
Hidden Collisions on DSS 

Serge Vaudenay* 

Ecole Normale SupCrieure - DMI 
45, rue d’Ulm 

75230 Paris Cedex 5 France 
Serge.VaudenayBens.fr 

Abstract 

We explain how to forge public parameters for the Digital Signature 
Standard with t,wo known messages which always produce the same set 
of valid signatures (what we call a collision). This attack is thwarted 
by using the generation algorithm suggested in the specifications of the 
Standard, so it proves one always need to check proper generation. We 
also present a similar attack when using this generation algorithm within 
a complexity 274, which is better than the birthday attack which seeks for 
collisions on the underlying hash function. 

Imagine you want t o  join to a brand new association which offers to provide 
useful services on the net,. To allow electronic paymerit, this association provides 
a DSS implementation with public parameters 

p = 100738617.52742838167330548434435874326642998021~0928 
972433454639 1 745980774853739798193524368725087200030 
875 1842 1 197039885009058360 1122813103828861440790761 

and 
q = 759902064211816970120975637406935605590678547999. 

To check the coniicction, thc server requests you to sign the message “This is 
j u s t  a t e s t ” .  Then time goes, and your bank warns you tha t  you need to 
feed your account after your last check of $9,302. Of course, t,he manager of 
the associatiori has just  disappeared with the money obtained from all the 215 
rnembcrs! (This is a $2,000,000 swindle.) 

This attack conies from a special forgery of the public parameter. It is not 
applicable to the  accurate DSS suggested in [‘L] since i t  requires the production 
of a certificak of good forgery. ‘I’liis atlacks however proves tha t  the signer must, 
check the  certificate himself (which is not explicitly mentioned is the  Standard),  
which may be a very cumbersome task for low cost devices. 
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In this paper, wc explain how to perform t,his at,tack. We also show a similar 
attack against DSS with the suggestcd cerf,ificat,e of good forgery with a com- 
plexity equivalcnt to 274 SHS coniyutnt,ions. The complexities of the attacks do 
not depend on the lrngtli of the priirir p used i n  t,tw signature scheme. 

1 Signatures based on discrete logarithm 
The first digital sigriature algorithm based on t,he discrete logarithm probiem 
(namely, the discrete log problem in t.he group ZP*, given a prime number p )  
was the EIGamal signature [4]. 'This scheme produces quite long signatures and 
is also subject. t o  Dleichenbacher's at,t,ack which uses small factors of p - 1 131. 

The  Schnorr signature [6, 71 repars t,hose two shortcomings by using an 
element, g whose ordcr is a 160-bit prime factor q of p - 1. The underlying 
group for the discrete log problem is t,hus a subgroup of ZP* with order q .  The  
Digital Signature Standard (DSS) [2] also uses such a y. 

In the following, we only consider t8hc case of the DSS scheme. In the signa- 
ture scheme, the message is processed through the Secure Hash Standard (SHS) 
[I] which produces a 160-bit digest,. This value then appears as a power of y. 
Hence, the real hash value is not. t,he output of SHS, but rather the message 
digest reduced modulo q .  Since y is less than the Iargest output of SHS, this 
may produce collisioris 

For completeness, we now recall the outiines of DSS. 
p q  q and g w e  the public pararnet,ers choseri by the authority. p is a 512-bit3 

prime (or a 1024-bit) prime in  st,rongcr versions). q is a 160-bit prime factor uf 
p - 1, and y is a primitive yth root of 1 modulo p .  Each user has a secret key 
.T (which is a 160-bit integer) and publishes a corresponding 512-bit public key 
y = g" modp.  The  signature of ari arbit,rary rriessage 771 using a (secret) fresh 
random IBO-bit, integer k is a ( r ,  s)  pair of 160-bit integers defined by 

7 ' =  (g ' ;  tr1od 1') m o d  'I 

SHS(rrc! + zr  
s z  niod q .  

k 

The verification of t.he signat,ure i s  prforrned by checking 

2 Collision for DSS 
We have noticed that t,he red hash function which is used in DSS is SHS mod q.  
Hence, if we know a pair of messages ( 7 1 1 ,  rn' )  such t.hat 

S H S ( r n )  SHS(irr') (mod y )  
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any signature from any user of message ‘ t r i  i s  also a vaiid signature of message 
d. WP call such a pair a, colliszoir for DSS 

81 course, since SHS is considercd as n secure hash function, i t  is still infea.- 
siblc tlo get, a collision. Morc precisely. tshe coiiiplexit,y of the best attack (based 
on the birthday paradox) lias a coiiiplexit,y of 280. Siiiiilarly, ii, may be i n f m  
sible, given a 160-bit prinic 9 -  to tiiid a collision on SBS mod q .  It is however 
possible to construct. q frotn at1 (,un)willing collision (rn, d). 

More concrekly, from a random pair (772,  ? r i ’ ) \  we cxn  check whether or not 
q = ISHS(m) - SEIS(m’)/ is i t  160-bit primc. T h P  integer JSHS(m) - SHS(m’)l 
is obviously a I(iO-bit, int,eger with prohabilit,y 1/2.  Then ,  a random 160-bit 
integer is a primc with probability approximately 1/160 log2 w 1/111, thanks 
to the Prime Nuniber ‘Theorern. H ~ J I c ~ : ,  with an average of 222 trials, we obtain 
a collision which defincs a valid primc q .  It  is not difficult, given a prime q ,  to 
issue valid p and gq for instrance by following t,he generation algorithm provided 
in 121 . 

The example given i r i  t,he iritrotluctioii L I S P S  the iiiessagc. 

i r t  = This is j u s t  a t e s t  

which is riicodrd ns 

54686973 20697320 6 ~ 7 5 7 3 7 4  2061 2074 
65737480 00000000 00000000 00000000 
0 0 0000 0 0 110000000 
i)0(100000 00000000 ooC)00000 00000098 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The second rriessagr i s  

1 1 1 ’  = Transfer  $9,302 on account XYZ 

and its hash value is 

SHS( m’ ) = 14 1299173 1‘2864% 143905fi 11787 I92727072 1446 1 1043 1587 

so let, 
q = S H S ( i r r )  .- SIIS(rd)  

which is a. I W b i t ,  prime ‘I’hen onc c a n  tssiic a 512-bit prime p such tjhat y 
divides p - 1. 
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3 The public parameters generation of DSS 
T h e  description of DSS suggests that, q i s  first generat>ed from a random seed by 
a specific algorit,lim, then p arid 9 are issued from (I by t,he same seed. The seed 
should be used as a certificat,c of a honcst, forgery for p and q .  The previous 
atstjack suggests that, t h i s  feature must, he uscd. 

1s set to 
Is the at,t.ack really bhwnrt,cd by this  generation algorithm? We recall tha t  

(SHSisecd) c?? S H S ( s d  + I  j )  v 2'59 v 1 

until it  i s  a prime where a.nd v denotc the bitwise exclusive and inclusive or 
respectively. (We notlice that we need in average about, 55 trials to get a prime 
q since t,liis is a random ItjO-bit, odd int,eger.) Let, seed = rn and seed +1 = m'. 
The  sa.me att,ack holds whenever 

ISHS(serd) - SHS(sPrdt1) l  = ( S H S ( s e r d )  cff SHS(secdt1))  V 215' V 1 

, we obtain t,hat 273.95 Since this occiirs w i t h  probability k x 
trials are rcquired 011 average to rrioiint th is  att,ack. 

The  Standard says t,liat parameters p and y shall be generated as suggested 
a.bove. or using ot,hcr FIPS approved security methods. This study may thus be 
helpful for proposing other generation algorit,hms. Far instance, we can suggest 
to set 

157 
x (2) ' M 2-" l6 

y = SHS(SP€d)  v 2159 v 1 

uritil q is valid 

4 On the g parameter 

Surprisingly, no particular care IS reclurred for parameter g Thus, fake Q S  like 
g = 0 or 1 are implicit ly accepted' Actually. a dishonest authority can provide 
9 = 1 to a user and make l i i i r i  accept ariy signature forged by 

7 = ( y* mod p )  n ~ o d  (I 

s I - lrrvtl q 
k 
7- 

111 a more dedicated a t t a c k ,  the authority provides g = y a  mod p to Alice, where 
y 15 the public k e j  of Bob, and forges Bob's signatures by 

I = Il?ori p i  rnod Q 

h = mod q 
a S H S ( T a i  + 1' 

k 

We thus suggest to add 
parameters 

wrt ihcate of valid forgery of 9 when issuing the public 
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5 Conclusion 
We performed an attack against, IISS which allows the issuing autority to forge 
valid public paramckrs with hidden collisions. It confirms internal problems 
in the signature scheme which were already predicted by Pointcheval and Stern 
in [5] because of not, using a random pattern in t,he hash function like in the 
Schnorr signature [6]. We have proved that when the issuing authorit,y is not 
trusted, all users must t,hen check proper generation of the public parameters. 
We also showed how to adapt this attack to [.he generation algorithm suggested 
i n  the Standard within a. complexity 274. Even if the complexity were smaller, 
the attack would still not, be so dramatic because it is easy to  detect. This 
should be registered as an existing (bad) property of YSS though. 

This attack can easily he a.voided by using a 161-bit  prime q ,  or by dropping 
the most significant bit of SHS (or by sctting the least significant bit t o  a 
constant before using it. in the signat,iirc scheme), or by padding a random 
pattern before hasliing. Its complexit,y can also hr increased u p  t,o 280 by using 
a stronger certificate-based generation algorithrri for p and q .  

We also presented attacks based on riiaiicious forgery of the g parameter. 
We thus  recommand to use a suitablc ccTrt,ificnte of honest forgery for y as well 
as for p and q .  
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