS Catal 8:4483–4492

    CAS  Google Scholar 

  82. Jobin-Des Lauriers A, Legault YC (2015) Molecules 20:22635–22644

    CAS  Google Scholar 

  83. Izquierdo S, Essafi S, del Rosal I, Vidossich P, Pleixats R, Vallribera A, Ujaque G, Lledós A, Shafir A (2016) J Am Chem Soc 138:12747–12750

    CAS  Google Scholar 

  84. Janson PG, Ghoneim I, Ilchenko NO, Szabó KJ (2012) Org Lett 14:2882–2885

    CAS  Google Scholar 

  85. Guo X, Hu W (2013) Acc Chem Res 46:2427–2440

    CAS  Google Scholar 

  86. Xia Y, Qiu D, Wang J (2017) Chem Rev 117:13810–13889

    CAS  Google Scholar 

  87. Werlé C, Goddard R, Philipps P, Farès C, Fürstner A (2016) J Am Chem Soc 138:3797–3805

    Google Scholar 

  88. Wong FM, Wang J, Hengge AC, Wu W (2007) Org Lett 9:1663–1665

    CAS  Google Scholar 

  89. Liang Y, Zhou H, Yu Z-X (2009) J Am Chem Soc 131:17783–17785

    CAS  Google Scholar 

  90. Xie Z-Z, Liao W-J, Cao J, Guo L-P, Verpoort F, Fang W (2014) Organometallics 33:2448–2456

    CAS  Google Scholar 

  91. Xue Y-S, Cai Y-P, Chen Z-X (2015) RSC Adv 5:57781–57791

    CAS  Google Scholar 

  92. Liu Y, Luo Z, Zhang JZ, Xia F (2016) J Phys Chem A 120:6485–6492

    CAS  Google Scholar 

  93. Mai BK, Szabó KJ, Himo F (2018) Org Lett 20:6646–6649

    CAS  Google Scholar 

Download references

Acknowledgment

We thank co-workers and collaborators who contributed to this work, in particular Dr. Jiji Zhang and Prof. Kálmán J. Szabó. BKM thanks the Carl-Trygger Foundation for a postdoctoral fellowship. We thank the Knut and Alice Wallenberg Foundation (Dnr: 2018.0066) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahmi Himo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mai, B.K., Himo, F. (2020). Mechanisms of Metal-Catalyzed Electrophilic F/CF3/SCF3 Transfer Reactions from Quantum Chemical Calculations. In: Lledós, A., Ujaque, G. (eds) New Directions in the Modeling of Organometallic Reactions. Topics in Organometallic Chemistry, vol 67. Springer, Cham. https://doi.org/10.1007/3418_2020_45

Download citation

Publish with us

Policies and ethics